Environmental Status Report For Samri Bauxite Mine at

Post & Teh.: Samri, (Kusmi)

Dist: Balrampur-Ramanujganj(C.G.)

Duration: April-May-June-2018

Name of Industry:-

Agent of Mines
Samri Mines Division
Hindaico Industries Ltd.

M/s. Hindalco Industries Limited.,

Name of Laboratory:-

Recognised by MoEF (GOI) Notifn. No. D.L.33004/99 Dt.24.10.2007

NABL T-1550 (Chemical), T-1826 (Biological), T-2344 (Mechanical) dt.04/10/2016 valid up to 03.10.2018

Accredited under the QCI-NABET Scheme for EIA Consultant

BIS vide No.CL/CQAPD/OSL (7124116) dt.16.12.2011

Certified by ISO 9001:2008, ISO 14001:2004, ISO 18001:2007

Head Office: 60, Bajiprabhu Nagar, Nagpur-440 033, MS

Lab.: FP-34, 35, Food Park, MIDC, Butibori, Nagpur – 441122

Ph.: (0712) 2242077, 9373287475 Fax: (0712) 2242077

Email: labngp@anacon.in

info@anacon.in Website: www.anaconlaboratories.com, **Foreword**

The protection of environment plays a crucial role in maintaining the local environment

quality for any mining industry. Hence compliance of the statutory requirements

becomes very important to conserve the ecological balance within and surrounding the

mine area. Therefore, environment protection is becoming a prerequisite for sustainable

development. In line with this requirement, the management of M/s Hindalco

Industries Ltd. has adopted a corporate responsibility of environment protection.

In order to comply with the Environment protection act, to fulfill statutory requirement

and to be in tune with Environmental Preservation and sustainable development, M/s

Hindalco Industries Ltd. has retained ANACON LABORATORIES PVT. LTD.,

Nagpur as Environment Consultants and for various Environmental issues related to

their mines.

This report presents the Environmental Status for the period April-2018 to

June-2018 as compliance to the statutory requirements.

The co-operation extended by the Staff and Management of M/s Hindalco Industries

Ltd. during the work execution period is gratefully acknowledged.

for ANACON LABORATORIES PVT. LTD.

Place : Nagpur

Date: June, 2018

TAN TANGENTAL OF THE STATE OF T

Authorized Signatory

1.1 Introduction

HINDALCO INDUSTRIES LIMITED (Hindalco) is one among the flagship companies of the Aditya Birla Group of Industries and is one of the largest corporate groups in India. This group is a leading manufacturer of Aluminum in India, having integrated facilities encompassing bauxite mining, refining and smelting to achieve Aluminium.

Various processing units of HINDALCO are strategically located in different parts of the nation to achieve optimum benefits. Over the past few decades the group has grown multifold in its production capacities, product mix and diversification in mining. HINDALCO possesses bauxite mine leases of Kudag, Samri and Tatijharia mines in Balrampur district of Chhattisgarh State.

HINDALCO INDUSTRIES LTD. awarded the work to M/s ANACON LABORATORIES PVT. LTD. Nagpur (ALPL) for carrying out Environmental monitoring of parameters for assessing pollution levels and preparation of monthly report (April, May & June-2018) as per the requirement of Chhattisgarh Environment Conservation Board (CECB) and Ministry of Environment, Forest and Climate Change (MoEFCC) for Samri mining leases in Balrampur District, Chhattisgarh State.

1.2 Background Information of Samri Mine

HINDALCO was granted Samri Bauxite mining lease over an area of 2146.746 hec in Samri, Dumarkholi, Gopatu villages in Post Office & Tehsil Samri (Kusmi) of Balrampur district, Chhattisgarh on 24/06/1998 for a period of 50 years. The mining operations were started on 25/05/1999. The production capacity of Bauxite is 5.0 Lakh Tonnes Per Annum (LTPA).

1.3 Salient Features of Samri Bauxite Mine

The deposits occur in Samri block, Post Office & Tahsil Samri (Kusmi) of Balrampur district. This deposit has been identified as one of the resources to cater the raw material requirements of the HINDALCO Alumina refinery at Renukoot, Uttar Pradesh. The salient features of the project are presented below: (Table-1)

Introduction

<u>Table 1</u>
<u>Salient Features of Samri Bauxite Mines</u>

S.No.	Particulars	Details
1.	Survey of India Topo sheet No.	64 M /15
2.	Latitude	23° 23′ 02″N to 23° 27″ 05″N
3.	Longitude	83° 53′ 50″E to 83° 57′ 59″E
- 4.	Elevation	1140-m above Mean Sea Level
5.	Climatic Conditions (as per IMD, Ambikapur)	Annual maximum temperature: 30.3°C Annual minimum temperature: 17.7°C Average annual rainfall: 1401.1 mm
6.	Mining lease area	2146.746 hec.
7.	Method of mining	Open cast (Semi-Mechanized)
8.	Mode of transportation	Trucks
9.	Land use	Agricultural and Barren land
10.	Nearest Road	Samri to Kusmi (17 km)
11.	Nearest Airport	Ranchi (146.06 km, ESE)
12.	Nearest Town	Ambikapur (127 km, SW)

1.4 Environmental Monitoring

Regular monitoring of environmental parameters is of immense importance to assess the status of environment during mining operation. With the knowledge of baseline conditions, the monitoring program will serve as an indicator for any deterioration in environmental conditions due to mining operation of the project Suitable mitigation steps will be taken in time to safeguard the environment, based on monitoring reports. Monitoring is important in the control of pollution since the efficiency of control measures can only be determined by monitoring.

In order to find out the impact of mining activity on sensitive receptors, it is necessary to monitor Environmental Quality to know the level of concentrations of pollutants within and around the mining lease area. Accordingly Hindalco Industries through Anacon Laboratories Pvt. Ltd., Nagpur has been monitoring at following locations for air, water and Noise on monthly basis during these months (Table-2).

Introduction

1.5 Air Environment

S

5

7

1.5.1 Ambient Air Quality Monitoring

Ambient Air Quality monitored at 8 locations in the core zone and buffer zone with reference to Samri mine lease area as shown in (Fig. 1).

Table 2

Locations of Ambient Air Quality Monitoring (AAQM) & Fugitive Emission (2146.746hec.)

S.No.	Core zone	Sr.No.	Buffer zone
1	Samri-Gopatu/Near Weigh Bridge	5	Sairaidh Campus
2	Rajendrapur/Near Mining Area	6	Jaljali Village
3	Kutku Village/Near V.T.Center	7	Tatijharia Village/Near Weigh Bridge
4	Dumerkholi/Near Mining Area	8	Piprapat/Near Mining Area

The sampling stations are selected at the above mentioned locations, in downwind and upwind directions of the mining site in the core zone and buffer zone. Anacon Laboratories Pvt. Ltd., Nagpur is carrying out regular monitoring for $PM_{2.5}$, $RPM(PM_{10})$, SO_2 , NO_x and SPM, RSPM, SO_2 , NO_x , Pb, Hg, As and Cr at above Ambient Air Quality Monitoring (AAQM) locations and Fugitive Emission. The dust fall rate was measured in the mining area and Samri chowk during April-May-June-2018. The AAQM and Fugitive Emission sampling sites are selected considering seasonal variation in wind speed and wind direction.

Sampling Duration and Frequency

Ambient air quality monitoring and Fugitive Emission monitoring was carried out for the parameters $PM_{2.5}$, RPM (PM_{10}), SO_2 , NO_3 and SPM, RSPM, SO_2 , NO_4 Pb, Hg, As and Cr, from April-May-June-2018 as per CPCB norms. Sampling Duration and Frequency is given in (**Table 3**).

Data is compared with the present revised standards mentioned in the latest Gazette Notification of the Central Pollution Control Board (CPCB) 18th November, 2009 and as per consent conditions mentioned in consent letter.

Introduction

MONITORED PARAMETERS AND FREQUENCY OF SAMPLING

Methods and Instruments used for Sampling

The air samples were analyzed as per methods specified by Central Pollution Control Board (CPCB).

The levels of Suspended Particulate Matter (SPM), Respirable Particulate Matter (RPM), Sulphur Dioxide (SO₂), Oxides of Nitrogen (NO_X) , Pb, Hg, As and Cr were monitored for establishing the baseline status. SPM and RPM was collected with the help of Respirable Particulate Sampler operating 24 hours by drawing air which passes through the cyclone at the rate of 1.0 -1.3 m³/min which collects the particles less than 10 μ m diameter over glass fibre filter paper and the bigger particulates from 10 to 100 μ m are collected into the cup provided at the bottom of the cyclone. The dust deposited over the filter paper is measured as RPM and the smaller particulates from 2.5 μ m are collected into the Membrane Filter Paper. The dust fall rate was measured using dust fall jar. The jar was exposed for one month in the mining area and Samri-Gopatu during pre and post monsoon period. The jar was filled with 2 lit of distilled water. The water in the jar is mixed with copper sulphate solution (0.02 N solutions) to prevent any growth of algae. The water level in the jar is constantly maintained in such a way that 2 lit of water is always retained. The measurement techniques used for various pollutants and other details are given in (Table 4).

Sampling was carried out continuously for 24 hourly monitoring twice a week at each station during the stipulated study period using pre-calibrated Respirable Dust Samplers in each of the stations.

Earmarked samples were collected for Particulate Matter-PM₁₀, Particulate Matter-PM_{2.5}, SO₂ and NOx for 24 hourly. Collected samples were sent to Laboratories for analysis.

The baseline data of air environment is generated for the parameters namely: Suspended Particulate Matter (SPM), Particulate Matter (PM₁₀), Particulate Matter (PM_{2.5}), Sulphur Dioxide (SO₂), Oxides of Nitrogen (NO_x), Lead (Pb), Mercury (Hg), Arsenic (As) and Chromium (Cr) **Table-3.0**.

)

11

0

e

it

S

S

h

it

11

Hindalco Industries Limited Samri Mining Environmental Status Report for April-2018 To June-2018

Introduction

Table-3.0

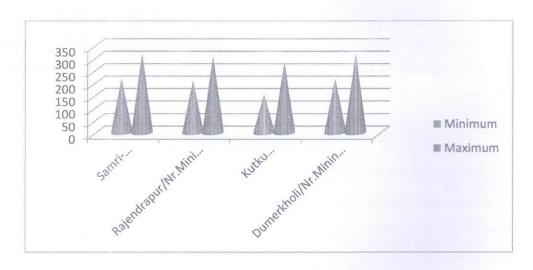
Parameters	Sampling frequency
Suspended Particulate Matter	24 hourly sample twice a week for Three months
Respirable Particulate Matter	24 hourly sample twice a week for Three months
Particulate Matter 2.5	24 hourly sample twice a week for Three months
Sulphur dioxide (So ₂)	24 hourly sample twice a week for Three months
Oxides of Nitrogen (NOx)	24 hourly sample twice a week for Three months
Pb, Hg, As, Cr	8 hourly basis for 24 hour sample for three months

Table 4.0

Measurement Techniques for various pollutants

S.No.	Parameter	Parameter Technique		Minimum Reportable Value (µg/ m³)
1.	Suspended Particulate Matter	Respirable Dust Sampler (Gravimetric Method)	IS-5182 (Part-23)	5
2.	Respirable Particulate Matter	Respirable Dust Sampler (Gravimetric Method)	IS-5182 (Part-23)	5
3.	Particulate Matter 2.5	Respirable Dust Sampler (Gravimetric Method)	Gravimetric Method	5
4.	Sulphur Dioxide	Modified West and Gaeke	IS-5182 (Part - II)	4
5.	Oxide of Nitrogen	Jacob & Hochheiser Method	IS-5182 (Part - VI)	4
6.	Pb, As,Hg, Cr	Acid Digestion Method	EPA Method	0.1
7.	Dust Full	Gravimetric	IS-5182 (Part-I)	_

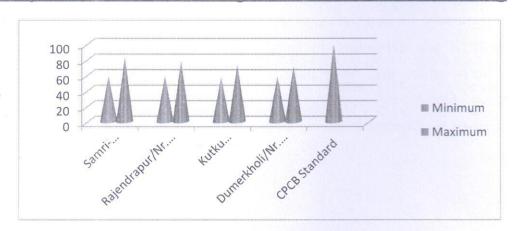
1.6 Fugitive Emission Monitoring


The summary of Fugitive Emission monitoring results for the month of April-May-June-2018 are presented in detail in **Table 6.0**. 98th percentile; maximum and minimum values etc. have been computed from the collected raw data for all the Fugitive monitoring station. The data has been compared with the standards prescribed by Central Pollution Control Board (CPCB)/NAAQS for residential and rural zone.

1.6.1 Presentation of Results.

Suspended Particulate Matter-SPM

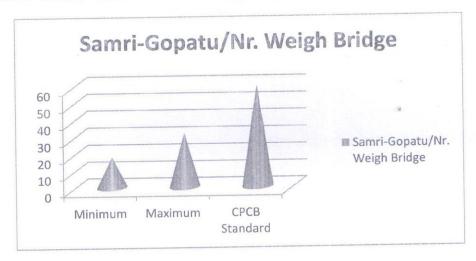
The minimum and maximum concentrations for Suspended Particulate Matter-SPM were recorded as $153\mu g/m^3$ and $319\mu g/m^3$ respectively. The average concentrations were ranged between 168 to $307\mu g/m^3$ and 98^{th} percentile values ranged between 181 to $319\mu g/m^3$ in the study area **(Table 6)**.


