

UAIL-MINES/ENV/045 /2021

29th May 2021

To

The Addl. Principal Chief Conservator of Forest Ministry of Environment Forests & Climate Changes Govt. of India Eastern Regional office, A/3, Chandrasekharpur Bhubaneswar - 751023

Six-monthly Compliance status of conditions stipulated in Environment Clearance with Sub: respect to our Baphlimali Bauxite Mine of M/s Utkal Alumina International Limited, Rayagada, Odisha with production capacity of 8.5 MTPA.

Environment Clearance No. J-11015/650/2007-IA.II (M) dated 19.02.2009. Ref:

Dear Sir,

As a part of the compliance to the EC granted with respect to our 8.5 MTPA Baphlimali Bauxite Mine of M/s Utkal Alumina International Ltd. vide Ministry's letter no. J-11015/650/2007-IA.II (M) dated 19.02.2009, we are enclosing herewith six monthly compliance status for the period from 1st October 2020 to 31st March 2021 for your kind perusal.

Thanking you,

Yours faithfully,

For Utkal Alumina International Limited MINTHS

Mukesh Kumar Jha

Head- Mines

Baphlimali Bauxite Mine

Encl: As above

Copy to:

1. The Member Secretary, State Pollution Control Board, Paribesh Bhawan A/118 Nilakantha Nagar Unit-VIII, Bhubaneswar -751012.

2. Regional Office, CPCB, Kolkata 3. Regional Office, OSPCB, Rayagada.

4. The Regional Director, Central Ground Water Board, South Eastern Region, Bhujal Bhawan, Khandagiri, BHUBANESHWAR, PIN- 751030

5. roez.bsr-mef@nic.in, mef.or@nic.in, paribesh1@ospcboard.org,rospcb.rayagada@ospcboard.org

rdser-cgwb@nic.in

Name of the Project

: Baphlimali Bauxite Mine, M/s Utkal Alumina International Ltd.

Environment Clearance No. & date : J-11015/650/2007-IA.II (M), DTD.19.02.2009.

Period of compliance Report

: From 1st October 2020 to 31st March 2021.

Sl. No.	Conditions	Compliance Status
A.	Specific Condition	
i.	All the conditions stipulated by the State Pollution Control Board, Orissa in their consent to establish shall be effectively implemented.	All the conditions stipulated in the Consent to Establish (CTE) issued by SPCB, Odisha have been implemented effectively.
ii.	The project proponent shall effectively address the concerns raised by the locals in the public hearing as well as during consideration of the project while implementing the project.	All the concerns raised in the public hearing are being implemented. The details of points raised and their compliance is attached as Annexure-1 .
iii.	The project proponent shall develop fodder plots in the non-mineralized area in lieu of use of grazing land.	However, plantation of fodder species in 3 Ha land has been taken into consideration at the extreme south of mining lease area. The said area has been demarcated and spreading of grass seeds is being carried out. Gradually the fodder plot to be developed in the back filled area after mining of the ore.
iv.	The mining operations shall be restricted to above ground water table and it should not intersect groundwater table. In case of working below ground water table, prior approval of the Ministry of Environment and Forests and the Central Ground Water Authority shall be obtained, for which a detailed hydro-geological study shall be carried out.	Our Mining operation is restricted above the ground water table. The lowest working depth of our existing mine pit has gone up to 1004 m RL, whereas the presence of ground water table has been estimated to be about 150 to 200 mtrs below/from the surface (800-850 m RL). In addition to, the mined out area has been backfilled for restoration. Therefore, there is no possibility of any Ground Water Intersection thereby.
V .	The project proponent shall ensure that no natural watercourse and/or water resources are obstructed due to any mining operations. Adequate measures shall be taken while diverting seasonal channels emanating from the mine lease, during the course of mining operation.	No natural watercourse or water resources are obstructed due to mining operations. Necessary care has been taken during monsoon to divert /channelize run off water to the excavated pits, so that it does not carry any sediment to obstruct / affect the water bodies at the foot hill.
vi.	The project proponent shall take adequate environmental safeguard measures for control of rolling down of silt and sediments and protection of the catchment area of upper Indrāvati Reservoir during the course of mining operation.	In addition to as stated in Sl. No. v, to check flow of any silt and sediments, numbers of check dams/siltation ponds have been constructed and ensured by regular cleaning and maintenance. There are also pumps installed in siltation pond to pump out the collected water to the open and non-working pit

nume

		area for ground water recharge. The same is being also continued concurrently with the running of the mines. Details of Check Dams, garland drains & Siltation pit attached as Annexure- 2 & Photo 1, 2, 3 respectively. Siltation pits are being cleaned before monsoon and the photo is attached as Photo 4. After measures listed in annexure-2, the run-off confluence with the nearby seasonal nallah & ultimately to River Indrāvati after moving a distance around 9 Km, thus not affecting the quality of Indrāvati.
vii.	A 3 km stretch on the upstream and 3 Km in the downstream of the river passing through the project area should be taken up by the project authorities for plantation to arrest river bank erosion and sediment flow into the river.	There is no such perennial river/nallah exists at the mining lease. However there are small natural depressions, may called as gullies, develops preferably in the rainy days during inflow/outflow of rain water at the slope of the mining lease, which is a part of project area, are being provided with check dam & plantations of indigenous species to arrest the erosion & sediment flow into the perennial nallah available at the bottom of the mining lease.
viii.	The top soil shall temporarily be stored at earmarked site(s) only and it should not be kept unutilized for long. The topsoil shall be used for land reclamation and plantation.	Presently there is no top soil stack exist. The old top soil stack was used and already been consumed in rehabilitation purpose. However, the top-soil scrapped during on-going mining is being utilized for plantation in backfilled area.
ix.	The over burden (OB) generated during the initial years of the mining operation shall be temporarily stacked at the earmarked dump site(s) only for backfilling. Backfilling shall start from the 4th year onwards of the mining operation and the entire quantity of the waste to be generated shall be backfilled. There shall be no external over burden dumps after the 8th year of the mining operation. The entire backfilled area shall be afforested. Monitoring and management of rehabilitated areas should continue until the vegetation becomes self-sustaining. Compliance status shall be submitted to the Ministry of Environment & Forests and its Regional Office located at Bhubaneswar on six monthly basis.	The overburden of initial years of mining is stacked as per the approved mining scheme and within the earmarked area. Since 1.04.2016 backfilling has been started by utilizing entire quantity of overburden in the voids of the mined out area concurrently as per the proposal given in the Review of Mining Plan. Till March 2021, 81.870 ha area has been backfilled & 45.47 Ha has been afforested in this backfilled area. Both the activities are under continuous progress. Monitoring and management is being carried out. Compliance status is being submitted to the Ministry of Environment & Forests and its Regional Office located at Bhubaneswar on six monthly basis. Photo of backfilled area with plantation is attached as photo-5.

X3

nums

X. Catch drains and siltation ponds of appropriate Details of the measures asked in the enlisted in size shall be constructed around the mine Annexure-2 & photos attached as Photo 1 to 4. working, mineral and temporary OB dumps to The runoff storage capacity has been designed prevent run off of water and flow of sediments keeping 50% safety margin over and above peak directly into the Kandabindha Nallah, the San sudden rainfall. Sump capacity is having adequate River, the Indravati River and other water retention period to allow proper settling of silt bodies. The water so collected shall be utilized material. However, during rain the run off water is for watering the mine area, roads, green belt continuously pumped out from settling ponds to development etc. The drains shall be regularly excavated pits which increases the capacity of the desilted, particularly after the monsoon, and ponds. The settling ponds & garland drains are being maintained properly. de-silted and maintained at regular intervals. Garland drains, settling tanks and check dams of Majority of the rain water of the broken up area has appropriate size, gradient and length shall be been channelized & collected in the mine pits during constructed around the mine pit, topsoil dump, monsoon is not pumped out. Rather, it is allowed to temporary over burden dumps and mineral be collected at the lowest level to augment the dumps to prevent run off of water and flow of ground water resources. sediments directly into the Kandabindha Nallah. In addition to above, a scientific study was carried the San River, the Indravati River and other out on surface runoff management by deputing NIT, water bodies and sump capacity shall be Rourkela and the recommendations of the study designed keeping 50% safety margin over and report have been implemented and verified. The above peak sudden rainfall (based on 50 years Verification report of the recommendations is data) and maximum discharge in the area attached as Annexure-3. adjoining the mine site. Sump capacity shall also provide adequate retention period to allow proper settling of silt material. Sedimentation pits shall be constructed at the corners of the garland drains and desilted at regular intervals. xi. Dimension of the retaining wall at the toe of Dimension of the retaining wall at the toe of temporary OB dump(s) and the over burden temporary OB dump(s) within the mine to check runbenches within the mine to check run-off and off & siltation are as follows:siltation shall be based on the rain fall data height 1.00 mtr width 0.80 mtr length 1300.00 mtrs These dimensions are designed basing on the highest rainfall data. As per our proposal in the approved Review of Mining Plan, Dump-II has already been re-handled and Dump-I is in re-handling stage. xii. Plantation shall be raised in an area of 680ha The mining was commenced during 2012-13 and as including a 7.5m wide green belt in the safety per the approved Scheme of Mining, backfilling of zone around the mining lease, backfilled and mined out voids has been started from 1.04.2016. reclaimed area, around void, roads etc. by Rehabilitation over reclaimed area has been started planting the native species in consultation with from 2017-18. Till the end of March'2021, an area the local DFO/Agriculture Department. The 81.870 ha is backfilled/reclaimed. In this backfilled density of the trees should be around 2500 plants area 45.47 ha has been afforested/ rehabilitated. per ha. However plantation is being taken up in the Mine slope including a 7.5 meter safety zone since 2012-13. Last year (2020-21) till March'2021, we have planted around 1,01,430 Nos. saplings which includes safety zone around the mining lease, backfilled area, 15 mtr peripheral barrier of plateau

ale

Metha

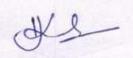
		boundary, mining lease slope area, around void, roads, avenue plantation etc. The remaining area will be covered progressively in phase wise manner as per the Review of Mining Plan. Different native saplings are procured from Forest department in consultation with the local DFO/Agriculture Department. In addition to this nursery has been developed to germinate, preserve and cater the seedlings during the course of plantation period. Photos of plantation & nursery are attached as Photo- 6 & 7.
xiii.	The void left unfilled in an area of 250ha shall be converted into the water body. The higher benches of the excavated void/mine pit shall be terraced and plantation done to stabilize the slopes. The slopes of higher benches shall be made gentler for easy accessibility by the local people to use the water body. Peripheral fencing shall be carried out all along the excavated area.	We will be abide by this condition. It will be followed according to the conceptual plan.
xiv.	Regular water sprinkling shall be carried out in critical areas prone to air pollution and having high levels of SPM and RSPM such as around crushing and screening plant, loading and unloading point and all transfer points. Extensive water sprinkling shall be carried out on haul roads. It shall be ensured that the Ambient Air Quality parameters conform to the norms prescribed by the Central Pollution Control Board in this regard.	Regular water sprinkling is done on haul roads, loading & unloading areas and material transfer points by deploying two dedicated water tankers of capacity 28 KL. Fixed water sprinkling arrangement has been provided on both sides of the arterial road and around the stock pile of 1.3 Km length. Dry fog arrangement has been provided in Crushing and screening plant. Photos of water sprinkling arrangements are attached as Photo 8 & 9. Regular ambient air quality monitoring is being done in the Core Zone and buffer zone comprising of four locations each. The result of the monitored air quality data (October'2020 to March'2021) shows that all parameters are well within the prescribed limit. The result of monitored data for the period of October'2020 to March'2021 of core and buffer zone
xv.	Regular monitoring of the flow rate of the springs and perennial nallahs flowing in and around the mine lease shall be carried out and records maintained.	are attached as Annexure- 4 & 5. The flow rate of the small perennial nallahs, which is flowing near the Baphlimali hillock close to the lease boundary, is being monitored regularly and the records are maintained. The flow rate monitoring data during October'2020 to March'2021 are attached as Annexure 6.
xvi.	Regular monitoring of water quality upstream and downstream of the Khandabindha Nallah shall be carried out and record of monitored data should be maintained and submitted to the	Regular monitoring of water quality upstream and downstream of the Khandabindha Nallah is being carried out and recorded. The results of surface water quality are enclosed in Annexure-7 . The same is

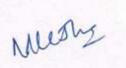
(KS

Mush

	Ministry of Environment and Forests, its Regional Office, Bhubaneswar, the Central Groundwater Authority, the Regional Director, Central Ground Water Board, the State Pollution Control Board and the Central Pollution Control Board.	also being submitted to the Central Groundwater Authority, the Regional Director, Central Ground Water Board, the State Pollution Control Board and the Central Pollution Control Board with six monthly compliance report.	
xvii.	The project authority shall implement suitable conservation measures to augment ground water resources in the area in consultation with the Regional Director, Central Ground Water Board.	The following Conservation measures have been taken to augment ground water resources: i. Rainwater harvesting is being carried out by collecting the precipitated water through a network of drainage system into the exhaust mining pit for storage and ground recharge. ii. Movement of mine faces is being carried out systematically as per mine plan following the	
		contour lines such that the faces have self- draining slopes. Precipitated water of the adjacent area is being collected within the mined out area.	
		iii. Concreted Weir has been constructed to arrest rain water resulting ground water recharge. Also the Surface water flow near the pit has been diverted towards the pit and this accumulation influences to recharge ground water table. Attached as Photo-1.	
		iv. Arrangement has been made that the mining method and the peripheral barrier all around mining area does not allow the storm water to go outside valley areas. The water thus trapped, percolates down and recharges the ground water.	
xviii.	Regular monitoring of ground water level and quality shall be carried out in and around the mine lease by establishing a network of existing wells and constructing new piezometers during the mining operation. The monitoring shall be carried out four times in a year, pre- monsoon (April-May), monsoon (August), post-monsoon (November) and winter (January) and the data thus collected may be sent regularly to the Ministry of Environment and Forests and its Regional Office, Bhubaneswar, the Central Ground Water Authority and the Regional Director, Central Ground Water Board. If at any stage, it is observed that the ground water is depleted due to mining activity, necessary corrective measures shall be carried out.	Regular monitoring of ground water level an quality is being carried out in each season of the ope wells/ dug wells located around the nearby village and the data is being submitted to Regional Office MoEF and SPCB, Bhubaneswar once in every si month with this six monthly compliance report. Two peizometric wells have been constructed insid lease area to monitor the level of ground water. The monitoring results of Ground water quality delevel for post monsoon and winter season are enclosed as Annexure – 8 & 9 respectively.	
xix.	Appropriate mitigative measures shall be taken to prevent pollution of the San River and the	San River & Indravati are flowing at a distant location 12 Kms & 9 Kms respectively. The	

de

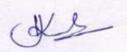

Mons

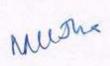

	Indravati River in consultation with the State Pollution Control Board.	following measures are being implemented and maintained.
		 Garland drains are constructed to check erratic flow of precipitated water. Check dams are constructed around the slopes of valley to arrest silts and sediments if any. Retaining wall of height 1.5 meter has been constructed at the edge of the valley. The naked areas of the valley slopes have been covered by mass afforestation and the same will be continued till full cover.
XX.	The project proponent shall obtain necessary prior permission of the competent authorities for drawl of requisite quantity of water (surface water and ground water, if any) required for the project.	There is no proposal to withdraw ground water for the project and surface water is being used for mining purpose. To this effect, an agreement was made between M/s Utkal Alumina Int. Ltd & Water Resource Dept. Govt. of Odisha for drawl of 9.0 cusec or 777600 cft/day of water from Govt. water source/ from San River upstream of Indrāvati River. The copy of agreement is attached as Annexure-10.
xxi.	Suitable rainwater harvesting measures on long term basis shall be planned and implemented in consultation with the Regional Director, Central Ground Water Board.	As a step towards rain water harvesting, the following measures have been implemented - Rainwater harvesting is being carried out by collecting the precipitated water through a network of drainage system into the exhaust mining pit for storage, it is not used for the mining purpose. Rather, it is allowed to be collected in the lowest level to augment the ground water resources gradually. Rain water from the high elevation area is collected through network of pipes and used for domestic purpose. Movement of mine faces is being carried out systematically as per mine plan following the contour lines such that the faces have self-draining slopes. Precipitated water of the adjacent area is being collected within the mined out area. In addition to this adequate numbers of Concreted Weir have been constructed to arrest rain water resulting ground water recharge. Also the Surface water flow near the pit has been diverted towards the pit and this accumulation influences to recharge ground water table.

KI

nushs

xxii.	Vehicular emissions shall be kept under control and regularly monitored. Measures shall be taken for maintenance of vehicles used in mining operations and in transportation of mineral within the mine lease. The mineral transportation within the mine lease shall be carried out through the covered trucks only and the vehicles carrying the mineral shall not be overloaded.	verified regularly to check vehicular emission. Further emission level is kept under control by
xxiii.	No blasting shall be carried out after the sunset. Blasting operation shall be carried out only during the daytime. Controlled blasting shall be practiced. The mitigative measures for control of ground vibrations and to arrest fly rocks and boulders should be implemented.	Blasting is being carried out only during daytime. Controlled blasting is being practiced to reduce ground vibrations and to arrest fly rocks and boulders.
xxiv.	Drills shall either be operated with dust extractors or equipped with water injection system.	Drilling machine with in-built vacuum cyclone dust collector & equipped with water spraying system is being used. Photo of drilling is attached as Photo-10
XXV.	Mineral handling area shall be provided with adequate number of high efficiency dust extraction system. Loading and unloading areas including all the transfer points should also have efficient dust control arrangements. These should be properly maintained and operated.	Stock pile area is surrounded by fixed water sprinkling arrangement (Photo 11). Further water sprinkling by mobile water tankers is being carried out for effective dust suppression. Metal hoods are provided at transfer points in Crushing and Conveying System to restrict the dispersion of dust (Photo 12). Dry fog system is installed for suppression of dust at ROM hopper and Transfer points (Photo 13).
xxvi.	Consent to operate shall be obtained from the State Pollution Control Board, Orissa prior to start of production from the mine.	Consent to Operate has obtained from the State Pollution Control Board, Odisha prior to start of production from the mine. Presently we have obtained the CTO vide letter no. 3489/IND-I-CON - 5450 dated 19.03.2020 with consent order No. 2765 which is valid up to 31.03.2022. Attached as Annexure 11.
xxvii.	Sewage treatment plant shall be installed for the colony. ETP shall also be provided for the workshop and wastewater generated during the mining operation.	Modular STP of 75 KLD has been installed. Effluent generated from workshop has been treated in oil and grease trap system. For advanced separation of oil and grease from the effluent one ETP installation is in progress. The photo of STP is attached as Photo-14 .
xxviii.	The project authorities shall undertake sample survey to generate data on pre-project community health status within a radius of 1 km from proposed mine.	Complied.
xxix.	Pre-placement medical examination and periodical medical examination of the workers engaged in the project shall be carried out and records maintained. For the purpose, schedule of health examination of the workers should be drawn and followed accordingly.	Pre-placement medical examination and periodical medical examination of the workers engaged in the project are carried out regularly. Annual Schedule of PME is being made for all eligible employees as per DGMS requirement and necessary PME is carried out.