Graphical Presentation of Fugitive Emission SPM Monitoring

Respirable Suspended Particulate Matter -RSPM

The minimum and maximum concentrations for RSPM were recorded as $58\mu g/m^3$ and $83\mu g/m^3$ respectively. The average values were observed to be in the range of 62 to $75\mu g/m^3$ and 98^{th} percentile values ranged between 65 to $83\mu g/m^3$ in the study area (Table 7).

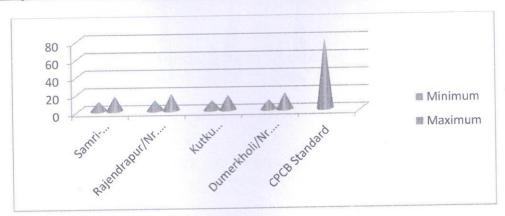
Graphical Presentation of Fugitive Emission RSPM Monitoring


5PM

ons

een

Particulate Matter -PM_{2.5}

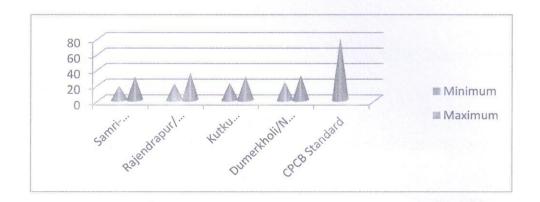

The minimum and maximum values of $PM_{2.5}$ concentrations varied between 18 to $32\mu g/m^3$ respectively. The average values range between 21 to $28\mu g/m^3$ and 98^{th} percentile values varied between 24 to $32\mu g/m^3$ (Table 8).

Sulphur Dioxide (SO₂)

The minimum and maximum SO_2 concentrations were recorded as $11\mu g/m^3$ and $19\mu g/m^3$ respectively. The average values were observed to be in the range of 13 to $17 \mu g/m^3$ and 98^{th} percentile values varied between 14 to $19\mu g/m^3$ (Table 9).

Graphical Presentation of Fugitive Emission SO₂ Monitoring

and


! to

rea

Introduction

Nitrogen Oxide (NO_x)

The minimum and maximum NO_X concentrations were recorded as $18\mu g/m^3$ and $35\mu g/m^3$. The average concentrations were ranged between 20 to $29\mu g/m^3$ and 98^{th} percentile values varied between 22 to $35\mu g/m^3$ (Table 10).

Lead (Pb)

The maximum concentrations of Lead varied $0.080\mu g/m^3$ respectively. The average concentration varied $0.072\mu g/m^3$ & 98th percentiles values varied $0.080\mu g/m^3$ in the study region (**Table 11**).

Mercury (Hg)

Mercury was not detected at any of the locations in SPM samples as well as RSPM Samples (Table 12).

Arsenic (As)

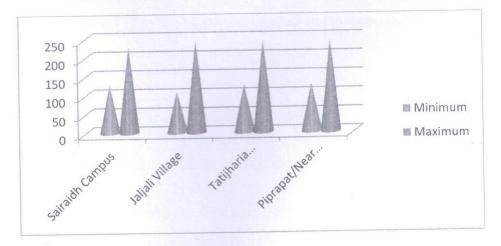
Arsenic was not detected at any of the locations in SPM samples as well as RSPM Samples (Table 13).

Chromium (Cr)

Chromium was not detected at any of the locations in SPM samples as well as RSPM Samples

Introduction

1.7 Ambient Air Quality (Buffer Zone)

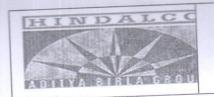

The background levels of SPM, RPM (PM₁₀), PM_{2.5}, SO₂, NO_X, Pb, Hg, As and Cr measured are required to compute Ambient Air Quality. The sampling locations are selected at the above mentioned locations in downwind and upwind directions of the mine. The Minimum, Maximum concentration, Arithmetic mean (AM), Geometric mean (GM) and 98 Percentile are presented in tabular form (**Table-6**).

1.7.1 Presentation of Results.

The summary of Ambient Air Quality monitoring results for the month of April-May-June-2018 are presented in detail in **Table-3**. 98th percentile; maximum and minimum values etc. have been computed from the collected raw data for all the AAQ monitoring station. The data has been compared with the standards prescribed by Central Pollution Control Board (CPCB)/NAAQS for residential and rural zone.

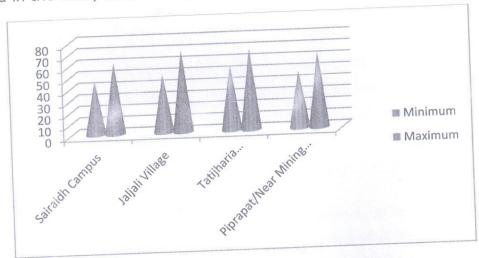
Suspended Particulate Matter-SPM

The statistical analysis of SPM is presented in **Table-6** for the mining area. The minimum and maximum values varied between 109 to $244\mu g/m^3$ respectively during study period at all the 4 locations. The average values ranged between 131 to $225\mu g/m^3$ and 98^{th} percentile values ranged between 151 to $242\mu g/m^3$ in the study area.

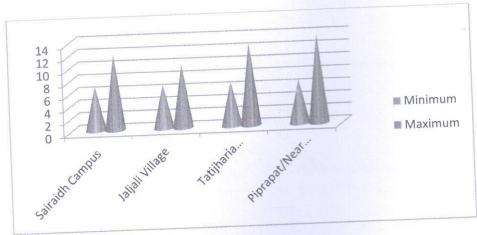

and 98th

age the

PM


PM

РМ


Particulate Matter-RSPM

The minimum and maximum values of RSPM varied between 46 to 71µg/n respectively (Table 7). The average values varied between 51 to 64µg/m³. The 98 percentile values varied between 53 to $71\mu g/m^3$ in the mining area. The overa values of SPM and RSPM were well within the CPCB limits prescribe for industrial an residential area in the study area during the study period.

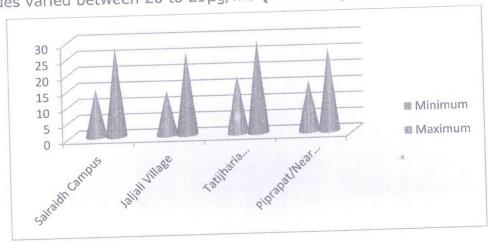
Sulphur Dioxide (SO₂)

The minimum and maximum values of SO₂ concentrations varied between 7 to $14\mu g/m^3$ respectively. The average values range between 8 to 11 $\mu g/m^3$ and 98tr percentile values varied between 9 to 14µg/m³ (Table 9).

3/m 98

and

7 to


)8th

Hindalco Industries Limited Samri Mining Environmental Status Report for April-2018 To June-2018

Introduction

Nitrogen Oxide (NO_x)

The minimum and maximum values of NOx concentrations varied between 14 to 29μg/m³ respectively. The average values range between 18 to 25μg/m³ and 98th percentile values varied between 20 to 29µg/m3 (Table 10).

Lead (Pb)

Lead was not detected at any of the locations in SPM samples as well as RSPM Samples (Table 11).

Mercury (Hg)

Mercury was not detected at any of the locations in SPM samples as well as RSPM Samples (Table 12).

Arsenic (As)

Arsenic was not detected at any of the locations in SPM samples as well as RSPM Samples (Table 13).

Chromium (Cr)

Chromium was not detected at any of the locations in SPM samples as well as RSPM Samples.

The dust fall rate was measured by exposing a jar during April-May-June-2018 in Rajendrapur/Nr.Mining Area and Samri-Gopatu/Nr.Weigh Bridge. The dust fall rate was observed to be 18.76 and 21.12 MT/km²/month respectively as given in (Table 14).

Introduction

Overall the ambient air concentrations of SPM, RSPM, SO_2 , NOx, Pb, Hg, As, Cr and Cr Dust fall were well within the limits of concentrations promulgated by CPCB, Ne Delhi in the study area.

1.8 Meteorology: Wind Pattern

The data of wind pattern collected during the study period (April-May-June-2018 indicates that the wind was blowing predominantly from (WSW and SW) directions, durin study period, for 0.22 % wind was found to be calm. The graphical illustration and win rose diagram is presented in Figures-1 & 2 respectively.

Table.1
Wind Frequency Distribution Data

Sr.No.	Directions / Wind Classes (m/s)	0.5 - 2.1	2.1 - 3.6	3.6 - 5.7	5.7 - 8.8	8.8 - 11.1	>= 11.1	Total 0.00671
1	348.75 - 11.25	0.000000	0.003917	0.002798	0.000000	0.000000	0.000000	
2	11.25 - 33.75	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00000
3	33.75 - 56.25	0.000000	0.000000	0.001119	0.000000	0.000000	0.000000	0.00111
	56.25 - 78.75	0.000000	0.001119	0.002798	0.000000	0.000000	0.000000	0.00391
4	78.75 - 101.25	0.000000	0.001679	0.002798	0.000560	0.000000	0.000000	0.00503
5	101.25 - 123.75	0.000000	0.002798	0.000560	0.002238	0.000000	0.000000	0.00559
6	123.75 - 146.25	0.002798	0.003917	0.003917	0.001119	0.000000	0.000000	0.0117
7		0.001679	0.006715	0.010632	0.003358	0.000000	0.000000	0.0223
8	146.25 - 168.75	0.001079	0.013430	0.022943	0.008394	0.000560	0.000000	0.0481
9	168.75 - 191.25		0.030218	0.050923	0.013430	0.001119	0.000000	0.1001
10	191.25 - 213.75	0.004477	0.030218	0.100727	0.027420	0.001119	0.000000	0.1790
11	213.75 - 236.25	0.005596		0.095691	0.060996	0.000560	0.000000	0.2143
12	236.25 - 258.75	0.005596	0.051483		0.055400	0.000000	0.000000	0.1930
13	258.75 - 281.25	0.006156	0.034695	0.096810	0.036374	0.000000	0.000000	0.1303
14	281.25 - 303.75	0.006715	0.029659	0.057639	0.003917	0.001119	0.000000	0.0526
15	303.75 - 326.25	0.004477	0.020145	0.022943		0.001119	0.000000	0.0235
16	326.25 - 348.75	0.002238	0.009513	0.010632	0.000000		0.000000	0.9972
	Sub-Total	0.042529	0.253497	0.482932	0.213206	0.005596	0.000000	0.002
	Calms							0.000
79	Missing/Incomplete							1.000
	Total							2.000

SUMMARY OF WIND PATTERN

Season	First Predominant Wind Direction	Second Predominant Wind Direction	Calm Condition
April-May-June 2018	WSW (21%)	SW (18%)	0.22 %

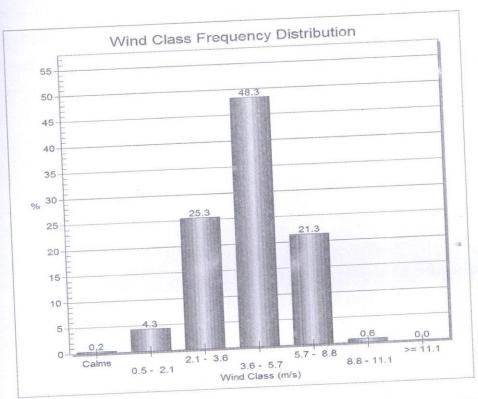


Figure.01: Wind Class Frequency Distribution (April-May-June-2018).

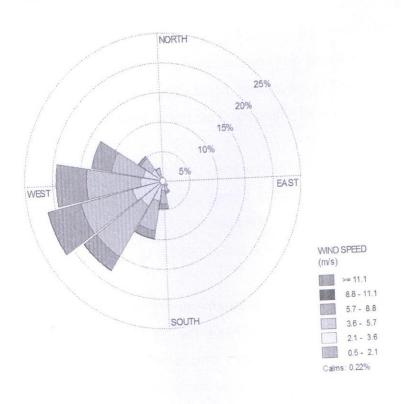


Figure.02: Wind Rose Diagram (April-May-June-2018)

on

Introduction

1.9 Noise Environment

The Director General of Mines Safety in its circular No. DG (Tech)/18 of 1975, had prescribed the noise level in mining occupations (TLV) for workers, in an 8 hour shipperiod with unprotected ear as 90 dB(A) or less. There will be some noise sources mines, which produce noise levels above 90 dB(A), however, the workers are not expected to be exposed continuously for 8 hours. In order to maintain this statutor requirement Noise monitoring has been carried out in and around the mining leas area.

Work zone noise level in the mining area shall increase due to blasting an excavation, transportation. The impacts due to the mining activities on the noise levels shall be negligible, if all the precautions for the elimination of the noise are taken. The mining activities will be undertaken during daytime only. The daytime equivalent noise levels, when all the machineries are in operation, shall be minimize as if machineries have been provided with noise control equipment. Noise monitoring is carried out on monthly basis at three locations in each month are shown in (Fig. 3).

Identification of sampling locations

Noise at different noise generating sources has been identified based on the activitie in the village area and ambient noise due to traffic.

The noise monitoring has been conducted for determination of ambient noise level in the mining area and villages. The noise levels at each location were recorded to 24 hours.

Instrument used for monitoring

Noise levels were measured using integrated sound level meter manufactured b Envirotech made in India (Model no. SLM-100). This instrument is capable α measuring the Sound Pressure Level (SPL), L_{eq} .

Method of Monitoring

Sound Pressure Level (SPL) measurements were monitored at three locations. The readings were taken for every hour for 24 hours. The day noise levels have been monitored during 6 am to 10 pm and night levels during 10 pm to 6 am at three locations within 10-km radius of the study area.