xxx.	Provision shall be made for the housing of construction Labour within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP, safe drinking water, medical health care, crèche etc. The housing may be in the form of temporary structures to be removed after the completion of the project.	mine site having all facilities such as fuel for cooking, permanent toilets followed with septic tanks & soak pits drinking water, medical health care. Since the mining operation has already been commenced, the regular employees & executives are coming from the integrated town ship adjacent to the alumina refinery. Domestic effluents generated are being treated in the sewage treatment plant (STP) of 75 KLD located at mines as well as discharged soak pit via septic tank
xxxi.	The project proponent shall take all precautionary measures during mining operation for conservation and protection of endangered fauna namely; python, panther, sloth bear, wild dog etc. spotted in the study area. Action plan for conservation of flora and fauna shall be prepared and implemented in consultation with the State Forest and Wildlife Department. Necessary allocation of funds for implementation of the conservation plan shall be made and the funds so allocated shall be included in the project cost. All the safeguard measures brought out in the Wildlife Conservation Plan so prepared specific to the project site shall be effectively implemented. A copy of action plan shall be submitted to the Ministry of Environment and Forests and its Regional Office, Bhubaneswar.	Chief wildlife Warden, Odisha vide letter No. 5608/1WL-SSP-80/2016 dated 27.06.2017 with financial forecast of Rs.670.451 Lakhs and an amount of Rs.535.715 Lakhs has been deposited in CAMPA FUND for implementation of the same. Further, as per the demand notice from the Divisional Forest Officer, Rayagada vide letter No. 4168 dated. 04.08.2017, an amount of Rs. 8,05,46,920/- has been deposited in CAMPA FUND for implementation of Rs. 8,05,46,920/- has been deposited in CAMPA FUND for implementation of Regional Wildlife Management Plan. The copy of action taken to implement the Regional Wildlife management Plan is attached as Annexure 12 & copy of approval letter as Annexure 13. In addition to that a biodiversity study is being
xxxii.	Digital processing of the entire lease area using remote sensing technique shall be carried out regularly once in three years for monitoring land use pattern and report submitted to Ministry of Environment and Forests and its Regional Office, Bhubaneswar.	carried out by IUCN. Digital processing of the entire lease area using the remote sensing technique by the authorized agency from Odisha Space Application Center (ORSAC), Bhubaneswar has been carried out for monitoring the land use pattern. The report has been submitted vide letter no UAIL-MINES/ENV/150/2020 dated 15.11.2020 to Ministry of Environment and Forests and its Regional Office, Bhubaneswar. The copy of the submission letter is attached as Annexure- 14.
xxxiii	A final mine closure plan along with details of Corpus Fund shall be submitted to the Ministry of Environment & Forests 5 years in advance of final closure for approval.	The same will be submitted to the Ministry of Environment & Forests. The final mine closure plan will be submitted 2 years in advance as per MCDR 2017.
В.	General conditions	
i.	No change in mining technology and scope of	No change in mining technology and scope of
4	working should be made without prior approval of the Ministry of Environment & Forests.	working will be made without prior approval of the Ministry of Environment & Forests.

42

meste

ii.	No change in the calendar plan including excavation, quantum of mineral bauxite and waste should be made.	There shall be no change in the calendar plan including excavation, quantum of mineral bauxite and waste/OB generation of work without prior approval from competent authority.
iii.	At least four ambient air quality-monitoring stations should be established in the core zone as well as in the buffer zone for RSPM, SPM, SO2 &NOx monitoring. Location of the stations should be decided based on the meteorological data, topographical features and environmentally and ecologically sensitive targets and frequency of monitoring should be undertaken in consultation with the State Pollution Control Board.	have been established in both Come & D. Co. 7
NOA) should be regularly submitted to the c		The monitored AAQ data is being submitted to the concerned authorities along with the half yearly compliance report once in six month.
v.	Fugitive dust emissions from all the sources should be controlled regularly. Water spraying arrangement on haul roads, loading and unloading and at transfer points should be provided and properly maintained.	Water spraying on haul roads is being practiced through water tankers. for which, provision is made to deploy 2 nos. of 28 KL capacity tankers to spray water at dust generating points such as haul roads, loading & unloading areas and material transfer points. Fixed water sprinkling arrangements has been provided on the side of the arterial road. The haulage roads are being maintained to avoid rut and pot holes.
vi.	Measures should be taken for control of noise levels below 85 dB (A) in the work environment. Workers engaged in operations of HEMM, etc. should be provided with ear plugs / muffs.	The following measures are taken to control noise levels below 85 dB (A) in the work environment. • Maintenance of all machines including checking of silencers regularly, • Controlled blasting using delay detonators, installing immovable machinery on foundations and in closed rooms • Provision of earplugs/muffs to workers engaged in noise prone areas. • The HEMM operators are provided with AC close cabinets which itself is acoustic in nature. The monitored report of noise level is attached as Annexure- 15.
vii.	from the mine) should be properly collected,	A full-fledged workshop is in place with the facility of Oil & grease trap arrangement. All the repair & maintenance activities are taken up in the existing

	prescribed under GSR 422 (E) dated 19th May, 1993 and 31st December, 1993 or as amended from time to time. Oil and grease trap should be installed before discharge of workshop effluents.	facility, however major maintenances like engine overhauling etc are being taken up outside. All the used water during repair & maintenance are properly collected & treated thru oil & grease trap & reused. There is no outside discharge of workshop effluents.
Viii	Personnel working in dusty areas should wear protective respiratory devices and they should also be provided with adequate training and information on safety and health aspects. Occupational health surveillance program of the workers should be undertaken periodically to observe any contractions due to exposure to dust and take corrective measures, if needed.	Personal protective equipment are being provided to all workers respective to the nature of the job. Initial and periodical awareness training is being imparted to all workers in the Company's Vocational Training Center located within the lease area on Safety and Health Aspects. Pre-placement medical examination and periodical medical examination as per DGMS guideline of the workers engaged in the project is being carried out and records maintained for corrective measures.
ix.	A separate environmental management cell with suitable qualified personnel should be set-up under the control of a Senior Executive, who will report directly to the Head of the Organization.	A separate environmental management cell with suitable qualified personnel has been set up under the control of the Agent of Mines, who reports the Head of the Organization directly. The organization structure is attached Annexure- 18.
х.	The funds earmarked for environmental protection measures should be kept in separate account and should not be diverted for other purpose. Year wise expenditure should be reported to the Ministry of Environment and Forests and its Regional Office located at Bhubaneswar.	Separate fund provision has been earmarked for environmental protection measures and it is not diverted for any other purpose. The expenditure incurred during the year 2020-21 is attached as Annexure-16.
xi.	The project authorities should inform to the Regional Office located at Bhubaneswar regarding date of financial closures and final approval of the project by the concerned authorities and the date of start of land development work.	
xii.	The Regional Office of this Ministry located at Bhubaneswar shall monitor compliance of the stipulated conditions. The project authorities should extend full cooperation to the officer (s) of the Regional Office by furnishing the requisite data / information / monitoring reports.	We are abide by the condition and shall extend full cooperation to the officer(s) of regional office by furnishing the requisite data / information/monitoring reports during their monitoring of compliance of the stipulated conditions.
xiii.	The project proponent shall submit six monthly report on the status of the implementation of the stipulated environmental safeguards to the	Six monthly compliance report is being submitted on the status of compliance of the stipulated environmental clearance conditions including results

OK 9

Mushz

	Ministry of Environment and Forests, its Regional Office, Bhubaneswar, Central Pollution Control Board and State Pollution Control Board. The proponent shall upload the status of compliance on their website and shall update the same periodically.	of monitored data to the Ministry of Environment and Forests, its Regional Office Bhubaneswar, the respective Zonal Office of Central Pollution Control Board and the State Pollution Control Board. The status of compliance of the environmental clearance conditions, including results of monitored data is uploaded on company website periodically. The screenshot of the same is attached as Annexure-17.
xiv.	A copy of clearance letter shall be marked to concerned Panchayat / local NGO, if any, from whom suggestion / representation has been received while processing the proposal.	Complied .
xv.	The State Pollution Control Board should display a copy of the clearance letter at the Regional office, District Industry Centre and the Collector's office/ Tehsildar's Office for 30 days.	Complied.
xvi.	The project authorities should advertise at least in two local newspapers widely circulated, one of which shall be in the vernacular language of the locality concerned, within 7days of the issue of the clearance letter informing that the project has been accorded environmental clearance and a copy of the clearance letter is available with the State Pollution Control Board and also at web site of the Ministry of Environment and Forests at http://envfor.nic.in and a copy of the same should be forwarded to the Regional Office of this Ministry located at Bhubaneswar.	Complied.

MUJhg Signature

Annexure-1

Compliance Status of the issues raised during Public Hearing

Status of the issues raised in Public Hearing of the Environmental Assessment for expansion of Baphilimali Bauxite Mines of M/s. Utkal Alumina International Ltd., from 3.0 MTPY to 8.5 MTPY over an area of 1338.74 Ha at Baphlimali hill of kashipur Block in the district of Rayagada

SI.No.	Issues Raised in Public Hearing	Compliance Status
1	The company shall abide by all rules and regulations of State Pollution Control Board/ central Pollution Control Board, Forest and Environment Department, Government of Orissa or under Environment (protection) Rules to safe guard the environment and safety norms and shall not violate the commitments made in the EIA/EMP report.	We are abiding by this condition.
2	Employment shall be made to the local people on priority and the local youths shall be imparted training to suit its requirement. This facility may be given to others only if suitable technical man power on the higher grade is not locally available. First preference for employment will be given to the victims of the project, Displaced persons & land losers.	Employment has been given to the local peoples on priority according to the skill levels.

The project proponent should take sufficient care for improvement of health and education of local villagers and communication network of the areas and provide drinking water facility within its 20 km radius.

Utkal Alumina has been striving hard to create and improve healthy environment to enrich the quality of life of the community particularly the underprivileged in the vicinity by sustainable initiatives as follows:

Health Care:

- ❖ During covid-19 pandemic situation/announcement has been carried out in 68 peripheral villages in order to create awareness among the villagers. During public announcement, villagers were distributed with leaflets carrying awareness massages. More than one lakhs face masks were supplied to the villagers of 45 peripheral villages including govt. officials and hospitals. To create awareness on frequent hand wash, 1030 soaps were distributed to the villagers. To ensure periphery hygienic, sodium hypochlorite solution was sprayed in public places of Rayagada, Kashipur, Tikiri, Nuapada, Dongasil, Kodipari, Gorakhpur, Sanamtikona and other villages. Fumigation has been carried out in 35 villages to ensure disinfection of the area. Around 900 migrated labor were supplied with grocery items for ten days. Awareness meetings were organized in different villages from time to time.
- ❖ Functioning of one full-fledged round the clock Health Centre with laboratory facility at Nuapada with regular Doctors & Paramedical Staffs.
- ❖ Functioning of Utkal Hospital at Osapada with specialist Doctors, IPD, Operation Theatre, ICU and well equipped modern equipment.
- Engagement of one Mobile Health Care Unit (MHU) extending services to 44 remote villages from 10 strategic locations
- * Round the clock services extended by four Ambulances for referral Patients
- Extending financial support for maintenance of one Ambulance donated to CHC, Kashipur
- Extending financial assistance to the poor and needy people of peripheral villages for medical treatment.
- Organizing Multispecialty Health Camps at Cluster level.
- Creation of Health Awareness through rallies, awareness camps, competitions, sanitation drives, and street plays etc.
- Disinfection of drains, tube well platforms and water logging areas to guard against the spread of disease.
- Organizing Blood Donation Camps in collaboration with Dist. Red Cross Society

- Extended Comprehensive eye care services including cataract surgery to 135 patients
- ❖ Facilitated construction of 854 toilets in 16 villages in collaboration with Swachha Bharat Mission
- Donation of one Advanced Life Support Ambulance to Rayagada District by Utkal Alumina.
- ❖ During second wave of Corona, total 2500 face masks were distributed to the villagers for ensuring respiratory hygiene among the public. Similarly Public announcement has been done to create awareness among the public alongwith distribution of leaflets. Sodium hypochlorite has been sprayed in the school campus of Kodipari & Tikiri to sanitize the area
- One Blood Donation Camp was organized.

Promotion of Quality Education:

- Running Aditya Birla Public School (English Medium) to provide access to good quality education.
- ❖ Extending financial assistance to the land loser and economically backward families and meritorious students for Higher Education under Utkal Scholarship.
- Extending financial support to Kucheipadar High School.
- Supplied school furniture (50 sets of Desks & Benches) to Up Graded. High School, Chandragiri.
- Organized Special Awareness drives through Rally & Prabesh Utshabs for increasing school enrolment.
- Conducting Parents Counselling Meets to reduce school dropouts.
- Conducted computer literacy project in collaboration with Odisha Knowledge Corporation Ltd.
- ❖ Spoken English Classes were conducted for 350 students of class X,XI & XII of Govt. Girls High School, Dongasil in order to improve the communication skill in English.
- Construction of hostel building with drinking water facility, toilet, drainage & field leveling etc at certain schools.
- Construction of Boundary walls, Class rooms, CC Roads and provision of drinking water through installation of tube wells inside school campus etc.

4	Rehabilitation & resettlement package if applicable shall be strictly adhered in accordance to the decision of Government.	 Repairing and Painting of school Buildings Donation of land for construction of Hadiguda High School Building Supply of study and sports materials and financial support for school functions Construction of Provision of drinking water: Installation of one Bore well at Tikirapada village to provide drinking water supply for the villagers. Setting up of three solar based drinking water supply system at Dwimundi, & Dongasil villages for drinking water supply. Installation of Twenty four tube wells in its peripheral villages in order to ensure supply of safe drinking water to the villagers. Repairing of defunct tube wells from time to time as per the request of villagers Construction of Swajaldhara (Gravity flow) for supply of water in six different villages. (Dwimundi, Pandakapadar, Dhadpas, Badlijharan, Ghatiguda & Tikirapada) Installation of solar based drinking water supply systems at Jogiparitunda and Lundrukana villages to ensure supply of safe drinking water to the villagers. There is no displacement in Mines lease area.
5	The mine shall not disturb the streams originating from the hill slopes and foothills and also no mining discharge shall be made to them.	No natural watercourse or water resources are obstructed due to mining operations. Necessary care has been taken during monsoon to divert /channelize run off water to the excavated pits, so that it does not carry any sediment to obstruct / affect the water bodies at the foot hill. There is no such perennial river/nallah exists at the ML especially in the surface plateau. However there are small natural depressions, may called as gullies, develops preferably in the rainy days during inflow/outflow of rain water at the slope of the ML, which is a part of project area, are being provided with check dam &

		plantations of indigenous species to arrest the erosion & sediment flow into the perennial nallah available at the bottom of the ML.		
6	The timing of blasting shall be intimated to the villagers in its immediate vicinity through its representatives stationed in the villages.	sirens and physical guarding through security department during blasting. Notice also		
7	The Mines shall intensify development activity in the villages lying on the foothills of the project and in its immediate vicinity i.e. 10 km radius.	Various development activities in the field of Education, Health Care, Sustainable Livelihoods, Village Infrastructure development and Social interventions has been undertaken intensively in the villages lying on the foothills of the project and it's immediate vicinity. Activities undertaken are as follows: Education:		
		 Extending financial assistance to the land loser and economically backward families and meritorious students for Higher Education under Utkal Scholarship. Supply of 50 sets of furniture (Desks & Benches) to the Upgraded High School Chandragiri. Organised Awareness Rallies and Prabesh Utshabs for increasing school enrolment. Conducted Parents Counselling Meets to reduce school dropouts. Strengthening School Management Committees Construction of Boundary walls, additional class rooms and CC Roads inside the school campus. Repairing and Painting of school Buildings Supply of Uniforms, text books, School bags, and sports materials to the peripheral schools Supply of uniforms to the childern of Anganwadi Centers. Supply of furnitures, first-aid boxes & solar home lights to the schools Creating Education Awareness through street plays, wall writings. 		

Health Care:

- ❖ During covid-19 pandemic situation/announcement has been carried out in 20 peripheral villages in order to create awareness among the villagers. During public announcement, villagers were distributed with leaflets carrying awareness massages. More than ten thousand face masks were supplied to the villagers of 15 peripheral villages including govt. officials and hospitals. Fumigation has been carried out in five villages to ensure disinfection of the area. Awareness meetings were organized in different villages from time to time
- Extending treatment services to the villagers of villages lying on the foot hills of the project through First Aid center set up at Mines top.
- Engagement of one Mobile Health Care Unit (MHU) extending services to 30 remote villages from 8 strategic locations
- * Round the clock services extended by one Ambulance for referral Patients
- Extending financial support for maintenance of one Ambulance donated to CHC, Kashipur
- * Repairing of fifteen defunct tube wells were carried out in six villages in order to ensure regular supply of safe drinking water to the villagers.
- ❖ Nine dustbins were constructed in different location of Dhuturapas & Peringini villages to facilitate cleanliness of the village
- ❖ Construction of Masonary drains in Chandragiri & Paikakupakhal villages
- Extending financial assistance to poor and needy people for medical treatment.
- Organizing Multispecialty Health Camp at Cluster level.
- Creating health awareness through rallies, awareness camps, competitions, sanitation drives, and street plays etc.
- Disinfection of drains, tube well platforms and water logging areas to guard against the spread of disease.
- Conducted eye cataract surgery of 17 persons from four different villages
- ❖ Facilitated construction of 93 toilets in five villages in collaboration with Swachha Bharat Mission
- ❖ During second wave of Corona, Public announcement has been done in peripheral villages for creating awareness among the public along with distribution of leaflets.
- ❖ Installation of solar based drinking water supply systems at Jogiparitunda and Lundrukana villages to ensure supply of safe drinking water to the villagers.

Repairig of seven more defunct tube wells in peripheral villages to ensure regular supply of safe drinking water to the villagers.

Sustainable Livelihoods:

- Supply of improved varieties of vegetable seeds, pesticides, micronutrients and other inputs like sprayer machines to the farmers of sixteen peripheral villages during kharif and rabi season every year in order to increase their income through commercial vegetable cultivation.
- ❖ 180 farm families of six different villages have been supported for orchard development and 12 land less families for Goat Rearing under Project WADI in collaboration with NABARD.
- ❖ 64 farmers of five villages were supported for orchard development in 18.55 acres of land with saplings, fertilisers, pesticides, fencing, agri implements and irrigation facilities.
- ❖ 107 farmers of four different villages were supported for lemon grass cultivation in 119 acres of land. Installation of one lemon grass Oil extraction unit at Jogiparitunda village.
- Imparted tailoring training to 116 and applique training to 12 girls/women of mines peripheral villages.
- Provided Irrigation facilities by construction of check dams, irrigation channels & Water Storage Tanks. Farmers Committees were provided with Diesel Pump Sets, HDPE Pipes with Sprinklers and installation of river lift irrigation, micro lift irrigation and deep borewells in our peripheral villages.
- Capacity Building of farmers through different trainings, exposure visits and extending hand holding supports to the members of different farmers clubs, pani panchayats, udyan vikash samitis etc.promoted in our periphery.
- Livestock vaccination cum health camps have been organized in different mines peripheral villages at a regular interval of time.
- Women Self Help Groups of Hatikhaman, Phulapindha and Lundrukana Villages are supported for Pisciculture, Mushroom cultivation and Turmeric powder preparation activities as an Income Generation Activity.
- 14 nos of Girls / Women are engaged in stitching of face masks at Jogiparitunda training centre.

Village Infrastructure development :

		In order to enhance the quality of life of villagers, we have undertaken village infrastructure development jobs like Construction of Cement Concrete Roads, Causeways, Steps to river, Rest house, Boundary Walls, Culverts, Bridges, Community Centers, Street lighting, drains, bus stops and Protection Walls, Repair and renovation of village ponds etc in different peripheral villages from time to time on regular basis.				
		Social Interventions:				
		Organizing Block level rural volley ball tournament by taking youths of different villages.				
		Extending financial support to organize Panchayat, Block as well as District level tournaments				
		Supply of sports materials to the youths of peripheral villages				
		Extending financial support for observing different puja and festivals in the villages				
		 Organizing Various social functions such as Raja Utshab, Diwali etc in villages Promoting local folk dance Dhimsa by enabling the village youths to take part in different competitions. 				
		Formation of five Balika Mandals (Group of adolescent girls) in five villages to address Girl Child Marriage. Developed wall writtings on prevention of girl child marriage and organized life skill trainings for adolescent girls as well as parents counselling meet to prevent early child marriage in these villages.				
8	The project proponent should	Necessary care has been taken during monsoon to divert /channelize run off water to				
	provide garland drains around the	the excavated pits, so that it does not carry any sediment to obstruct / affect the water				
	mining pit to prevent entry of rainy	bodies at the foot hill. To check flow of any silt and sediments, numbers of check				
	water. Adequate check dams shall be	dams/siltation ponds have been constructed and ensured by regular cleaning and				
	provided to prevent the wash out of	maintenance. There are also pumps installed in siltation pond to pump out the collected				
	soils etc. from mines and solid waste	water to the open and non-working pit area for ground water recharge. The same is				
	dumping sites to surrounding fields.	being also continued concurrently with the running of the mines.				
		Details of Check Dams and garland drains attached as Annexure- 2 & Photo 1, 2 & 3.				