Noise level monitoring was carried out continuously for 24 hours with one hou interval starting at 06.00 hrs to 06.00 hrs next day.

tion

Hindalco Industries Limited Samri Mining Environmental Status Report for April-2018 To June-2018

Introduction

75, ha ur shi

ırces are no

atutor g leas

: nois ise an aytime

ig an

imize itoring

1 (Fig

:ivities

levels ed for

ed by ile of

. The been three

hour

Noise levels monitored during day and night at 3 locations are found to be below the stipulated standard of CPCB for Industrial area as 75dB (A) and 70dB (A) for day and night respectively as given in (Table 15)

Water Quality

The existing status of water quality for ground water and surface water was assessed by collecting the water samples from underground wells from the village Samri, Kudag, Tatijhariya, Saraidih, Rajendrapur and surface water sample from Nallahs nearby Samri mines. The physico-chemical analysis of water samples collected during study period reported as average of three months given in (Table 16). The overall water quality found to be below the stipulated standards of IS 10500-2012 for ground water & found to be fit for drinking purpose for tested parameters. Surface water quality is satisfactory as per IS: 10500-2012. Thus the impacts due to mining activities in each month have been found to be insignificant.

<u>Table 6</u> <u>Statistical Analysis of SPM</u>

					Ur	it: µg/m ³
Location	Month & Year	Min.	Max.	A.M.	G.M.	98%le
Fugitive Emissi	on (Core Zone):-					
Samri-Gopatu/	April-2018	281	309	295	295	308
Nr.weigh bridge	May-2018	283	318	301	301	317
39.	June-2018	218	276	247	247	275
Rajendrapur/	April-2018	273	310	292	292	309
Nr.Mining Area	May-2018	266	293	280	280	292
	June-2018	209	246	228	295 301 247 292	245
Kutku Villaga	April-2018	243	269	256	256	268
Kutku Village/ Nr.V.T. Center	May-2018	261	284	273	273	284
Title of the	June-2018	153	182	168	168	181
Dumerkholi/	April-2018	283	303	293	293	303
Nr.Mining Area	May-2018	294	319	307	307	319
9 / 11 0 4	June-2018	216	251	234	234	250

Location	Month & Year	Min.	Max.	A.M.	G.M.	98%le
Buffer Zone :-					-	00 /010
Caireidh	April-2018	195	229	212	212	228
	May-2018	192	217	205	205	217
	June-2018	128	163	146	146	162
Jaljali Village	April-2018	184	244	214	214	243
	May-2018	195	222	209	209	221
	June-2018	109	152	131	131	151
	April-2018	205	229	217	217	229
	May-2018	189	243	216	216	242
Sairaidh Campus	June-2018	127	184	156	156	183
Dinranat/	April-2018	180	216	198	198	215
	April-2018 19 May-2018 19 June-2018 12 April-2018 18 May-2018 19 June-2018 10 April-2018 20 May-2018 18 June-2018 18 June-2018 18 April-2018 18 May-2018 12 April-2018 20 May-2018 20	207	243	225	225	242
7,100	June-2018	128	157	143	143	156

Conclusion-A:-

- 1) Samri-Gopatu/ Nr.weigh bridge Lease Area Core Zone: For the Months of Apr-May-June-2018 Average of SPM is 281 µg/m³.
- 2) Rajendrapur/Nr.Mining Lease Area <u>Core Zone</u>: For the Months of Apr-May-June-2018 Average of SPM is 267 µg/m3.
- 3) Kutku Village / Nr.V.T. Center Lease Area Core Zone: For the Months of Apr-May-June-2018 Average of SPM is 232 µg/m3.
- 4) <u>Dumerkholi/ Nr.Mining Lease Area Core Zone:</u> For the Months of Apr-May-June-2018 Average of SPM is 278 μg/m3.

The Average Concentration of SPM within the core zone of Samri Lease is 265µg/m3.

Conclusion-B:-

- 1. Sairaidh Campus Lease Area Buffer zone:- For the Months of Apr-May-June-2018 Average of SPM is 188 µg/m³.
- 2. Jaljali Village Lease Area Buffer zone:- For the Months of Apr-May-June-2018 Average of SPM is 185 µg/m³.
- 3. Tatijharia Village/ Nr. Weigh bridge Buffer zone:- For the Months of Apr-May-June-2018 Average of SPM is 196 µg/m3.
- 4. Piprapat/ Nr.Mining Area Buffer zone:- For the Months of Apr-May-June-2018 Average of SPM is 189 μg/m³.
- The Average Concentration of SPM within the Buffer Zone of Samri Lease is 189μg/m³.

ion

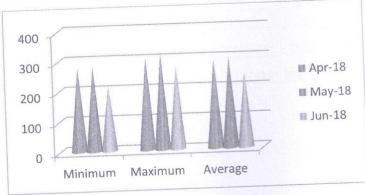
of

1 is 196

Month-wise Summary of Statistical Analysis of SPM

3.0 Fugitive Emission (Core Zone):-

3.0.1 Presentation of Results.


The summary of Statistical Analysis of SPM results for the month of April-May-June-2018 are presented in detail in **Table 6**. 98th percentile; maximum, minimum and average values etc. have been computed from the collected raw data for all the Fugitive emission monitoring station.

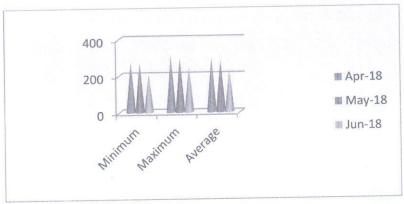
Samri-Gopatu/ Nr.weigh bridge

For the month of April-2018 the minimum and maximum concentrations for SPM were recorded as 281µg/m³ and 309µg/m³ respectively and average concentration of 295µg/m³.

For the month of May-2018 the minimum and maximum concentrations for SPM were recorded as 283µg/m³ and 318µg/m³ respectively and average concentration of 301µg/m³.

For the month of June-2018 the minimum and maximum concentrations for SPM were recorded as 218µg/m³ and 276µg/m³ respectively and average concentration of 247µg/m³.

Graph :- Samri-Gopatu/ Nr.weigh bridge



Rajendrapur/ Nr.Mining Area

For the month of April-2018 the minimum and maximum concentrations for SPM we recorded as 273µg/m³ and 310µg/m³ respectively and average concentration 292µg/m³.

For the month of May-2018 the minimum and maximum concentrations for SPM we recorded as 266µg/m³ and 293µg/m³ respectively and average concentration 280µg/m³.

For the month of June-2018 the minimum and maximum concentrations for SPM we recorded as 209µg/m³ and 246µg/m³ respectively and average concentration 228µg/m³.

Graph: - Rajendrapur/ Nr.Mining Area

Introduction

Report for April-2018 To June-2018 Samri Mining Environmental Status Hindalco Industries Limited

ICTION

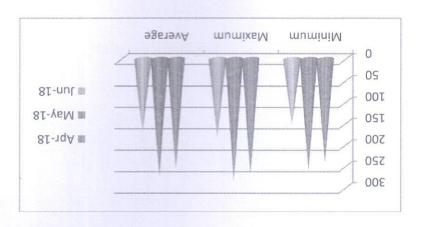
noite

ation

noits.

PM We

DW Mc

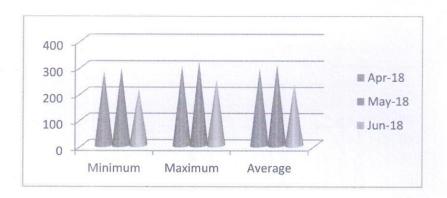

Jaw Me

Kutku Village/ Nr.V.T. Center

recorded as 261 µg/m³ and 284 µg/m³ respectively and average concentration of For the month of May-2018 the minimum and maximum concentrations for SPM were 256µg/m3. recorded as 243 µg/m3 and 269 µg/m3 respectively and average concentration of For the month of April-2018 the minimum and maximum concentrations for SPM were

recorded as 153 µg/m³ and 182 µg/m³ respectively and average concentration of For the month of June-2018 the minimum and maximum concentrations for SPM were 273µg/m³.

168µg/m³.


Graph: - Kutku Village/ Nr.V.T. Center

Dumerkholi/ Nr.Mining Area

For the month of April-2018 the minimum and maximum concentrations for SPM we recorded as 283µg/m³ and 303µg/m³ respectively and average concentration 293µg/m³.

For the month of May-2018 the minimum and maximum concentrations for SPM we recorded as $294\mu g/m^3$ and $319\mu g/m^3$ respectively and average concentration $307\mu g/m^3$.

For the month of June-2018 the minimum and maximum concentrations for SPM we recorded as $216\mu g/m^3$ and $251\mu g/m^3$ respectively and average concentration $234\mu g/m^3$.

Graph:- Dumerkholi/ Nr.Mining Area

uction

tration

PM we

ration

PM we

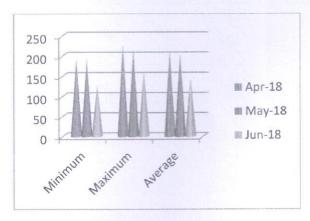
ation

Hindalco Industries Limited Samri Mining Environmental Status Report for April-2018 To June-2018

Introduction

Fugitive Emission (Buffer Zone):-

SPM we Presentation of Results.

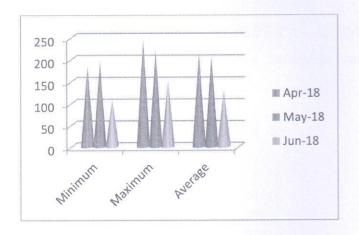

The summary of Statistical Analysis of SPM results for the month of April-May-June-2018 are presented in detail in **Table 6**. 98th percentile; maximum, minimum and average values etc. have been computed from the collected raw data for all the Fugitive emission monitoring station.

Sairaidh Campus

For the month of April-2018 the minimum and maximum concentrations for SPM were recorded as 195µg/m³ and 229µg/m³ respectively and average concentration of 212µg/m³.

For the month of May-2018 the minimum and maximum concentrations for SPM were recorded as $192\mu g/m^3$ and $217\mu g/m^3$ respectively and average concentration of $205\mu g/m^3$.

For the month of June-2018 the minimum and maximum concentrations for SPM were recorded as $128\mu g/m^3$ and $163\mu g/m^3$ respectively and average concentration of $146\mu g/m^3$.


Graph: - Sairaidh Campus

Jaljali Village

For the month of April-2018 the minimum and maximum concentrations for SPM were recorded as 184µg/m3 and 244µg/m3 respectively and average concentration of 214µg/m³.

For the month of May-2018 the minimum and maximum concentrations for SPM were recorded as 195µg/m3 and 222µg/m3 respectively and average concentration of 209µg/m³.

For the month of June-2018 the minimum and maximum concentrations for SPM were recorded as 109µg/m3 and 152µg/m3 respectively and average concentration $131 \mu g/m^3$.

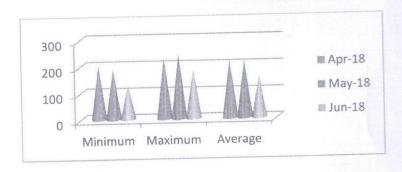
Graph:- Jaljali Village

vere

vere

Nere

Hindalco Industries Limited Samri Mining Environmental Status Report for April-2018 To June-2018

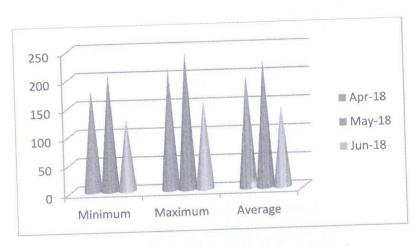

Introduction

Tatijharia Village/Nr.Weigh Bridge

For the month of April-2018 the minimum and maximum concentrations for SPM were recorded as 205µg/m³ and 229µg/m³ respectively and average concentration of 217µg/m³.

For the month of May-2018 the minimum and maximum concentrations for SPM were recorded as 189µg/m³ and 243µg/m³ respectively and average concentration of 216µg/m³.

For the month of June-2018 the minimum and maximum concentrations for SPM were recorded as $127\mu g/m^3$ and $184\mu g/m^3$ respectively and average concentration of $156\mu g/m^3$.


Graph:- Tatijharia Village/Nr.Weigh Bridge

Piprapat/Nr.Mining Area

For the month of April-2018 the minimum and maximum concentrations for SPM were recorded as 180µg/m³ and 216µg/m³ respectively and average concentration of 198µg/m³.

For the month of May-2018 the minimum and maximum concentrations for SPM were recorded as 207µg/m³ and 243µg/m³ respectively and average concentration of 225µg/m³.

For the month of June-2018 the minimum and maximum concentrations for SPM were recorded as $128\mu g/m^3$ and $157\mu g/m^3$ respectively and average concentration of $143\mu g/m^3$.

Graph:- Piprapat/Nr.Mining Area

wen

on

were

on d

were

on

Hindalco Industries Limited Samri Mining Environmental Status Report for April-2018 To June-2018

Introduction

Table 7 Statistical Analysis of RSPM

Unit: ua/m3

					Unit : µg	/m
Location	Month & Year	Min.	Max.	A.M.	G.M.	98%le
Facilitive Emission (Core			1			
THE LIMITOR OF A STATE OF THE PARTY OF THE P		66	83	75	75	83
Samri-Gopatu/		59	74	67	67	74
wwweigh bridge		62	82	72	72	82
		64	70	67	67	70
Fajendrapur/		Min. Max. A.M. G.M. 66 83 75 75 59 74 67 67 62 82 72 72	78			
Mining Area			67	63	63	67
		ay-2018 59 74 67 67 ine-2018 62 82 72 72 pril-2018 64 70 67 67 lay-2018 66 78 72 72 ine-2018 59 67 63 63 pril-2018 61 73 67 67 lay-2018 57 71 64 64 une-2018 59 68 64 64 pril-2018 63 71 67 67 lay-2018 58 65 62 62	73			
Kutku Village/			Max. A.M. G.M. 6 83 75 75 9 74 67 67 2 82 72 72 4 70 67 67 6 78 72 72 9 67 63 63 1 73 67 67 7 71 64 64 9 68 64 64 3 71 67 67 8 65 62 62 1 69 65 65 100	71		
WEV.T. Center		59	68	64	64	68
			71	67	67	71
Dumerkholi/	April-2018 66 83 75 75 May-2018 59 74 67 67 June-2018 62 82 72 72 April-2018 64 70 67 67 May-2018 66 78 72 72 June-2018 59 67 63 63 April-2018 61 73 67 67 May-2018 57 71 64 64 June-2018 63 71 67 67 May-2018 58 65 62 62 June-2018 61 69 65 65	65				
Mr.Mining Area			69	65	65	69
CPCB Standard	04110 2010					i i

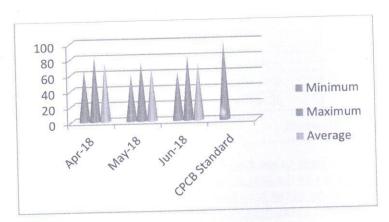
Location	Month & Year	Min.	Max.	A.M.	G.M.	98%le
	WOTER & Tour				VI FINISHED	
Buffer Zone :-	April 2018	46	55	51	51	55
Sairaidh Campus				56	56	62
			53	50	51	53
			63	58	58	63
Intiali Villago		56	71	64	64	71
Jaljali Village		50	66	58	51 56 50 58 64 58 58 63 64 59 58 52	66
		56	59	58	58	59
Tatijharia Village/		60	65	63	63	65
Nr. Weigh bridge		58	70	64	64	70
	Month & Year Min. Max. Jan. May-2018 46 55 51 51 May-2018 50 62 56 56 June-2018 47 53 50 50 April-2018 52 63 58 58 May-2018 56 71 64 64 June-2018 50 66 58 58 April-2018 56 59 58 58 May-2018 60 65 63 63 June-2018 54 63 59 59 May-2018 50 65 58 58 June-2018 49 55 52 52 100 100 100 100 100	63				
Piprapat/		50	65	58	58	65
Nr.Mining Area		49	55	52	51 56 50 58 64 58 58 63 64 59 58 52	55
CPCB S	Standard			100 (24 hrs)		

- Conclusion: A) Samri-Gopatu/ Nr.weigh bridge Lease Area Core Zone: For the Months of Apr-May-June-2018 Average of RSPM is 71 μg/m³.
- Rajendrapur/Nr.Mining Area Lease Area Core Zone:- For the Months of Apr-May-June-2018 Average of RSPM is 67 µg/m³. **SET OF SET OF**
- <u>■ Dumerkholi/ Nr.Mining Area Lease Area Core Zone:</u> For the Months of Apr-May-June-2018 Average of RSPM is 65 μg/m.
- The Average Concentration of RSPM within the Core Zone of Samri Lease is 67 μg/m³ and it is within permissible limits as per CPCB Standard.
- Conclusion (B)
- 1) Sairaidh Campus Lease Area Buffer Zone:- For the Months of Apr-May-June-2018 Average of RSPM is 52 μg/m³.
- Jaljali Village Lease Area Buffer Zone:- For the Months of Apr-May-June-2018 Average of RSPM is 60 μg/m³.
- Tatijharia Village/ Nr. Weigh bridge Buffer Zone: For the Months of Apr-May-June-2018 Average of RSPM is 62 µg/m³.
- Piprapat/ Nr.Mining Area Buffer Zone:- For the Months of Apr-May-June-2018 Average of RSPM is 56 μg/m³.
- The Average Concentration of RSPM within the Buffer Zone of Samri Lease is 58 μg/m³ and it is within permissible limits as per CPCB Standard.

Monthwise Summary of Statistical Analysis of RSPM

3.2 Fugitive Emission (Core Zone):-

3.2.1 Presentation of Results.

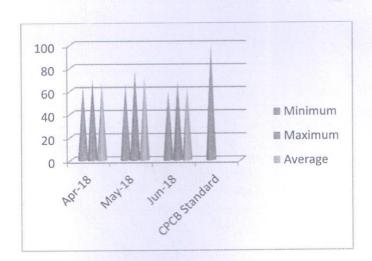

The summary of Statistical Analysis of RSPM results for the month of April-May-June-20 are presented in detail in **Table 7**. 98th percentile; maximum, minimum and average valuetc. have been computed from the collected raw data for all the Fugitive emission monitoring station.

Samri-Gopatu/ Nr.weigh bridge

For the month of April-2018 the minimum and maximum concentrations for RSPM we recorded as $66\mu g/m^3$ and $83\mu g/m^3$ respectively and average concentration of $75\mu g/m^3$.

For the month of May-2018 the minimum and maximum concentrations for RSPM we recorded as $59\mu g/m^3$ and $74\mu g/m^3$ respectively and average concentration of $67\mu g/m^3$.

For the month of June-2018 the minimum and maximum concentrations for RSPM we recorded as $62\mu g/m^3$ and $82\mu g/m^3$ respectively and average concentration of $72\mu g/m^3$.


Introduction

Rajendrapur/Nr.Mining Area

For the month of April-2018 the minimum and maximum concentrations for RSPM were recorded as $64\mu g/m^3$ and $70\mu g/m^3$ respectively and average concentration of $67\mu g/m^3$.

For the month of May-2018 the minimum and maximum concentrations for RSPM were recorded as 66µg/m³ and 78µg/m³ respectively and average concentration of 72µg/m³.

For the month of June-2018 the minimum and maximum concentrations for RSPM were recorded as 59µg/m³ and 67µg/m³ respectively and average concentration of 63µg/m³.

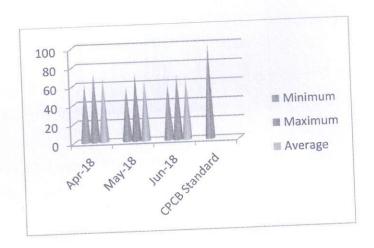
M wer

ne-201

e value

missio

M were n^3 .


M were

Kutku Village/Nr.V.T. Center

For the month of April-2018 the minimum and maximum concentrations for RSPM we recorded as $61\mu g/m^3$ and $73\mu g/m^3$ respectively and average concentration of $67\mu g/m^3$.

For the month of May-2018 the minimum and maximum concentrations for RSPM we recorded as $57\mu g/m^3$ and $71\mu g/m^3$ respectively and average concentration of $64\mu g/m^3$.

For the month of June-2018 the minimum and maximum concentrations for RSPM we recorded as $59\mu g/m^3$ and $68\mu g/m^3$ respectively and average concentration of $64\mu g/m^3$.

tion

M wer

M wei

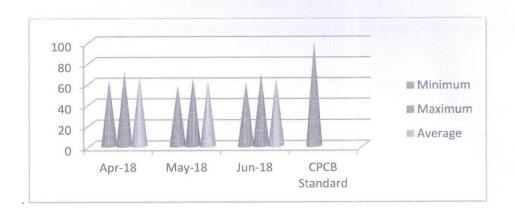
M wei

 n^3 .

 n^3 .

 n^3 .

Hindalco Industries Limited Samri Mining Environmental Status Report for April-2018 To June-2018


Introduction

Dumerkholi/Nr.Mining Area

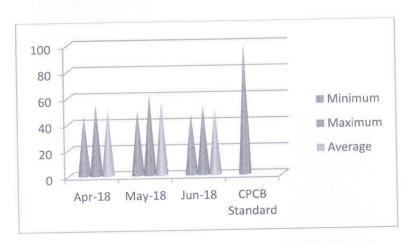
For the month of April-2018 the minimum and maximum concentrations for RSPM were recorded as $63\mu g/m^3$ and $71\mu g/m^3$ respectively and average concentration of $67\mu g/m^3$.

For the month of May-2018 the minimum and maximum concentrations for RSPM were recorded as $58\mu g/m^3$ and $65\mu g/m^3$ respectively and average concentration of $62\mu g/m^3$.

For the month of June-2018 the minimum and maximum concentrations for RSPM were recorded as $61\mu g/m^3$ and $69\mu g/m^3$ respectively and average concentration of $65\mu g/m^3$.

3.3 Fugitive Emission (Buffer Zone):-

3.3.1 Presentation of Results.


The summary of Statistical Analysis of RSPM results for the month of April-May-June-201 are presented in detail in **Table 6**. 98th percentile; maximum, minimum and average value etc. have been computed from the collected raw data for all the Fugitive emission monitoring station.

Sairaidh Campus

For the month of April-2018 the minimum and maximum concentrations for RSPM were recorded as 46µg/m³ and 55µg/m³ respectively and average concentration of 51µg/m³.

For the month of May-2018 the minimum and maximum concentrations for RSPM were recorded as 50µg/m³ and 62µg/m³ respectively and average concentration of 56µg/m³.

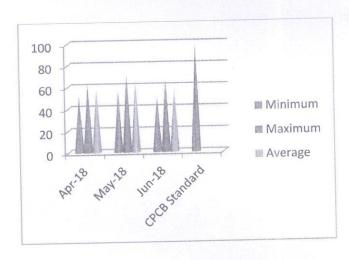
For the month of June-2018 the minimum and maximum concentrations for RSPM were recorded as 47µg/m³ and 53µg/m³ respectively and average concentration of 50µg/m³.

Introduction

Jaljali Village

2018

alue

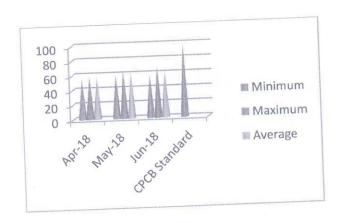

ssion

were

For the month of April-2018 the minimum and maximum concentrations for RSPM were recorded as 52µg/m³ and 63µg/m³ respectively and average concentration of 58µg/m³.

For the month of May-2018 the minimum and maximum concentrations for RSPM were recorded as 56µg/m³ and 71µg/m³ respectively and average concentration of 64µg/m³.

For the month of June-2018 the minimum and maximum concentrations for RSPM were recorded as $50\mu g/m^3$ and $66\mu g/m^3$ respectively and average concentration of $58\mu g/m^3$.



Tatijharia Village

For the month of April-2018 the minimum and maximum concentrations for RSPM were recorded as 56µg/m³ and 59µg/m³ respectively and average concentration of 58µg/m³.

For the month of May-2018 the minimum and maximum concentrations for RSPM were recorded as $60\mu g/m^3$ and $65\mu g/m^3$ respectively and average concentration of $63\mu g/m^3$.

For the month of June-2018 the minimum and maximum concentrations for RSPM were recorded as $58\mu g/m^3$ and $70\mu g/m^3$ respectively and average concentration of $64\mu g/m^3$.

Piprapat/Nr.Mining Area

1 were

For the month of April-2018 the minimum and maximum concentrations for RSPM were recorded as 54µg/m³ and 63µg/m³ respectively and average concentration of 59µg/m³.

/ were

For the month of May-2018 the minimum and maximum concentrations for RSPM were recorded as 50µg/m³ and 65µg/m³ respectively and average concentration of 58µg/m³.

VI were

For the month of June-2018 the minimum and maximum concentrations for RSPM were recorded as $49\mu g/m^3$ and $55\mu g/m^3$ respectively and average concentration of $52\mu g/m^3$.

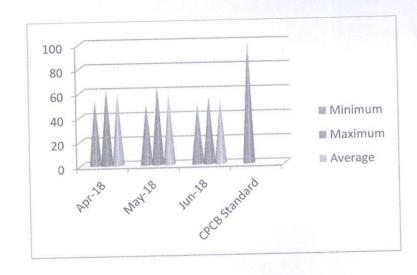


Table 8

Statistical Analysis of PM 2.5

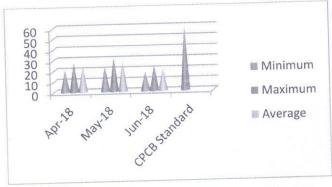
Unit: µg/m³

l Alam	Month & Year	Min.	Max.	A.M.	G.M.	98%
Location		21	28	25	25	28
Samri-Gopatu/	April-2018	And I	32	28	28	32
Near Weigh bridge	May-2018	24	24	21	21	24
CPCB Star	June-2018	18		60 24 hrs)	firm 1	

Conclusion: The Average Concentration of PM_{2.5} within Samri Lease during this period (Apr-May-June-2018) is 25 μg/m³ and it is within permissible limits as per CPCB Standard.

3.4 Statistical Analysis of PM 2.5:-

3.4.1 Presentation of Results.


The summary of Statistical Analysis of PM2.5 results for the month of April-May-June-201 are presented in detail in Table 8. 98th percentile; maximum, minimum and average value etc. have been computed from the collected raw data for all the Fugitive emission monitoring station.

Samri-Gopatu/Near Weigh Bridge

For the month of April-2018 the minimum and maximum concentrations for PM2.5 werecorded as 21µg/m3 and 28µg/m3 respectively and average concentration of 25µg/m3.

For the month of May-2018 the minimum and maximum concentrations for PM2.5 we recorded as 24µg/m3 and 32µg/m3 respectively and average concentration of 28µg/m3.

For the month of June-2018 the minimum and maximum concentrations for PM2.5 we recorded as 18µg/m3 and 24µg/m3 respectively and average concentration of 21µg/m3.

Introduction

g/m3.