9	After the mining operation is over the project proponent should reclaim the mined out area with overburden, top soil followed by plantation.	From 4th year onwards i.e since 1.04.2016 backfilling has been started by utilizing entire quantity of overburden in the voids of the mined out area as per the proposal given in the Scheme of Mining. The top-soil scrapped during on-going mining is being utilized in the course of concurrent back-filling & plantation activities. Till March 2021, 45.47 ha area has been rehabilitated out of 81.87 ha backfilled area. Both the activities are under progress & shall meet by 100% as per the proposal within scheme period. After the mining operation is over the whole area will be reclaimed as per the conceptual plan of mining scheme.
10	The mine shall obtain necessary clearances such as Forest clearance, wild life clearance, clearance from water resources department, etc. from the appropriate authorities	Necessary clearances such as Forest clearance, wild life clearance, clearance from water resources department, etc. has been obtained from the appropriate authorities. Details of the letter no and date of approval is enlisted below. Forest Stage 2 Clearance: 8-18/2016-FC/02.02.2018 Wildlife clearance: 5608/IWL-SSP-80/2016/27.06.2017 Water Resource Department: Form K as per Rule 23-A (2) (e) & Rule 26/12.12.2018 Environment Clearance: J-11015/650/2007-IA-II(M)/19.02.2009 Consent to Establish: 14388/Ind-II-NOC-4432/16.08.2007 Consent to operate: 3489/IND-I-CON - 5450 dated 19.03.2020
11	The project proponent shall provide alternate gazing field for the cattle in consultation with the District Administration	

Status of the issues raised in Public Hearing of the Environmental Assessment for M/s. Utkal Alumina Intem.uional Ltd., for Baphilimali Bauxite Mines for expansion of productionupto 8.5 MTPA ot Bauxite over an area of 492.82 Ha at BaphiJimali in the district of Kalahandi

SI.No.	Issues raised in Public Hearing	Compliance Status			
1	Allocation of funds for peripheral development	❖ We are allocating funds every year for the peripheral development of the area. This allocated amount is spent in the sectors like Education, Health Care, Sustainable Livelihoods, Village Infrastructure development and Social Interventions as per the Govt. Guidelines.			
2	Electricity	* Road side electrification is being done in different villages at the mine proximity with consultation with government dept			
3	Water Supply	 A number of tube wells have been installed in peripheral villages like Kendumundi, Kanarpas & Durmusi of Th.Rampur block of Kalahandi district. Apart from this, defunct tube wells have also been repaired from time to time with the support of Self Employed Mechanic of RWSS deptt. Chlorination of different tube wells through the support of our MHU team has been carried out every year for ensuring availability of safe drinking water. Three solar based drinking water supply system has been installed in Kendumundi, Suryagarh and Durmusi Villages to provide safe drinking water to the villagers. 			

4	Health	 During COVID-19 Pandemic Situation, Public announcement has been carried out along with leaflet distribution and fixation of banners in 30 villages of three GPs in order to create awareness on COVID. Besides, 17000 face masks & 3500 soaps have been supplied to the villagers including Govt. officials, fumigation carried out in four villages. Extended financial support to Th.Rampur block for production and distribution of 60000 masks through Women Self Help Groups of this area. First-Aid Center established at Mines top is extending treatment services to the villagers of mines adjacent villages. One MHU Vehicle is engaged by our company to extend treatment services to 34 remote villages of Th. Rampur block. Apart from treatment services, this MHU is also conducting health awareness camps, home visits and chlorination of water sources as well as disinfection of water logging areas. Facilitated construction of 40 individual toilets in Durmusi with the support of RWSS deptt. Facilitated immunization programme in 26 villages in convergence with health deptt. Under Indradhanush programme. In order to ensure smooth drainage of rain water masonry drains have been constructed in the villages. Financial assistance has been given to the poor and needy persons for medical treatment. During the second wave of corona, 2000 face masks were distributed to the villagers of 34 villages. Public announcement has been carried out in 34 villages of three GPs of Th.Rampur block to create awareness on COVID One masonary drain was constructed in Brahmanichanchara Village for smooth drainage of waste water.
5	Employment	Total engagement/employment 341 out of which 18 from buffer zone.
6	Protection of religious places	Protection of Janadurga temple has been taken care of. No mining has been carried out in the vicinity till now and will not be done in future. Notice has also been displayed on the site.

7	Improvement of Roads				
		etc have been carried out in the villages like Kendumundi, Kanarpas, Chirika,			
		Durmusi and Adri (Gunjamali pada as well as harijan pada) as per the request			
		of the villagers. Three new CC Roads were constructed in Kendumundi			
		Village.			
8	Education	In order to increase school enrolment we are organizing awareness rally and			
		prabesh utshabs in our peripheral schools every year and supplying school			
		bags, study materials etc. during these occasion. Similarly to reduce school			
		drop outs parents counseling meets were organized every year. Efforts have			
		been given for strengthening school management committees. Schools were			
		supplied with sports materials for attracting the students towards schools.			
		School furniture has been supplied to one of the private high school of			
		Karlapat GP. Awareness on Education has been created among the villagers			
		through street plays and wall writings.			
9	Alternate Grazing Field	Plantation of fodder species in 3 Ha land out of 5 Ha available land at the			
		extreme south of ML area is being taken up. The said area has been			
		demarcated and plantation of different species of grasses are being done after			
		loosening of hard laterite and spreading of top soil.			
10	Plantation	Plantation is being taken up in the Mine slope including a 7.5 meter safety			
		zone since 2012-13. Till March'2021, we have planted around 140.8 Ha. With			
		approx 231189 no. of trees survived The remaining area will be covered			
		progressively in phase wise manner as per the Scheme of Mining.			

		Villagers of Chirika, Durmusi and Kanarpas were supplied with 2185 mango saplings for promotion of fruit orchards in their respective villages.
11	Compensation for the displaced	There is no displacement due to the project.
12	Local Office and Grievance Cell	A Grievance cell has been formed by the company by taking representative from Plant & Mines CSR & Admn., dept. They are mostly handling all the issues relating to employment and peripheral development.
13	Protection of environment	Suitable environment plan has been formulated and continuously upgraded to mitigate the impact of different components of the Environment such as air, water, soil. Conditions in different authorizations obtained from statutory authorities have been complied to restoration and betterment of environment.
14	Other Peripheral Development	 Under Farm based livelihood activities,160 HHs are supported for Improved Paddy Cultivation, 30 HHs for Improved Pulses Cultivation, 57 HHs for Promotion of Nutrition Gardens, 25 HHs for Integrated Vegetable Cultivation, 20 HHs for Orchard development, 20 HHs for Goat rearing, 50 HHs for Sweet Potato Cultivation, 65 HHs for millet cultivation and 50 HHs for Poultry rearing in the villages of Kendumundi, Kanarpas, Chirika, Durmusi & Suryagarh. Alongwith organizing Capacity building training for the farmers of farm based livelihood activitis. Nine Ponds were de-silted in the villages like Gopinathpur, Phatkimahul, Chingdiphas, Musajhal, Adri, Kendumundi and Rajamunda of Th.Rampur block.

Annexure-2

<u>DETAILS OF GARLAND DRAIN, RETAINING WALL, SETTLING POND AND CHECK DAM</u>

Sl. No	Tyme of montes	Particulars		
S1. NO	Type of works	Length	Width (avg)	Height (avg)
01	Wall around back side of OB dump	1300 mts	0.8 mtrs	1 mtr
02	Drain work at the back side of OB dump	1922 mtrs	2.8 mtrs	1 mtr
03	Drain work at ore stack yard	353 mtrs	2.7 mtrs	1 mtr
04	Drain work at haul road towards OB dump	1000 mtrs	2 mtrs	0.6 mtr
05	Wall beside the cave	385 mtrs	0.8 mtr	1 mtr
06	Three settling pond on back side of OB dump	40 mtrs	8 mtrs	2.2 mtrs
07	Parapet wall between service center facility to mine entrance	1501 mtrs	0.8 mtr	1 mtr
08	Check dam between crusher, ramp and haul road	76 mtrs	0.8 mtrs	1 mtr
09	Check dam across the slope from previous topsoil area towards mining pit (2 nos)	47 mtrs	0.8 mtr	1 mtr
10	Check dam across the slope near mine entrance	35 mtrs	0.8 mtr	1 mtr
11	Drain work around the crusher	426 mtr	2 mtr	1 mtr
12	Hume pipe culvert in the natural stream flowing nearby Kalahandi Pit	5 mtrs	15 mtrs	
13	Concrete drain near fixed crusher	50 mtrs	1.5 mtrs	1 mtr
14	Earthen drain near fixed crusher	520 mtrs	1.5 mtrs	1 mtr
15	Settling pond connected to concrete drain near fixed crusher	44 mtrs	20 mtrs	4 mtrs
16	Parapet wall around the safety zone area of Kalahandi Pit	600 mtrs	1.5 mtrs	2 mtrs
17	Three nos. concreted weir across the natural seasonal nallah	135 mtrs	1.2 mtrs	2.5 mtrs
19	Implementation of gabion along OB dump	60 mtrs	1 mtr	1 mtr
20	Settling pond near mine entrance	40 mtrs	21 mtrs	4 mtrs
21	Settling pond near MRSS building	38 mtrs	20 mtrs	4 mtrs
22	Two Concrete drain near MRSS	290 mtrs	1.5 mtrs	1.5 mtrs
23	Settling pond near Rayagada OB dump	46 mtrs	28 mtrs	4 mtrs
24	Check Dam over slope area North East Side (48 Nos.)	30 mtrs	2 mtrs	2 mtrs

Annexure: 3: Verification report on implementation of recommendations suggested in scientific study of surface & ground water management at Baphlimali Bauxite Mine, studied by NIT, Rourkela

Ref: UAIL-Mines/BBM/ 28/2020

14th January 2020

Tο

The Member secretary State Pollution Control Board, Odisha Parivesh Bhawan, A/118 Nilakanthanagar, unit-VIII Bhubaneswar- 751012

Sub: submission of verification report of NIT, Rourkela pertaining to the special condition no. 13 of CTO

Ref: (i) Consent Letter No. 2608/IND-I-CON/5450 Dt.14.03.2019, Consent Order No. 2765

(ii) Our CTO renewal online Application No. 2354845 Dt.19.12.2018

Dear Sir,

With reference to the special condition no. 13 of CTO and clarification raised against our CTO for renewal, we are submitting herewith the verification report of NIT, Rourkela, regarding implementation status of recommendation suggested in the technical study of surface and ground water management of our mines by NIT, Rourkela.

This is for your information and kind perusal.

Yours faithfully,

For Utkal Alumina International Limited

Asst. Vice President-Corporate Affairs, Bhubaneswar

Copy to: Regional Office, OSPCB, Rayagada.

Encl: As Above

राष्ट्रीय प्रौद्योगिकी संस्थान NATIONAL INSTITUTE OF TECHNOLOGY राउरकेला ROURKELA - 769008, ओडिशा ODISHA

NITR/MN/HBS/2020/L/0023

Date: January 13, 2020

Dr. H. B. Sahu

Associate Professor
Department of Mining Engineering
NIT, Rourkela – 769 008
& Principal Investigator

Subject: Verification of Implementation of the recommendation of the Scientific study of Surface and Ground Water Management at Baphlimali Bauxite Mine of M/s Utkal Alumina International Limited

Dear Sir,

Attached please find the report of the verification of *implementation of the recommendations of the Scientific study of Surface and Ground Water Management at Baphlimali Bauxite Mine* which was submitted in December 2016.

Thanking you and with regards.

Yours Sincerely.

Dr. H. B. Sahu

To,

Mr. Mukesh Kumar Jha General Manager (Mines) Baphlimali Bauxite Mines, UAIL

At: Doraguda

Post: Kucheipadar- 765 015

Dist.: Rayagada

Verification Report on the Implementation of the Scientific Study of Surface and Ground Water Management at Baphlimali Bauxite Mine, UAIL

DEPARTMENT OF MINING ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA – 769 008 January 2020

Verification Report on the Implementation of the Scientific Study of Surface and Ground Water Management at Baphlimali Bauxite Mine, UAIL

1. Background

The technical study of surface and ground water management at Baphlimali bauxite mine, UAIL; was carried out during 2015-16.As per the requirement of Consent to Operate, stipulated by State Pollution Control Board, Bhubaneswar; the verification of the implementation of the recommendation of the scientific study is required to be carried out. In light of the above, a team comprising of Prof. H. B. Sahu, Department of Mining Engineering; and Prof. Sk Md Equeenuddin, Associate Professor, Department of Earth and Atmospheric Sciences; carried out the physical verification taking into account the plans and sections, site visit and discussion with the mine officials.

2. OBJECTIVES OF THE PROJECT

Verification of status of implementation of the Scientific study on Surface and Ground Water Management at Baphlimali Bauxite Mine, UAIL with reference

3. RECOMMENDATIONS

Observation 1:

It is seen that the active mining area occupies a very small space at the moment. The runoff generated from the active mining area (6.21 Lakh m³) is very insignificant compared to that of total leasehold area during the monsoon, which is 90.07 lakh m³.

Observation 2:

The maximum runoff likely to be generated in a single month in the monsoon is likely to be 25.51 Lakh m³ considering the rainfall intensity to be 349mm, which is the maximum average rainfall in this area over 12 year period.

Recommendation 1:

The maximum runoff likely to be generated in R1 region per hour during the monsoon is 3403m^3 considering a maximum rainfall of 40mm per hour. The existing settling pit near the crusherof 12 m x 8m size with a depth of 4m is inadequate to handle the runoff likely to be generated. Its size is required to be enhanced to (42m x 20m x 4m) to accommodate the expected runoff. A garland drain of 277m x 1m x 1m is to be provided in the eastern boundary to channelize the runoff to the sump. The water from the sump is to be pumped to quarry 1 after settling.

Current Status: Implemented.

The dimensions of the existing settling pit has been enhanced to 44mx20mx4m (Fig.1) to accommodate the expected runoff during monsoon. One 50hp pump have been installed to pump out the water to quarry 1 after settling. A garland drain of 520m length has been constructed along the eastern boundary to channelize the runoff to the sump.

Figure 1: View of settling pit and pumps near the crusher

Recommendation 2:

The maximum runoff likely to be generated in R2 region during monsoon is $6680 \text{ m}^3/\text{hr}$. This runoff is likely to be contaminated by loading and ancillary activities. It is proposed to have two settling ponds near the mine entrance of 1800m^3 capacity each ($30\text{m} \times 15\text{m} \times 4\text{m}$) to handle the runoff.Garland drains of $545\text{m} \times 1\text{m} \times 1\text{m}$ is required to be constructed to channelize the runoff to the settling ponds. The water after settling may be allowed to flow outside since it has been found that there is no significant contamination of the water bodies downstream.

Current Status: Implemented

The existing settling pit near the mine entrance has been enhanced to $40 \text{m} \times 21 \text{m} \times 4 \text{m}$ to accommodate 3360 m³ of runoff (Fig.2). A new settling pit of $38 \text{m} \times 20 \text{m} \times 4 \text{m}$ depth has been constructed to accommodate 3040 m³ of runoff (Fig.3). Two 75hp pumps have been installed in the 2nd settling pit to pump the runoff to Quarry 1.Two concrete garland drains of an aggregate length of 290m and earthen garland drains of 600m have been constructed in this region to channelize the runoff to these settling pits (Fig.4).

Figure 2: View of the reconstructed settling pit near the mine entrance

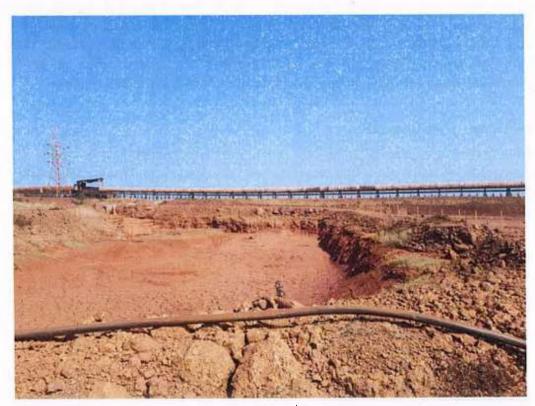


Figure 3: View of the newly constructed 2nd settling pit near the mine entrance

Figure 4: View of garland drains constructed in the R2 region

Recommendation 3:

The expected runoff in R3 region is 8444 m³ per hour. A drain of 1170m having width and depth of of 4m and 2m respectively is proposed to be constructed in R3 region on the western side parallel to the existing of conveyor belt to arrest the surface runoff generated within this region and channelize it to quarry 1. As the flow of runoff is towards the bauxite storage, crusher and conveyor belt, therefore there is maximum possibility of intermixing of surface runoff with that of bauxite ore. The bauxite storage site, and crusher plant and ancillary facilities are covering very small portions of the total area of R3 region. Culverts/hume pipes are required to be provided where the drain crosses the road.

Current Status: Implemented

Garland drains of adequate dimensions have been constructed in this region (Fig.5). Earthern retaining wall and garland drain has been provided around the bauxite storage area to prevent the intermixing of the runoff. Hume pipe has been provided at the locations where the drains cross the road.

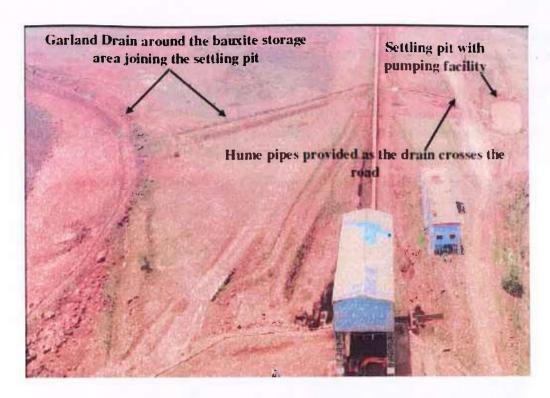


Figure 5: View of earthen retaining wall and garland drains near the bauxite storage area and crusher

Recommendation 4:

The regions R4, R5 and R6 regions are in virgin state. The runoff from these regions may be allowed to follow the natural topography. There are some small seasonal nallahs that are created during the monsoon, which carries the surface runoff to the nearby valleys.

Current Status: There is no change in this region.

Recommendation 5:

Most part of R8 is in a virgin state. The runoff from this region is channelized to the valley after the settlement of suspended solids in small settling pits constructed near the boundary. A sewage treatment plant (STP) of 75KLD capacity is under construction to handle the waste water from the domestic and office areas which is adequate.

Current Status: The runoff from this region is settled in the settling pits. The construction of STP near the administrative building has been completed. Meanwhile, more plantations have been carried out in this region along with the establishment of a nursery. The area is now greener than before.

Recommendations 6:

A retaining wall has been provided below the Rayagada dump (Dump I). However, it is damaged in different locations, allowing the mixing of runoff from the virgin areas of R8 before flowing to the valley. Since the quality of runoff from virgin areas is relatively uncontaminated, it should be allowed to flow without mixing with the runoff from the dump. It

is suggested that the retaining wall around the periphery of the dump should be properly maintained to avoid the direct mixing of the runoff with that of the virgin areas.

Current Status: Implemented.

The retaining walls have been properly maintaining with reconstruction of the damaged portions (Fig. 6). The natural runoff from the virgin areas do not mix with the runoff from the dump and flows to the valley after being settled in the renovated settling pits (Fig.7).

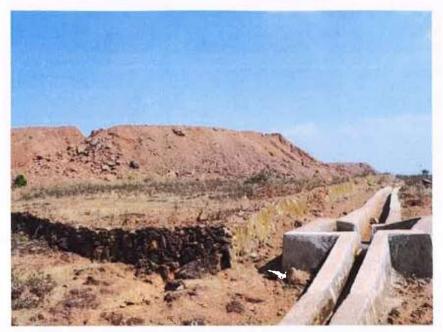


Figure 6: Photographic view of reconstriction of the retaining wall

Figure 7: Renovated settling pits

Recommendation 7:

A part of the runoff from this dump is flowing to the quarry. However, nearly 4500 m³ of runoff per hour is expected to flow outside during peak monsoon period. Therefore, a sedimentation pond of 45m x 25m x 4m is proposed to be constructed below the dump. Zigzag flow pattern may be followed in the garland drains below the dumps to arrest the suspended solids before it reaches the settling pond, which will enhance the capacity of the settling pit.

Current Status: Implemented.

An additional settling pit of $46m \times 28m \times 4m$ has been constructed as per the recommendation (Fig. 8). The runoff from the dump is being channelized to the settling pit.

Figure 8: Settling pond near Rayagada dump.

Recommendation 8:

The runoff from Kalahandi Dump (Dump II) is being channelized to Kalahandi Quarry (Quarry II). The total runoff from the quarry and the dump in monsoon is likely to be 1.34 Lakh m^3 . The quarry sump has the capacity to accommodate 1.54 Lakh m^3 of runoff during the monsoon (120m x 80 m x 16m). It was noticed that most of the water in the mine sump percolates downward, and there is very small amount of water present in the mine even during the monsoon.