Statistical Analysis of SO₂

Table 9	Statisti	cal Analysis	of SO ₂		Unit: µg/m³		
			Max.	A.M.	G.M.	98%	
Location	Month & Year	Min.	1010024			14	
agitive Emission (Core	¿ Zone):-	1 12	14	13	13		
IGILIVE CITIESSION (OC.	April-2018	12		13	13.	15	
Samri-Gopatu/	May-2018	11	15	15	15	17	
weigh bridge	June-2018	12	17		17	19	
	April-2018	14	19	17	14	16	
Rajendrapur/ Mining Area	May-2018	12	16	14	16	17	
	June-2018	14	17	16		14	
		11	14	13	13	1:6	
	April-2018	12	16	14	14		
Kutku Villagel	May-2018	12		14	14	17	
Nr.V.T. Center	June-2018	11	17	15	15	19	
	April-2018	11	19		16	18	
Dumerkholi/	May-2018	13	18	16	14	16	
Mining Area		12	16	14	14		
	June-2018			80 (24 hrs)	-	
СРСВ	Standard			0.78	GM	98%	

andard		N. 0	A M	G.M.	98%
Month & Vear	Min.	Max.	P4.191.		
Month & rear			0	9	10
Amril 2018	7	10			9
	7	9			
	0	12	11		
June-2018			9	9	10 9 12 10 9 10 12 10 13
April-2018			8	8	
	7			9	10
	8			10	12
	8				10
	7				13
	8				14
	8	14			10
	7	10	9		
	Q	12	10	10	12
June-2018	0		80		
Standard			(24 hrs	5)	
	Month & Year April-2018 May-2018 June-2018 April-2018 May-2018 June-2018 April-2018 May-2018 June-2018 April-2018 April-2018 April-2018 April-2018 April-2018 May-2018 June-2018 Standard	April-2018 7 May-2018 7 June-2018 9 April-2018 8 May-2018 7 June-2018 8 April-2018 8 April-2018 8 April-2018 8 April-2018 7 June-2018 8 April-2018 7 June-2018 8 April-2018 8	April-2018 7 10 May-2018 7 9 June-2018 9 12 April-2018 7 9 June-2018 7 9 June-2018 7 9 June-2018 8 10 April-2018 8 10 April-2018 8 12 May-2018 7 10 June-2018 8 13 April-2018 8 13 April-2018 8 14 May-2018 7 10 June-2018 8 14 May-2018 7 10 June-2018 8 14	Month & Year Min. April-2018 7 10 9 May-2018 7 9 8 June-2018 9 12 11 April-2018 8 10 9 May-2018 7 9 8 June-2018 8 10 9 April-2018 8 12 10 May-2018 7 10 9 June-2018 8 14 11 May-2018 7 10 9 June-2018 8 12 10 Standard 8 12 10	Month & Year Min. Max. Attribute April-2018 7 10 9 9 May-2018 7 9 8 8 June-2018 9 12 11 11 April-2018 8 10 9 9 May-2018 7 9 8 8 June-2018 8 10 9 9 April-2018 8 12 10 10 April-2018 8 13 11 11 April-2018 8 14 11 11 May-2018 7 10 9 9 June-2018 8 12 10 10 June-2018 8 12 10 10

- Samri-Gopatu/ Nr.weigh bridge Lease Area Core Zone: For the Months of Apr-May-June-2018 Avg. of SO₂ is 14 µg/m³. Conclusion:- A)
- Rajendrapur/Nr.Mining Area Lease Area Core Zone:- For the Months of Apr-May-June-2018 Avg. of SO₂ is 16 μg/m³. <u>Kutku Village / Nr.V.T. Center Lease Area Core Zone</u>:- For the Months of Apr-May-June-2018 Avg. of SO₂ is 14 μg/m³.
- Dumerkholi/ Nr.Mining Area Core Zone:- For the Months of Apr-May-June-2018 Average of SO₂ is 15 μg/m³.
- The Average Concentration of SO₂ within the Core Zone of Samri Lease during this period (Apr-May-June-2018) is 15 μg/m³ and it is within permissible limits as per CPCB Standard.

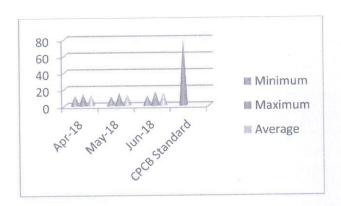
- 1 Sairaidh Campus Lease Area Buffer Zone:- For the Months of Apr-May-June-2018 Average of SO₂ is 9 µg/m³. Conclusion : B)
- 2 Jaljali Village Lease Area Buffer Zone:- For the Months of Apr-May-June-2018 Average of SO₂ is 9 μg/m³
- 3)Tatijharia Village/ Nr. Weigh bridge Lease Area Buffer Zone:- For the Months of Apr-May-June-2018 Avg. of SO₂ is
- 4) Piprapat/ Nr.Mining Lease Area Buffer Zone:- For the Months of Apr-May-June-2018 Average of SO₂ is 10 μg/m³.
- The Average Concentration of SO₂ within the Buffer Zone of Samri Lease during this period (Apr-May-June-2018) is 10 µg/m³ and it is within permissible limits as per CPCB Standard.

Introduction

Monthwise Summary of Statistical Analysis of SO₂

3.5 Fugitive Emission (Core Zone):-

3.5.1 Presentation of Results.


The summary of Statistical Analysis of SO₂ results for the month of April-May-June-20th are presented in detail in **Table 7**. 98th percentile; maximum, minimum and average value etc. have been computed from the collected raw data for all the Fugitive emission monitoring station.

Samri-Gopatu/ Nr.weigh bridge

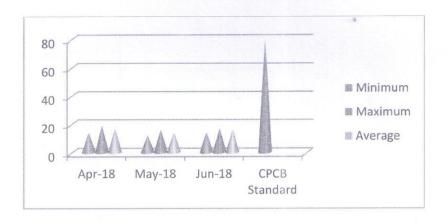
For the month of April-2018 the minimum and maximum concentrations for SO₂ were recorded as 12µg/m³ and 14µg/m³ respectively and average concentration of 13µg/m³.

For the month of May-2018 the minimum and maximum concentrations for SO₂ were recorded as 11µg/m³ and 15µg/m³ respectively and average concentration of 13µg/m³.

For the month of June-2018 the minimum and maximum concentrations for SO₂ were recorded as 12µg/m³ and 17µg/m³ respectively and average concentration of 15µg/m³.

ction

Hindalco Industries Limited Samri Mining Environmental Status Report for April-2018 To June-2018


Introduction

Rajendrapur/Nr.Mining Area

For the month of April-2018 the minimum and maximum concentrations for SO_2 were recorded as $14\mu g/m^3$ and $19\mu g/m^3$ respectively and average concentration of $17\mu g/m^3$.

For the month of May-2018 the minimum and maximum concentrations for SO₂ were recorded as 12µg/m³ and 16µg/m³ respectively and average concentration of 14µg/m³.

For the month of June-2018 the minimum and maximum concentrations for SO₂ were recorded as 14µg/m³ and 17µg/m³ respectively and average concentration of 16µg/m³.

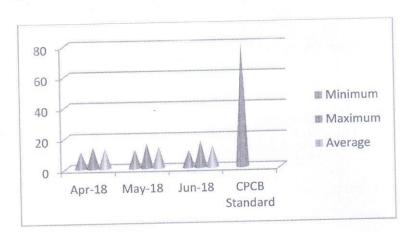
je value emissio

ine-201

 O_2 were $/m^3$.

 O_2 were $/m^3$.

 O_2 were $/m^3$.


Introduction

Kutku Village/Nr.V.T. Center

For the month of April-2018 the minimum and maximum concentrations for SO₂ were recorded as 11µg/m³ and 14µg/m³ respectively and average concentration of 13µg/m³.

For the month of May-2018 the minimum and maximum concentrations for SO₂ were recorded as 12µg/m³ and 16µg/m³ respectively and average concentration of 14µg/m³.

For the month of June-2018 the minimum and maximum concentrations for SO₂ were recorded as 11µg/m³ and 17µg/m³ respectively and average concentration of 14µg/m³.

on

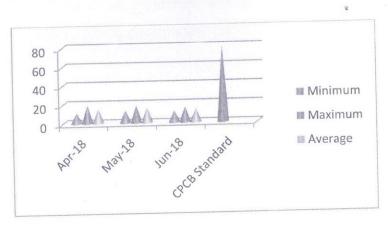
wen.

2 Well

2 Wei

1³.

Hindalco Industries Limited Samri Mining Environmental Status Report for April-2018 To June-2018


Introduction

Dumerkholi/Nr.Mining Area

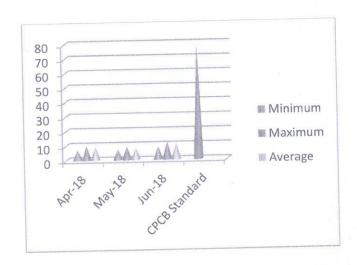
For the month of April-2018 the minimum and maximum concentrations for SO_2 were recorded as $11\mu g/m^3$ and $19\mu g/m^3$ respectively and average concentration of $15\mu g/m^3$.

For the month of May-2018 the minimum and maximum concentrations for SO_2 were recorded as $13\mu g/m^3$ and $18\mu g/m^3$ respectively and average concentration of $16\mu g/m^3$.

For the month of June-2018 the minimum and maximum concentrations for SO_2 were recorded as $12\mu g/m^3$ and $16\mu g/m^3$ respectively and average concentration of $14\mu g/m^3$.

3.6 Fugitive Emission (Buffer Zone):-

3.6.1 Presentation of Results.


The summary of Statistical Analysis of SO₂ results for the month of April-May-June-21 are presented in detail in **Table 9**. 98th percentile; maximum, minimum and average valuetc. have been computed from the collected raw data for all the Fugitive emiss monitoring station.

Sairaidh Campus

For the month of April-2018 the minimum and maximum concentrations for SO₂ we recorded as 7µg/m³ and 10µg/m³ respectively and average concentration of 9µg/m³.

For the month of May-2018 the minimum and maximum concentrations for SO₂ we recorded as 7μg/m³ and 9μg/m³ respectively and average concentration of 8μg/m³.

For the month of June-2018 the minimum and maximum concentrations for SO₂ we recorded as 9µg/m³ and 12µg/m³ respectively and average concentration of 11µg/m³.

ction

Hindalco Industries Limited Samri Mining Environmental Status Report for April-2018 To June-2018

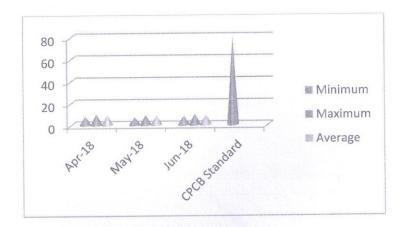
Introduction

ine-201

je value emissir

O₂ we

O₂ we

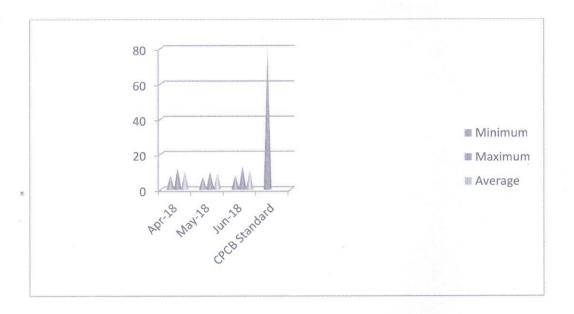

 M_{\odot}^{2} we M_{\odot}^{3} .

Jaljali Village

For the month of April-2018 the minimum and maximum concentrations for SO₂ were recorded as 8µg/m³ and 10µg/m³ respectively and average concentration of 9µg/m³.

For the month of May-2018 the minimum and maximum concentrations for SO_2 were recorded as $7\mu g/m^3$ and $9\mu g/m^3$ respectively and average concentration of $8\mu g/m^3$.

For the month of June-2018 the minimum and maximum concentrations for SO_2 were recorded as $8\mu g/m^3$ and $10\mu g/m^3$ respectively and average concentration of $9\mu g/m^3$.



Tatijharia Village/Nr.Weigh Bridge

For the month of April-2018 the minimum and maximum concentrations for SO₂ we recorded as 8µg/m³ and 12µg/m³ respectively and average concentration of 10µg/m³.

For the month of May-2018 the minimum and maximum concentrations for SO_2 we recorded as $7\mu g/m^3$ and $10\mu g/m^3$ respectively and average concentration of $9\mu g/m^3$.

For the month of June-2018 the minimum and maximum concentrations for SO₂ we recorded as 8µg/m³ and 13µg/m³ respectively and average concentration of 11µg/m³.

ction

O₂ We

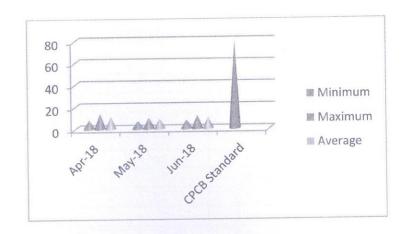
O2 We

O2 We

 n^3 .

 n^3 .

Hindalco Industries Limited Samri Mining Environmental Status Report for April-2018 To June-2018


Introduction

Piprapat/Nr.Mining Area

For the month of April-2018 the minimum and maximum concentrations for SO₂ were recorded as 8µg/m³ and 14µg/m³ respectively and average concentration of 11µg/m³.

For the month of May-2018 the minimum and maximum concentrations for SO₂ were recorded as 7µg/m³ and 10µg/m³ respectively and average concentration of 9µg/m³.

For the month of June-2018 the minimum and maximum concentrations for SO₂ were recorded as 8µg/m³ and 12µg/m³ respectively and average concentration of 10µg/m³.

Introduction

Table 10 Statistical Analysis of NOx

Unit: ua/m3

				OIIIL.	µg/m	
Location	Month & Year	Min.	Max.	A.M.	G.M.	989
Fugitive Emission (Core Zo	ne):-					
Samuel Camaturi	April-2018	18	22	20	20	22
Samri-Gopatu/ Nr.weigh bridge	May-2018	20	28	24	24	28
M.Weigh bridge	June-2018	22	30	26	20	30
Rajendrapur/	April-2018	21	35	28	28	35
Nr.Mining Area	May-2018	23	31	27	27	31
	June-2018	25	32	29	29	32
	April-2018	23	28	26	26	28
Kutku Village/ Nr.V.T. Center	May-2018	25	30	28	28	30
Nr.v.1. Center	June-2018	22	25	24	24 26 28 27 29 26 28 24 28 25	25
	April-2018	25	31	28	28	31
Dumerkholi/ Nr.Mining Area	May-2018	23	27	25	25	27
William Alea	June-2018	25	32	29	29	32
CPCB Standard			80 (24 hrs)			

Location	Month & Year	Min.	Max.	A.W.	G.M.	989
Buffer Zone :-						
Coincidh Conn	April-2018	16	25	21	21	25
Sairaidh Campus	May-2018	17	28	23	23	28
	June-2018	15	20	18	21	20
	April-2018	14	21	18	18	21
Jaljali Village	May-2018	16	24	20	20	24
	June-2018	16	26	21	23 18 18 20 21 25 25 22 21 22	26
Tatilla ania Milla wa (April-2018	21	28	25	25	28
Tatijharia Village/ Nr. Weigh bridge	May-2018	20	29	25	25	29
Mr. Weigh bridge	June-2018	18	25	22	21 23 18 18 20 21 25 25 22 21 22	25
P3'	April-2018	19	23	21	21	23
Riprapat/ Nr.Mining Area	May-2018	17	26	22	22	26
ist.willing Area	June-2018	16	23	20	20	23
CPCB Stan	dard	sar		80 24 hrs)		

Conclusion: A)

- 1) Samri-Gopatu/ Nr.weigh bridge Lease Area Core Zone: For the Months of Apr-May-June-2018 Average of NO_X is 23 µg/m³.
- 2) Rajendrapur/Nr.Mining Lease Area Core Zone: For the Months of Apr-May-June-2018 Average of NO_X is 28 µg/m³.
- 3) Kutku Village / Nr.V.T. Center Lease Area Core Zone:- For the Months of Apr-May-June-2018 Average of NO_X is 26 µg/m³.
- 4) Dumerkholi/ Nr.Mining Lease Area Core Zone:- For the Months of Apr-May-June-2018 of NO_χ is 27 μg/m³.
- The Average Concentration of NO_X within the Core Zone of Samri Lease during this period (Apr-May-June-2018) is 26 µg/m³ and it is within permissible limits as per CPCB Standard.

Conclusion: B)

1)Sairaidh Campus Lease Area Buffer Zone:- For the Months of Apr-May-June-2018 Average of NO_X is 21 µg/m³.

2)Jaljali VillageLease Area Buffer Zone:- For the Months of Apr-May-June-2018 Average of NO_X is 20 µg/m³.

3)Tatijharia Village/ Nr. Weigh bridge Lease Area Buffer Zone:- For the Months of Apr-May-June-2018 Average of NO_X is 24 µg/m³.

4) Piprapat/ Nr.Mining Lease Area Buffer Zone:- For the Months of Apr-May-June-2018 Average of NO_X is 21 µg/m³.

The Average Concentration of NO_X within the Buffer Zone of Samri Lease during this period (Apr-May-June-2018)
 21 μg/m³ and it is within permissible limits as per CPCB Standard.

98%

22

30

35 31

32 28

30 25

31

27 32

98%

25 28 20

21

24262829

25

23

26

23

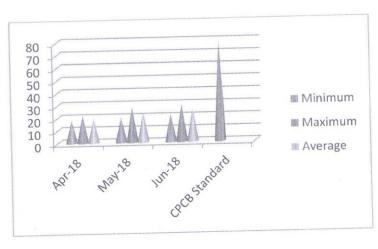
 l/m^3 .

m³.

Monthwise Summary of Statistical Analysis of NOx

3.7 Fugitive Emission (Core Zone):-

17.1 Presentation of Results.


The summary of Statistical Analysis of NOx results for the month of April-May-June-2018 are presented in detail in **Table 10**. 98th percentile; maximum, minimum and average values etc. have been computed from the collected raw data for all the Fugitive emission monitoring station.

Samri-Gopatul Nr.weigh bridge

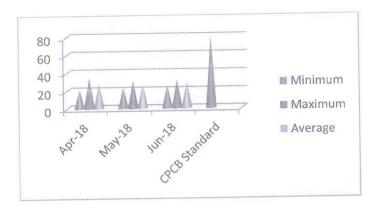
For the month of April-2018 the minimum and maximum concentrations for NOx were recorded as 18µg/m³ and 22µg/m³ respectively and average concentration of 20µg/m³.

For the month of May-2018 the minimum and maximum concentrations for NOx were recorded as 20µg/m³ and 28µg/m³ respectively and average concentration of 24µg/m³.

For the month of June-2018 the minimum and maximum concentrations for NOx were recorded as 22µg/m³ and 30µg/m³ respectively and average concentration of 26µg/m³.

24 μg/m³.

May-June-


une-2018) il

Rajendrapur/Nr.Mining Area

For the month of April-2018 the minimum and maximum concentrations for NOx we recorded as 21µg/m³ and 35µg/m³ respectively and average concentration of 28µg/m³.

For the month of May-2018 the minimum and maximum concentrations for NOx we recorded as 23µg/m³ and 31µg/m³ respectively and average concentration of 27µg/m³.

For the month of June-2018 the minimum and maximum concentrations for NOx we recorded as 25µg/m³ and 32µg/m³ respectively and average concentration of 29µg/m³.

)x wer

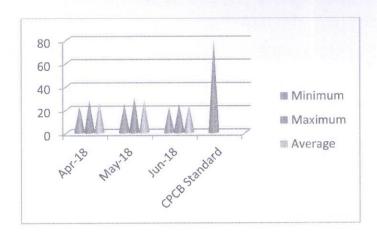
 m^3 .

 m^3 .

Dx we

 m^3 .

Hindalco Industries Limited Samri Mining Environmental Status Report for April-2018 To June-2018

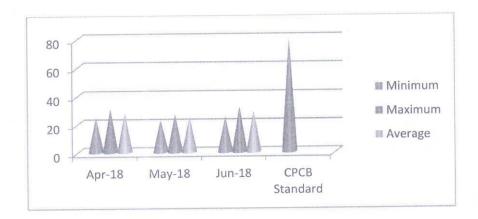

Introduction

Kutku Village/Nr.V.T. Center

For the month of April-2018 the minimum and maximum concentrations for NOx were recorded as 23µg/m³ and 28µg/m³ respectively and average concentration of 26µg/m³.

For the month of May-2018 the minimum and maximum concentrations for NOx were recorded as 25µg/m³ and 30µg/m³ respectively and average concentration of 28µg/m³.

For the month of June-2018 the minimum and maximum concentrations for NOx were recorded as 22µg/m³ and 25µg/m³ respectively and average concentration of 24µg/m³.



Dumerkholi/Nr.Mining Area

For the month of April-2018 the minimum and maximum concentrations for NOx we recorded as 25µg/m³ and 31µg/m³ respectively and average concentration of 28µg/m³.

For the month of May-2018 the minimum and maximum concentrations for NOx we recorded as 23µg/m³ and 27µg/m³ respectively and average concentration of 25µg/m³.

For the month of June-2018 the minimum and maximum concentrations for NOx we recorded as 25µg/m³ and 32µg/m³ respectively and average concentration of 29µg/m³.

 y/m^3 .

10x we

VOx we

 g/m^3 .

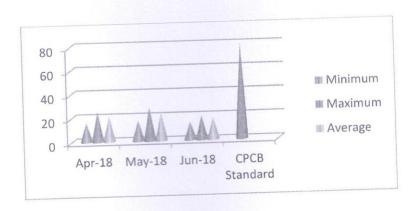
 g/m^3 .

Hindalco Industries Limited Samri Mining Environmental Status Report for April-2018 To June-2018

Introduction

Fugitive Emission (Buffer Zone):-

Ox were 13.1 Presentation of Results.

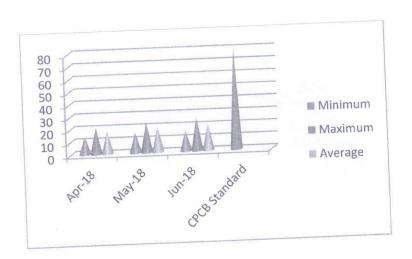

The summary of Statistical Analysis of NOx results for the month of April-May-June-2018 are presented in detail in **Table 10**. 98th percentile; maximum, minimum and average values etc. have been computed from the collected raw data for all the Fugitive emission monitoring station.

Sairaidh Campus

For the month of April-2018 the minimum and maximum concentrations for NOx were recorded as 16µg/m³ and 25µg/m³ respectively and average concentration of 21µg/m³.

For the month of May-2018 the minimum and maximum concentrations for NOx were recorded as $17\mu g/m^3$ and $28\mu g/m^3$ respectively and average concentration of $23\mu g/m^3$.

For the month of June-2018 the minimum and maximum concentrations for NOx were recorded as 15µg/m³ and 20µg/m³ respectively and average concentration of 18µg/m³.



Jaljali Village

For the month of April-2018 the minimum and maximum concentrations for NOx we recorded as 14µg/m³ and 21µg/m³ respectively and average concentration of 18µg/m³.

For the month of May-2018 the minimum and maximum concentrations for NOx we recorded as 16µg/m³ and 24µg/m³ respectively and average concentration of 20µg/m³.

For the month of June-2018 the minimum and maximum concentrations for NOx we recorded as 16μg/m³ and 26μg/m³ respectively and average concentration of 21μg/m³.

tion

Dx wer

Dx wer

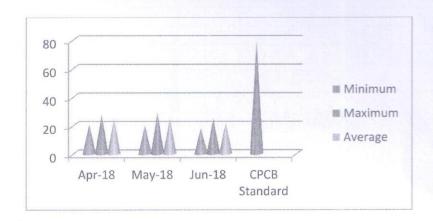
Dx wer

 m^3 .

 m^3 .

 m^3 .

Hindalco Industries Limited Samri Mining Environmental Status Report for April-2018 To June-2018

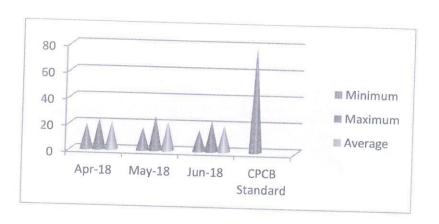

Introduction

Tatijharia Village/Nr.Weigh Bridge

For the month of April-2018 the minimum and maximum concentrations for NOx were recorded as $21\mu g/m^3$ and $28\mu g/m^3$ respectively and average concentration of $25\mu g/m^3$.

For the month of May-2018 the minimum and maximum concentrations for NOx were recorded as 20µg/m³ and 29µg/m³ respectively and average concentration of 25µg/m³.

For the month of June-2018 the minimum and maximum concentrations for NOx were recorded as $18\mu g/m^3$ and $25\mu g/m^3$ respectively and average concentration of $22\mu g/m^3$.


Introduction

Piprapat/Nr.Mining Area

For the month of April-2018 the minimum and maximum concentrations for NOx we recorded as 19µg/m³ and 23µg/m³ respectively and average concentration of 21µg/m³.

For the month of May-2018 the minimum and maximum concentrations for NOx we recorded as $17\mu g/m^3$ and $26\mu g/m^3$ respectively and average concentration of $22\mu g/m^3$.

For the month of June-2018 the minimum and maximum concentrations for NOx we recorded as 16µg/m³ and 23µg/m³ respectively and average concentration of 20µg/m³.

x wer

x wer

x wer

Hindalco Industries Limited Samri Mining Environmental Status Report for April-2018 To June-2018

Introduction

Table 11

Statistical Analysis of Pb

			1 - 1 - 1 - 1 - 1		Unit: µg/m	13
Location	Month & Year	Min.	Max.	A.M.	G.M.	98%
Fugitive Emission	(Core Zone):-					
	April-2018	0.058	0.073	0.066	0.066	0.073
Samri-Gopatu/	May-2018	0.063	0.080	0.072	0.072	0.080
Nr.weigh bridge	June-2018	0.052	Max. A.M. G.M. 058 0.073 0.066 0.066 063 0.080 0.072 0.072 052 0.071 0.062 0.062 049 0.058 0.054 0.054 060 0.066 0.063 0.063 054 0.063 0.059 0.059 048 0.054 0.051 0.051 043 0.061 0.052 0.052 052 0.068 0.060 0.060 048 0.061 0.055 0.055 057 0.070 0.064 0.064	0.062	0.071	
Rajendrapur/	April-2018	0.049	0.058	0.054	0.054	0.058
	May-2018	0.060	0.066	0.063	0.063	0.066
Nr.Mining Area	June-2018	0.054	0.063	0.059	0.059	0.063
	April-2018	0.048	0.054	0.051	0.051	0.054
Kutku Village/	May-2018	0.043	0.061	0.052	0.052	0.061
Nr.V.T. Center	June-2018	0.052	0.068	0.060	0.060	0.068
	April-2018	0.048	0.061	0.055	0.055	0.061
Dumerkholi/	May-2018	0.057	0.070	0.064	0.064	0.070
Nr.Mining Area	June-2018	- 0.053	0.065	0.059	0.059	0.065
CPCB Standard			1.0 (24	hrs)		

Location	Month & Year	Min.	Max.	A.M.	G.M.	98%
Buffer Zone :-						
	April-2018	ND	ND	ND	ND	ND
Sairaidh Campus	May-2018	ND	ND	ND	ND	ND
	June-2018	ND	ND	ND	ND	ND
	April-2018	ND	ND	ND	ND	ND
Jaljali Village	May-2018	ND	ND	ND	ND	ND
	June-2018	ND	ND	ND	ND	ND
	April-2018	ND	ND	ND	ND	ND
Tatijharia Village/	May-2018	ND	ND	ND	ND	ND
Nr. Weigh bridge	June-2018	ND	ND	ND	ND	ND
	April-2018	ND	ND	ND	ND	ND
Piprapat/	May-2018	ND	ND	ND	ND	ND
Nr.Mining Area	June-2018	ND	ND	ND	ND	ND
CPCB St	andard			1.0 (24 h	rs)	

Conclusion: A)

The Average Concentration of Pb within the Core Zone of Samri Lease during this period (April To June-2018) is 0.080 µg/m³ and it is within permissible limits as per CPCB Standard.