Current Status:

The Kalahandi quarry sump has adequate capacity to store the runoff generated during the monsoon.

Recommendation 9:

There is a seasonal nallah in R7 region. It was noted that the nallah is seasonal one and exists only during the monsoon. Three check dams have been constructed on this nallh. The dimension of the check dams varies between 50 to 60 m in length, 2m width and 1 to 1.5m in

height (Fig. 3). However, during mine visits, it was noticed that there are cracks in the bottom parts of the dams which is allowing seepage of the water to the downstream. These may be properly constructed so that they will work as permanent storage reservoirs. These have the capability to store 75,000 m³ to 1,35,000 m³ of runoff. To meet part of the mine water demand the height of the check dams may be enhanced to 4m so that it can store upto 3,60,000 m³ of runoff during monsoon.

Current Status: Implemented

The existing check dams in this region have been reconstructed with repairing of the cracks that were existing the bottom part of these dams. The heights of these dams have been enhanced to 4m to accommodate the runoff likely to be generated during the monsoon. A view of the check dams before and after reconstruction has been presented in Figure 9a and 9b respectively.

Figure 9a: Photographic view of damged check dam during 2016

Figure 9b: Photographic view of the reconstructed check dam

Recommendation 10:

Retaining walls are required to be provided in the top soils storage and crushed bauxite storage sites, so that the natural runoff coming from the topmost part of the mine does not mix with it.

Current status: Implemented. Top soil dump has already been re-handled and utilized for the plantation purpose.

Recommendation 11:

All the existing mine sumps, garland drains, sedimentation ponds created on the surface should be de-silted before monsoon and a record of the same should bemaintained in the respective mine office. Wherever possible, the sumps may be deepened to accommodate more surface runoff quantity.

Status: Implemented

All the existing mine sumps, garland drains, sedimentation ponds created on the surface being de-silted before monsoon and a record of the same being maintained.

Recommendation 12:

In order to avoid accidental entry of any person or cattle into the sedimentationponds, roper fencing should be carried out. Warning signs should also bedisplayed near the water bodies along with their depth.

Status: Implemented

The sedimentation ponds have been properly fenced to prevent accidental entry of anyperson or cattle with a depth measurement scale in the middle of the pond (Fig. 10).

Figure 10: Fencing around the settling pit

Recommendation 13:

Plantation, grassing and soil water conservation measures like contour trenches(2ft wide x 2ft depth x continuous or staggered 2ft wide x 2ft depth x 2m length at 6m slope interval) and bund (2 ft high), agave plantation, silt arrestors, check damete should be carried out in all the external o/b dumps slopes to minimize siltationduring monsoon, otherwise the capacity of garland drain to carry the surfacerunoff will decrease and will lead to flooding and discharged to nearby areasinstead of being channelled to the sump. Proper retaining wall or gabion wall orcatch drain (1.5m x 1.5m cross section) should be provided at the toe of the OBdumps to arrest the siltation during heavy rains and these catch drains should be cleaned before onset of monsoon each year.

Status: Implemented

Garland drains, settling tanks and check dams of appropriate size, gradient and lengthhas been constructed both around the mine pit and the over burden dump to preventun off of water and flow of sediments directly into the natural nallah and other water bodies. The garland drains are being desilted regularly before onset of monsoon.

Additional Observations:

During site visit the following additional observations were made:

Concrete drains of 160m length, 1.5m width and 1m depth has been provided on the side of approach road to the mine entrance.

A network of pumps and pipelines has been provided to channelize the runoff from the settling pits to the Quarries.

Vast amount of plantation has been carried out on the backfilled areas of the mine (Fig. 11).

Figure 11: Photographic view of the plantation in the backfilled areas of the mine

Dr. H. B. Sahu

Associate Professor and Head Department of Mining Engineering

Principal Investigator

Dr. Sk. Md. Equeenuddin

Associate Professor

Dept of Earth and Atmospheric Sciences

Co-Principal Investigator

ANNEXURE: 4

Ambient Air Quality Monitoring Report (Core Zone)

(An Enviro Engineering Consulting Cell) (ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Format No.: VCSPL/FMT/055

Test Report No: ENVLAB/20/TR-5200

Date: 06.11.2020

TEST REPORT

Customer Name & Address : Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S1: Near Crusher	Sampled by	VCSPL/S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.10.2020,06.10.2020,08.10.2020 13.10.2020,15.10.2020,20.10.2020 22.10.2020,27.10.2020,29.10.2020
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°20,915' Longitude: E82°58,543' Altitude: 999,74 m.	
Sampling Date	02.10.2020,05.10.2020, 07.10.2020,12.10.2020, 14.10.2020,19.10.2020, 21.10.2020,26.10.2020, 28.10.2020,	Test Completed on	03.10.2020 to 06.11.2020

	(e Date						Paran	ieters					
SL No		Particulate Matter as PM _{(b} (µg/m²)	*Particulate Matter as PM _{2.5} (µg/nr)	Sulphur Dioxide as SO ₂ (µg/m²)	Oxides of Nitrogen as NO _X (µg/m ²)	*C0	*O, µg/m²	*NH ₃ µg/m²	°C,H ₆ µg/m³	*BaP ng/m²	*Ni ug/m²	*РЬ µg/m³	*As ng/m³
1	02.10.2020	38.0	14.0	10.9	24,3	0.36	7.6	BDL	BDL	BDL	BDL	BDL	BDL
2	05,10,2020	22.0	12.0	14.2	18.8	0.59	8.4	BDL.	BDL.	BDL	BDL	BDL	BDL
3	07.10.2020	26.0	15.0	13.3	26.2	0.48	7.5	BDL.	BDI.	BDL.	BDL	BDL	BDL
4	12.10.2020	31.0	18.0	13.7	31,4	0.56	7.2	BDL.	BDL.	BDL	BDL	BDL.	BDL.
5	14.10.2030	33.0	21.0	12.9	29.5	0.55	9.6	BDL.	BBL.	BDL	BDL	BDL.	BEL
6	19.10.2000	- 29.0	14.0	12.1	27.2	0.63	8.1	BDL.	BDI.	BDL	BDL	BDL	BDL
7	21.10.2020	25.0	11.0	14.0	30.1	0.49	8.8	BDL.	BDL.	BDL	BDL	BDL	BDL
8	26.10.2020	23.0	13.0	11.6	25.5	0.73	10.2	BDL	BDL	BDL	BDL	BDL	BDL
9	28.10.2020	27.0	15.0	10.7	23.1	0.41	9.3	BDL.	RDL.	BDL.	RDL.	RDL.	BDL.
	Monthly Average	27.3	14.8	12.6	26.2	0.53	8.6	BDL	BDL	BDL	BDI.	BDL	BDL
NAZ	AQ Standard	100	60	80	80	4	100	400	05	91	20	1.0	06
Tes	ding Method	IS 5182: Part 23	EPA (FR-46 (pt 50) Appendix-1	IS 5182 (Part-2) RA2006	IS 5182 (Part-6) RA2006	TS 5182 (Part-10) :1999	Chemical Method	Indo phenol blue method	Absorpti on & Desorpti on followed by GC analysis	Solvent extraction followed by Gas Chronost ography analysis	on EPM	thod after 2000 or E filter Pape	quivalent

BDI. Values: $SO_2 < 4 \mu g/m^2$, $NO_2 < 9 \mu g/m^2$, $O_3 < 4 \mu g/m^2$, $NH_3 < 20 \mu g/m^2$, $Ni < 0.01 \mu g/m^2$, $A_3 < 0.001 \mu g/m^2$, $C_3H_4 < 0.001$ µg/m², BaP<0.002 ng/m², Pb<0.001 µg/m², CO<0.1 mg/m²

Remarks: (All the values of PM-10, PM-2.5, SO₂, NOx & CO, O₃ etc presented in row no 1-9 are Time Weighted Average.

*These Parameter not in our NABL Scope.

*** End Report***

Remarks:

TERMS AND CONDITION:-

- 1. The Test result is relevant only to the item tested.
- 2, This report shall not be reproduced in full or part without written approval of Visiontek consultancy services.(P) Ltd.
- 3. The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.
- The laboratory's responsibility under this report is limited to; proven willful negligence,

(An Enviro Engineering Consulting Cell) (ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

Test Report No: ENVLAB/20/TR-5201

Date: 06.11.2020

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S2: Mining Pit	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.10.2020,06.10.2020,08.10.2020 13.10.2020,15.10.2020,20.10.2020 22.10.2020,27.10.2020,29.10.2020
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19"29.773" Longitude: E82"58.332" Altitude: 974.45 m.	
Sampling Date	02.16.2020,05.10.2020, 07.16.2020,12.10.2020, 14.10.2020,19.10.2020, 21.16.2020,26.10.2020, 28.16.2020,	Test Completed on	03.10.2020 to 06.11.2020

							Paran	neters					
SL. No		Particulate Matter as PM ₁₀ (µg/m ³)	*Particulate Matter as PM ₂₅ (ag/m²)	Sulphur Dioxide as SO ₂ (µg/m ^b)	Oxides of Nitrogen as NO _X (µg/m²)	*CO	*О _г µg/m³	*NH ₃ µg/m²	*C _s H _e µg/m³	*RaP ng/m²	*Ni bg/m²	*Ph µg/m²	*As ng/m²
1	92.19.2020	19.0	15.0	18,2	28.9	0.45	8.5	BDL	BDL.	BDL	BDL	BDL.	BDL
2	05.10.2020	26.0	13.0	14.6	24.1	0.41	9.1	BDL	BDL	BDL	BDL	BDL	BOL
3	07,10,2030	21.0	11.0	15.9	29.0	0.62	9.8	BDL	BDL.	BDL	BDL	BDL	BOL
4	12.10.2020	33.0	18.0	13.1	31.8	0.58	8.9	BDL.	BDL	BDL	BDL	BDL	BDL
5	14,10,2030	25.0	10.0	13.7	28.4	0.51	7.6	BDL	BDL	BDL	BDL	BDL	BDL
6	19,10,2000	+ 28.0	12.0	15.2	27.6	0.72	7.1	BDL	BDL	BDL	BDL	BDL	BDL
7	21.10.2020	36.0	21.0	17.6	23.1	3.63	2.4	RDL.	BDI.	RDL	BDL	BDL	BOL.
1	26.10.2020	42.0	19.0	11.9	25.8	0.44	8.9	BDL.	BDI.	BDL	BDI.	BDL	BDL
9	28.10.2020	34.0	16.0	11.4	38.9	0.48	9.2	BDL	BDL	BDL	BDL	BDL	BDL
	Monthly Average	29.2	15.0	14.6	27.7	0.54	8.6	BDL.	BDI.	BDL	BDL.	RDL.	BDL
NAA	Q Standard	100	60	80	80	4	100	400	05	91	20	1.0	06
Tes	ing Method	IS 5182; Part 23	EPA CFR-40 (pt 50) Appendix-1	IS 5182 (Part-2) RA2006	IS 5182 (Part-6) RA2006	IS 5182 (Part-10) :1999	Chemical Method	Indo phenol blue method	Absorption & Description followed by GC analysis	Solvent extraction followed by Gas Chromat ography analysis	on EPM	thod after 2000 or E filter Pape	quivalent

BDL Values: $SO_2 \le 4 \mu g/m^2$, $NO_3 \le 9 \mu g/m^2$, $O_3 \le 4 \mu g/m^2$, $NH_3 \le 20 \mu g/m^2$, $NS \le 0.001 ng/m^2$, $As \le 0.001 ng/m^2$, $C_4H_6 \le 0.001 \mu g/m^2$, $EaP \le 0.002 ng/m^2$, $Pb \le 0.001 \mu g/m^2$, $CO_4 \le 0.1 ng/m^2$

Remarks: (All the values of PM-10, PM-2.5, SO₂, NOx & CO, O₃ etc presented in row no 1-9 are Time Weighted Average.