Conclusion: B)

The Average Concentration of Pb within the Buffer Zone of Samri Lease during this period (April To June-2018) is Not detected.

Unit: µg/m³

Table 12

Statistical Analysis of Hg

					Omic. pig) / ===
Location	Month & Year	Min.	Max.	A.M.	G.M.	98%le
Fugitive Emission (C	Core Zone):-					
Campai Campatul	April-2018	ND	ND	ND	ND	ND
Samri-Gopatu/ Nr.weigh bridge	May-2018	ND	ND	ND	ND	ND
Mr.weigh bridge	June-2018	ND	ND	ND	ND	ND
Rajendrapur/	April-2018	ND	ND	ND	ND	ND
Nr.Mining Area	May-2018	ND	ND	ND	ND	ND
	June-2018	ND	ND	ND	ND	ND
	April-2018	ND	ND	ND	ND	ND
Kutku Village/	May-2018	ND	ND	ND	ND	ND
Nr.V.T. Center	June-2018	ND	ND	ND	ND	ND
P 11 17	April-2018	ND	ND	ND	ND	ND
Dumerkholi/ Nr.Mining Area	May-2018	ND	ND	ND	ND	ND
	June-2018	ND	ND	ND	ND	ND
Buffer Zone :-						
Sairaidh Campus	April-2018	ND	ND	ND	ND	ND
Sanaiun Campus	May-2018	ND	ND	ND	ND	ND
)	June-2018	ND	ND	ND	ND	ND
	April-2018	ND	ND	ND	ND	ND
Jaljali Village	May-2018	ND	ND	ND	ND	ND
	June-2018	ND	ND	ND	ND	ND
Tatijharia Village/	April-2018	ND	ND	ND	ND	ND
Nr. Weigh bridge	May-2018	ND	ND	ND	ND	ND
iti. Weigh bridge	June-2018	ND	ND	ND	ND '	ND
Piprapat/	April-2018	ND	ND	ND	ND	ND
Nr.Mining Area	May-2018	ND	ND	ND	ND	ND
Minimity Area	June-2018	ND	ND	ND	ND	ND
CPCB Star	ndard		10	NATE VALUE VALUE		

ND-Not Detected.

Conclusion: A)

The Average Concentration of Hg within the Core Zone of Samri Lease during this period (April To June-2018) is Not Detected.

Conclusion: B)

The Average Concentration of Hg within the Buffer Zone of Samri Lease during this perior (April To June-2018) is Not Detected.

%le

riod

eriod

Hindalco Industries Limited Samri Mining Environmental Status Report for April-2018 To June-2018

Introduction

Table 13
Statistical Analysis of As

Unit: na/m3

					Jnit: ng/	m
Location	Month & Year	Min.	Max.	A.M.	G.M.	98%
igitive Emission (Co	re Zone):-					
0 :0 11	April-2018	ND	ND	ND	ND	ND
Samri-Gopatu/	May-2018	ND	ND	ND	ND	ND
Nr.weigh bridge	June-2018	ND	ND	ND	ND	ND
Rajendrapur/ Nr.Mining Area	April-2018	ND	ND	ND	ND	ND
	May-2018	ND	ND	ND	ND	ND
	June-2018	ND	ND	ND	ND	ND
	April-2018	ND	ND	ND	ND	ND
Kutku Village/	May-2018	ND	ND	ND °	ND	ND
Nr.V.T. Center	June-2018	ND	ND	ND	ND	ND
D Life a life	April-2018	ND	ND	ND	ND	ND
Dumerkholi/	May-2018	ND	ND	ND	ND	ND
Nr.Mining Area	June-2018	ND	ND	ND	ND	ND
CPCB Standard		(06 Annual)			111 1-2

Location	Month & Year	Min.	Max.	A.M.	G.M.	98%
Buffer Zone :-						10 1 1
0 : : !! 0	April-2018	ND	ND	ND	ND	ND
Sairaidh Campus	May-2018	ND	ND	ND	ND	ND
	June-2018	ND	ND	ND	ND	ND
	April-2018	ND	ND	ND	ND	ND
Jaljali Village	May-2018	ND	ND	ND	ND	ND
,	June-2018	ND	ND	ND	ND	ND
	April-2018	ND	ND	ND	ND	ND
Tatijharia Village/	May-2018	ND	ND	ND	ND	ND
Nr. Weigh bridge	June-2018	ND	ND	ND	ND	ND
	April-2018	ND	ND	ND	ND	ND
Piprapat/	May-2018	ND	ND	ND	ND	ND
Nr.Mining Area	June-2018	ND	ND	ND	ND	ND
CPCB Sta	ndard			06 (Annual))	

ND-Not Detected.

Conclusion: A)

The Average Concentration of As within the Core Zone of Samri Lease during this period (April To June-2018) is Not Detected.

Conclusion: B)

The Average Concentration of As within the Buffer Zone of Samri Lease during this period (April To June-2018) is Not Detected.

Introdu

Free Silica :-

Sr.	Location	Measurement	April-2018		May-2018		Ju	
No.	Location	Unit	SPM	RSPM	SPM	RSPM	SPM	
1.	Rajendrapur/ Near Mining Area	g/100gm	0.28	0.19	0.26	0.17	0.24	

Table 14

Dust fall Rate

	Location	April-2018	May-2018	June-2018
Sr. No.	Location		Rate (MT/km	² /Month)
1.	Rajendrapur/Nr.Mining Area	18.42	21.59	16.27
2.	Samri-Gopatu/Nr.Weigh Bridge	21.51	24.48	17.36

2018

RSPI

0.15

Averag

18.76

21.12

Hindalco Industries Limited Samri Mining Environmental Status Report for April-2018 To June-2018

Introduction

Table-15

Noise Level Monitoring

Unit: dB(A) April-2018 May-2018 June-2018 SI. No. Location Day Day Night Day Night Night Core Zone 1. Samri-Gopatu/Nr.Weigh Bridge 64 53 58 46 61 52 49 61 63 47 2. Rajendrapur/Nr.Mining Area 57 43 3. Kutku Village/Nr.V.T.Center 47 48 37 51 43 53 4. Dumerkholi/Nr.Mining Area 67 56 62 53 61 48 **Buffer Zone** 1. Sairaidh Campus 51 39 48 36 52 41 2. Jaljali Village 47 38 51 42 47 38 Tatijharia Village/Nr.Weigh 3. 53 42 47 38 52 39 Bridge 51 37 49 36 4. Piprapat/Near Mining Area 53 41

CPCB Standards for Residential Area: 55 (Day time) 45 (Night time) Industrial Area : 75 (Day time) 70 (Night time)

Table 15-(A)

HEMM Spot Noise Level Monitoring

SI. No.	Location	April-2018		May-2018			June-2018			
		Min.	Max.	Avg.	Min.	Max.	Avg.	Min.	Max.	Avg.
1.	Rajendrapur/Nr .Mining Area	64.2	71.6	67.9	73.1	76.2	74.7	68.1	71.9	70.0

Note:- All the Values are in CPCB Limit.

Introduction

3.9 Ground Water Quality:- Most of the villages in the nearby plant area have hand pumps and wells, as most of the residents of these villages make use of this water for drinking and other domestic uses for

Table 16 Report on Chemical Examination of Ground Water (Average of Three Months April-May-June-2018)

Location: GW1) Rajendrapur / Near Mining Area

TEST RESULTS

Sr.	Test Parameter	Measurement Unit	Test Method	As per IS 10500 : 2012 (Drinking Water - Specification)		Test Result
No.				Acceptable Limit	*Permissible Limit	
1.	pH value	-	IS 3025 (Part 11)	6.5 to 8.5	No relaxation	7.43 at 25°C
2.	Turbidity	NTU	IS 3025 (Part 10)	1	5	8.0
3.	Colour	Hazen units	IS 3025 (Part 4)	5	15	1
4.	Odour	-	IS 3025 (Part 5)	Agreeable	Agreeable	Agreeable
5.	Taste	-	IS 3025 (Part 8)	Agreeable	Agreeable	Agreeable
6.	Iron (as Fe)	mg/l	IS 3025 (Part 2)	1.0	No relaxation	0.24
7.	Free residual chlorine	mg/l	IS 3025 (Part 26)	Min. 0.2	Min. 1	< 0.1
8.	Total dissolved solids	mg/l	IS 3025 (Part 16)	500	2000	287
9.	Fluoride (as F)	mg/l	IS 3025 (Part 60)	1.0	1.5	0.26
10.	Cyanide (as CN)	mg/l	IS 3025 (Part 27)	0.05	No relaxation	< 0.005
11.	Chloride (as CI)	mg/l	IS 3025 (Part 32)	250	1000	108.52
12.	The second secon	mg/l	IS 3025 (Part 23)	200	600	121.46
13.	Total hardness (as CaCO ₃)	mg/l	IS 3025 (Part 21)	200	600	184.04
14.	Calcium (as Ca)	mg/l	IS 3025 (Part 40)	75	200	58.39
15.	Magnesium (as Mg) *	mg/l	IS 3025 (Part 46)	30	100	9.27
16.	Sulphate (as SO ₄)	mg/l	IS 3025 (Part 24)	200	400	43.82
17.	Nitrate (as NO ₃)	mg/l	APHA Method	45	No relaxation	< 2
18.	Copper (as Cu)	mg/l	IS 3025 (Part 2)	0.05	1.5	< 0.03
19.	Manganese (as Mn)	mg/l	IS 3025 (Part 2)	0.1	0.3	<0.05
20.	Mercury (as Hg)	mg/l	IS 3025 (Part 2)	0.001	No relaxation	< 0.0005
21.	Cadmium (as Cd)	mg/l	IS 3025 (Part 2)	0.003	No relaxation	< 0.001
22.	Selenium (as Se)	mg/l	IS 3025 (Part 2)	0.01	No relaxation	< 0.001
23.	Arsenic (as As)	mg/l	IS 3025 (Part 2)	0.01	No relaxation	< 0.01
24.	Aluminium (as Al)	mg/l	IS 3025 (Part 2)	0.03	0.2	< 0.005
	Lead (as Pb)	mg/l	IS 3025 (Part 2)	0.01	No relaxation	< 0.001
25. 26.	Zinc (as Zn)	mg/l	IS 3025 (Part 2)	5	15	< 0.1

'<' indicates detection limit of the laboratory.

Contd.....

Introduction

(Contd....)

Sr. No	Test Parameter	Measurement Unit		As per IS 10500 : 2012 (Drinking Water - Specification)		
			Test Method	Acceptable Limit	*Permissible Limit	Test Result
27.	Nickel (as Ni)	mg/l	IS 3025 (Part 2)	0.02	No relaxation	< 0.01
28.	Total Chromium (as Cr)	mg/l	IS 3025 (Part 2)	0.05	No relaxation	< 0.03
29.	Barium (as Ba)	mg/l	Annexure F of IS 13428	0.7	No relaxation	< 0.01*
30.	Ammonia (as N)	mg/l	IS 3025 (Part 34)	0.5	No relaxation	, < 0.01
31.	Sulphide (as H ₂ S)	mg/l	IS 3025 (Part 29)	0.05	No relaxation	< 0.03
32.	Chloramines (as Cl ₂)	mg/l	APHA 4500-CI'G	4.0	No relaxation	< 0.01
33.	Molybdenum (as Mo)	mg/l	IS 3025 (Part 2)	0.07	No relaxation	< 0.001
34.	Silver (as Ag)	mg/l	Annexure J of IS 13428	0.1	No relaxation	< 0.001
35.	Polychlorinated Biphenyls (PCB)	µg/l	USEPA 508	0.5	No relaxation	< 0.03
36.	Boron (as B)	mg/l	IS 3025 (Part 2)	0.5	1.0	< 0.1
37.	Mineral Oil	mg/l	IS 3025 (Part 39)	0.5	No relaxation	< 0.001
38.	Tri Halo Methane					
	a. Bromoform		ng/l APHA 6232	0.1	No relaxation	Absent
	b. Dibromochloromethane			0.1	No relaxation	Absent
	c. Bromodichloromethane	mg/l		0.06	No relaxation	Absent
	d.Chloroform			0.2	No relaxation	Absent
39.	Phenolic compounds (as C ₆ H ₅ OH)	mg/l	IS 3025 (Part 43) :1001	0.001	0.002	< 0.001
40.	Anionic detergents (as MBAS)	mg/l	IS 13428:2005 (Annex K)	0.2	1.0	< 0.01
41.	Polynuclear aromatic hydrocarbon (PAH)	μg/l	USEPA: 550	0.1	No relaxation	< 0.03
42.	Total coliform	MPN/100 ml	IS 1622			Absent
43.	Escherichia coli	Per100 ml	IS 1622	Absent	Absent	Absent

'<' indicates detection limit of the laboratory.

Contd.....

Introduction

(Contd....)

Sr. No.	Test Parameter	Measurement Unit	Test Method	As per IS 10500 : 2012 (Drinking Water - Specification)	Test Resu
44.	Pesticides residues				
i	Alpha-HCH	µg/l	USEPA 508	0.01	Absent
ii.	Beta HCH	µg/l	USEPA 508	0.04	Absent
iii.	Delta- HCH	µg/l	USEPA 508	0.04	Absent
iv.	Alachlor	µg/l	USEPA 508	20	Absent
V.	Aldrin / Dieldrin	µg/I	USEPA 508	0.03	Absent
vi.	Atrazine	µg/l	USEPA 1657	2	Absent
vii.	Butachlor	µg/l	USEPA 508	125	Absent
viii.	Chlorpyrifos	µg/I	USEPA 1657	30	Absent
ix.	DDT and its Isomers	µg/I	USEPA 508	1	Absent
X.	Gamma - HCH (Lindane)	µg/l	USEPA 508	2	Absent
xi.	2,4-Dichlorophenoxyacetic acid	µg/l	USEPA 1657	30	Absent
xii.	Endosulphan	µg/l	USEPA 508	0.4	Absent
xiii.	Ethion	µg/l	USEPA 1657	3	Absent
xiv.	Isoproturon	µg/l	USEPA 1657	9	Absent
XV.	Malathion	µg/l	USEPA 1657	190	Absent
xvi.	Methyl Parathion	µg/l	USEPA 1657	0.3	Absent
xvii.	Monocrotophos	µg/l	USEPA 1657	1	Absent
viii.	Phorate	µg/l	USEPA 1657	2	Absent

Note: 1. Results relate to tested sample only.2. Test report should not be reproduced partially. 3. *Permissible limit in the absence alternate source. 4. 'mg/l' is equivalent to 'ppm' 5. 'µg/l' is equivalent to 'ppb' 6. '<' indicates detection limit of the laboratory. 7. MP Most probable number.8. Results for test no. 7 are not applicable.

REMARKS: Based upon request of the party, sample was tested for above mentioned parameters only. Sample complex with IS:10500:2012, for tests conducted, indicating that it is fit for drinking purpose with respect to test parameters.

Introduction

Table 17

Monthly Report on Chemical Examination of Surface Water

(Nallahs Near by Rajendrapur/Near Mining Area)

(Average of Three Months April-May-June-2018)

Sr.	Test Parameter	Measurement Unit	Test Method	As per IS 10500 : 2012 (Drinking Water - Specification)		Test Result
No.				Acceptable Limit	*Permissible Limit	
1.	pH value		IS 3025 (Part 11)	6.5 to 8.5	No relaxation	6.87 at 25°C
2.	Turbidity	NTU	IS 3025 (Part 10)	1	5	9.2
3.	Colour	Hazen units	IS 3025 (Part 4)	5	15	8
4.	Odour	_	IS 3025 (Part 5)	Agreeable	Agreeable	Agreeable
5.	Taste	-	IS 3025 (Part 8)	Agreeable	Agreeable	Agreeable
6.	Iron (as Fe)	mg/l	IS 3025 (Part 2)	1.0	No relaxation	0.32
7.	Free residual chlorine	mg/l	IS 3025 (Part 26)	Min. 0.2	Min. 1	< 0.1
8.	Total dissolved solids	mg/l	IS 3025 (Part 16)	500	2000	416
9.	Fluoride (as F)	mg/l	IS 3025 (Part 60)	1.0	1.5	0.52
10.	Cyanide (as CN)	mg/l	IS 3025 (Part 27)	0.05	No relaxation	< 0.005
11.	Chloride (as Cl)	mg/l	IS 3025 (Part 32)	250	1000	181.69
	Total Alkalinity (as CaCO ₃)	mg/l	IS 3025 (Part 23)	200	600	141.28
12.	Total hardness (as CaCO ₃)	mg/l	IS 3025 (Part 21)	200	600	220.38
13.		mg/l	IS 3025 (Part 40)	75	200	67.39
14.	Calcium (as Ca)	mg/l	IS 3025 (Part 46)	30	100	12.64
15.	Magnesium (as Mg)	mg/l	IS 3025 (Part 24)	200	400	124.52
16.	Sulphate (as SO ₄)	mg/l	APHA Method	45	No relaxation	11.64
17.	Nitrate (as NO ₃)		IS 3025 (Part 2)	0.05	1.5	< 0.03
18.	Copper (as Cu)	mg/l	IS 3025 (Part 2)	0.1	0.3	<0.05
19.	Manganese (as Mn)	mg/l	IS 3025 (Part 2)	0.001	No relaxation	< 0.0005
20.	Mercury (as Hg)	mg/l	IS 3025 (Part 2)	0.003	No relaxation	< 0.001
21.	Cadmium (as Cd)	mg/l		0.003	No relaxation	< 0.001
22.	Selenium (as Se)	mg/l	IS 3025 (Part 2)	0.01	No relaxation	< 0.01
23.	Arsenic (as As)	mg/l	IS 3025 (Part 2)		0.2	< 0.005
24.	Aluminium (as Al)	mg/l	IS 3025 (Part 2)	0.03	No relaxation	< 0.003
25.	Lead (as Pb)	mg/l	IS 3025 (Part 2)	0.01		2.1
26.	Zinc (as Zn)	mg/l	IS 3025 (Part 2)	5	15	2.1

'<' indicates detection limit of the laboratory.

Contd.....

Introduction

(Contd....)

Sr. No	Test Parameter	Measurement	Test Method	As per IS 10500 : 2012 (Drinking Water - Specification)		Test Result	
		Unit		Acceptable Limit	*Permissible Limit		
27.	Nickel (as Ni)	mg/l	IS 3025 (Part 2)	0.02	No relaxation	< 0.01	
28.	Total Chromium (as Cr)	mg/l	IS 3025 (Part 2)	0.05	No relaxation	< 0.03	
29.	Barium (as Ba)	mg/l	Annexure F of IS 13428	0.7	No relaxation	< 0.01	
30.	Ammonia (as N)	mg/l	IS 3025 (Part 34)	0.5	No relaxation	< 0.01	
31.	Sulphide (as H ₂ S)	mg/l	IS 3025 (Part 29)	0.05	No relaxation	< 0.03	
32.	Chloramines (as Cl ₂)	mg/l	APHA 4500-CI'G	4.0	No relaxation	< 0.01	
33.	Molybdenum (as Mo)	mg/l	IS 3025 (Part 2)	0.07	No relaxation	< 0.001	
34.	Silver (as Ag)	mg/l	Annexure J of IS 13428	0.1	No relaxation	< 0.001	
35.	Polychlorinated Biphenyls (PCB)	μg/l	USEPA 508	0.5	No relaxation	< 0.03	
36.	Boron (as B)	mg/l	IS 3025 (Part 2)	0.5	1.0	0.13	
37.	Mineral Oil	mg/l	IS 3025 (Part 39)	0.5	No relaxation	< 0.001	
38.	Tri Halo Methane						
	a. Bromoform		APHA 6232	0.1	No relaxation	Absent	
	b. Dibromochloromethane			0.1	No relaxation	Absent	
	c. Bromodichloromethane	mg/l		0.06	No relaxation	Absent	
	d.Chloroform			0.2	No relaxation	Absent	
39.	Phenolic compounds (as C ₆ H ₅ OH)	mg/l	IS 3025 (Part 43) :1001	0.001	0.002	< 0.001	
40.	Anionic detergents (as MBAS)	mg/l	IS 13428:2005 (Annex K)	0.2	1.0	< 0.01	
41.	Polynuclear aromatic hydrocarbon (PAH)	µg/l	USEPA : 550	0.1	No relaxation	< 0.03	
42.	Total coliform	MPN/100 ml	IS 1622	-		1600	
43.	Escherichia coli	Per100 ml	IS 1622	Absent	Absent	Present	

^{&#}x27;<' indicates detection limit of the laboratory.

Contd.....

Introduction

(Contd....)

Sr.	Test Parameter	Measurement Unit	Test Method	As per IS 10500 : 2012 (Drinking Water - Specification)	Test Result
14.	Pesticides residues				2.04
i	Alpha-HCH	µg/l	USEPA 508	0.01	< 0.01 _
	Beta HCH	µg/l	USEPA 508	0.04	< 0.03
	Delta- HCH	µg/l	USEPA 508	0.04	< 0.03
	Alachlor	µg/l	USEPA 508	20	< 0.03
	Aldrin / Dieldrin	µg/l	USEPA 508	0.03	< 0.03
	Atrazine	µg/l	USEPA 1657	2	< 0.03
	Butachlor	µg/l	USEPA 508	125	< 0.03
	Chlorpyrifos	µg/l	USEPA 1657	30	< 0.03
	DDT and its Isomers	µg/l	USEPA 508	1	< 0.03
	Gamma - HCH (Lindane)	µg/l	USEPA 508	2	< 0.03
	2,4-Dichlorophenoxyacetic acid	µg/l	USEPA 1657	30	< 0.03
	Endosulphan	µg/l	USEPA 508	0.4	< 0.03
	Ethion	µg/l	USEPA 1657	3	< 0.03
	Isoproturon	µg/l	USEPA 1657	9	< 0.03
	Malathion	µg/l	USEPA 1657	190	< 0.03
		µg/l	USEPA 1657	0.3	< 0.03
	Methyl Parathion	µg/l	USEPA 1657	1	< 0.03
	Monocrotophos Phorate	µg/l	USEPA 1657	2	< 0.03

Note: 1. Results relate to tested sample only.2. Test report should not be reproduced partially. 3. *Permissible limit in the absence of alternate source. 4. 'mg/l' is equivalent to 'ppm' 5. 'µg/l' is equivalent to 'ppb' 6. '<' indicates detection limit of the laboratory. 7. MPN-Most probable number.8. Results for test no. 7 are not applicable.

REMARKS: Based upon request of the party, sample was tested for above mentioned parameters only.

Introduction

Table 18

Soil Analysis Report

Date of collection: May-2018

			Results Rajendrapur/Nr.Mining Area	
Sr. No	Test Parameters	Measurement Unit		
1	рН	-	7.05 at 25°C	
2	Electrical Conductivity at 25°C	μS/cm	139.5	
3	Texture	-	Silty clay	
4	Sand	%	62.15	
5	Silt	%	13.55	
6	Clay	%	24.3	
7	Bulk Density	g/cc	1.51	
8	Porosity	%	12.58	
9	Water Holding Capacity	%	18.66	
10	Exchangeable Calcium as Ca	mg/kg	643.5	
11	Exchangeable Magnesium as Mg	mg/kg	144.6	
12	Exchangeable Sodium as Na	mg/kg	118.4	
13	Available Potassium as K	kg/ha.	403.4	
14	Available Phosphorous as P	kg/ha.	13.92	
15	Available Nitrogen as N	kg/ha.	174.92	
16	Organic Matter	%	1.22	
17	Organic Carbon	%	0.71	
18	Water Soluble Chloride as Cl +	mg/kg	570.3	
19	Water Soluble Sulphate as SO ₄	mg/kg	590.6	
20	Sodium Absorption Ratio	-	6.21	
21	CEC	meq/100 gm	11.48	
22	Total Iron	%	8.1	
23	Available Manganese	mg/kg	121.8	
24	Available Zinc	mg/kg	76.3	
25	Available Boron	mg/kg	ND	

Method of sampling and analysis: IS: 2720 and methods of soil analysis, part I, 2nd Ed, 1986 of (American society for Agronomy and soil science society of America)

Note: 1. Results relate to tested sample only. 2. Test report should not be reproduced partially. 3. 'mg/Kg' is equivalent to 'ppm'. 4. 'g/100g' is equivalent to '%w/w'.

REMARKS: Based upon request of party, sample was tested for above mentioned parameters only.

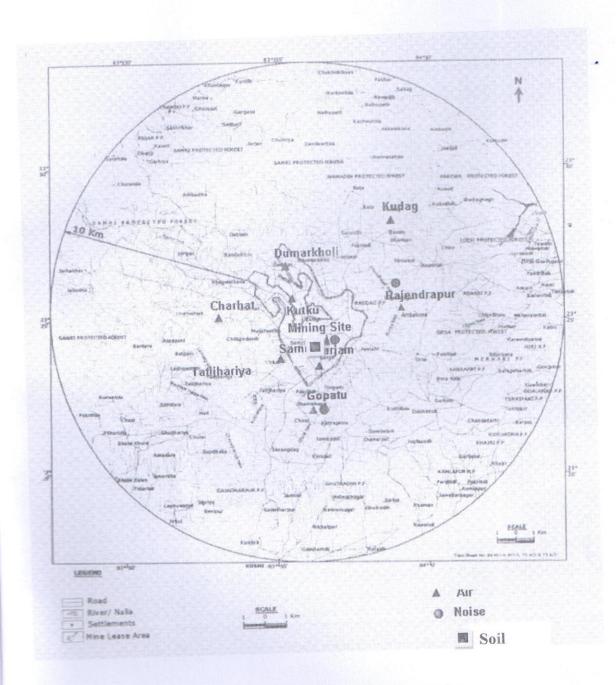


Fig 3: Sampling Locations for Air, Noise

Fig 04: Sampling Locations for Water

Ground Water

River/ Nalla
Settlements

Mine Lease Area