*These Parameter not in our NABL Scope.

*** End Report***

Remarks

TERMS AND CONDITION:-

- The Test result is relevant only to the item tested.
- 2. This report shall not be reproduced in full or part without written approval of Visiontek consultancy services.(P) Ltd.
- 3. The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.

5. The laboratory's responsibility under this report is limited to; proven willful negligence.

(An Enviro Engineering Consulting Cell)
(ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

Test Report No: ENVLAB/20/TR-5202

Date: 06.11.2020

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S3: Near Office	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	63.10.2020,06.10.2020,10.10.2020 13.10.2020,17.10.2020,20.10.2020 24.10.2020,27.10.2020,31.10.2020
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°20.366° Longitude: E82°58.874° Altitude: 955.24 m.	
Sampling Date	02.10.2020,05.10.2020, 09.10.2020,12.10.2020, 16.10.2020,19.10.2020, 23.10.2020,26.10.2020, 30.10.2020.	Test Completed on	03.10.2020 to 06.11.2020

	Parameters											
Sampling Date	Particulate Matter as PM ₁₁ (µg/m²)	*Particulate Matter as PM _{2,1} (µg/m³)	Sulplur Diexide as SO ₂ (µg/m²)	Oxides of Nitroges as NO _X (µg/m²)	*CO mg/m³	*O ₂ µg/m³	*NH ₃ µg/m³	*C _e H _e µg/m³	*RoP ng/m²	oNi ng/m²	*Pb R2ini	"As ngim ³
02.10,2020	28.0	13.0	15.0	29,2	0.41	9.1	BDL	BDL	BDL	BDL	BDL	BDL
05.10.2020	23.0	12.0	13.9	32.2	0.57	7.3	BDL	BDL	BDL	BDL.	BDL	BDL
09.10.2020	29.0	14.0	14.5	29.3	0.49	7.7	BDL	BDL.	BDL	BDL.	BDL	BDL
12.10.2020	20.0	11.0	11.2	30.5	0.43	7.8	BDL	BDL	BDL	BDL	BDL	BDL
16.10.2020	32.0	18.0	12.1	27.7	0.48	8.5	BDL	BDL	BDL	BDL.	BDL.	BDL
19.10.2020	- 27.0	14.0	14.3	31.8	0.37	8.1	BDL	BDL	BDL	BDL.	BDL	BDL
23.10.2020	36.0	22.0	14.9	33.2	0.61	7.3	BDL	BDL	BDL	BDI.	BDL	BDL
26.10.2020	28.0	13.0	18.1	25.5	0.52	9.2	BDL.	BDL.	BDL.	BDL.	BDL	BDL
30.10,2020	32.0	19.0	17.3	29.6	0.33	7.4	BDL	BDL.	BDL	BDL.	BDI.	BDL
Monthly Average	28.3	15.1	14.6	29.9	0.47	8.0	BDI.	BDL.	BDI.	BDL	BDL	BDL
Q Standard	100	60	80	80	4	100	400	05	01	20	1.0	06
ting Method	IS \$152; Part 23	EPA CFR-40 (pt 50) Appendix-1	IS 5182 (Part-2) RA2006	IS 5182 (Part-6) RA2006	IS 5182 (Part-10) :1999	Chemical Method	Inda phenol blue method	Absorpti on & Desorpti on followed by GC analysis	Solvent extraction followed by Gas Chromat egraphy analysis	on EPM	2000 or E	quivalent
	02.10.2020 05.10.2020 09.10.2020 12.10.2020 16.10.2020 19.10.2020 26.10.2020 30.10.2020 Monthly Average	Date Matter as PM ₁₀ (µg/m²) 02.10.2020 28.0 05.10.2020 23.0 09.10.2020 29.0 12.10.2020 20.0 16.10.2020 32.0 19.10.2020 -27.0 23.10.2020 36.0 26.10.2020 28.0 30.10.2020 32.0 Monthly Average 28.3 100 ting Method IS 5182:	Date Matter as PM ₁₃ (µg/m²) (µg/m²) (µg/m²) (µg/m²) (µg/m²) 02.10.2020 28.0 13.0 05.10.2020 23.0 12.0 09.10.2020 29.0 14.0 12.10.2020 30.0 11.0 16.10.2020 32.0 18.0 19.10.2020 36.0 22.0 26.10.2020 36.0 22.0 26.10.2020 38.0 19.0 Monthly Average 28.3 15.1 (Q Standard 100 60 ting Method IS 5152; EPA CFR-40 (pt 50)	Date Matter as PM ₁₀ (μg/m²) Matter as PM ₂₁ (μg/m²) Dioxide as SO ₂ (μg/m²) 02.16.2020 28.0 13.0 15.0 05.10.2020 23.0 12.0 13.9 09.10.2020 29.0 14.0 14.5 12.10.2020 20.0 11.0 11.2 16.10.2020 32.0 18.0 12.1 19.10.2020 -27.0 14.0 14.3 23.10.2020 36.0 22.0 14.3 26.10.2020 28.0 13.0 18.1 30.10.2020 32.0 19.0 17.3 Monthly 28.3 15.1 14.6 Q Standard 100 60 80	Distr	Date Matter as PM ₁₃ as SO ₂ as NO ₃ mg/m m	Sampling Date Matter As PM ₁₃ as SO ₂ as NO ₂ mg/m ³ mg/m ³ (µg/m ³) (µg/m ³	Sampling Date Matter Matter 35 PM ₂₃ as SO ₂ as NO ₃ mg/m² µg/m² µg/m²	Sampling Date Matter Matter Matter as PM ₁₃ as SO ₂ as SO ₂ as NO ₂ mg/m ³ µg/m	Particulate Matter as PM ₁₃ (µg/m²) (Particulate Matter as PM ₁₁ (µg/m²) (Particulate Matter as PM ₁₁ (ag/m²) (

BDL Values: SO₂<4 µg/m², NO₂<9 µg/m², O₂<4 µg/m², NH₂<20 µg/m², Ni<0.01 µg/m², As < 0.001 µg/m², C₂H₂<0.001 µg/m², BaP<0.002 µg/m², Po<0.001 µg/m², CO<0.1 µg/m²

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-9 are Time Weighted Average.

*These Parameter not in our NABL Scope.

*** End Report***

Remarks:

TERMS AND CONDITION;-

- 1. The Test result is relevant only to the item tested.
- 2. This report shall not be reproduced in full or part without written approval of Visiontek consultancy services. (P) Ltd
- 3. The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable pegulations.
- 5. The laboratory's responsibility under this report is limited to; proven willful negligence.

(An Enviro Engineering Consulting Cell) (ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

Test Report No: ENVLAB/20/TR-5203

Date: 06.11.2020

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayaguda, Odisha

Sample Location & Code	S4: Near Weigh Bridge	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.10.2020,08.10.2026,10.10.2020 15.10.2020,17.10.2020,22.10.2020 24.10.2020,29.10.2020,31.10.2020
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19"21.079" Longitude: E82"58.775" Altitude: 993.95 m.	
Sampling Date	02.10.2020,07.10.2020, 09.10.2020,14.10.2020, 16.10.2020,21.10.2020, 23.10.2020,28.10.2020, 30.10.2020,	Test Completed on	03.10.2020 to 06.11.2020

		Parameters											
SL. No	Sampling Date	Particulate Matter as PM ₃₀ (µg/m²)	*Particulate Matter as PM _{2,1} (µg/m²)	Salphur Dioxide as SO ₂ (µg/m²)	Oxides of Nitrogon as NO _X (µg/m²)	*CO	*O ₂	*NH ₃ µg/m ^l	*C _c H _c µg/m ^b	*BaP ng/m²	^e Ni bg/m ⁱ	«р _% р g/m²	*As ng/m³
1	02.10.2020	23.0	15,0	12.6	30.4	0.55	8.5	BDL	BDL	BDL	BDI.	BDL	BDI.
2	07.10.2020	20.0	11.0	14.9	28.8	0.31	7,1	BDL	BDL	BDL	BDL.	BDL	BDL
3	09.10.2020	19.0	13.0	15.3	21.3	0.38	9.2	BDL	BDL.	BDL	BDI.	BDL	BDL
4	14.19.2020	25.0	11,0	13.7	25.9	0.45	7,3	BDL.	BDL.	BDL	BDL	BDL	BDL
5	16.10.2020	28.0	17.0	13.1	34.5	8.61	9.5	BDL.	BDL	BDL	BDL.	BDL	BDL
6	21.10.2020	- 21.0	12.0	15.7	31.8	0.58	8.4	BDL	BDL	BDL	BDL	BDL	BDL
7	23.10.2020	34.0	19.0	11.6	28.4	0.77	2.5	BIM.	RDI.	RDL.	IIDI.	BDL	BDL
B	28.10.2020	27.0	13.0	12.7	27.9	0.69	7.3	BDL	BDL.	BDL.	BDL.	BDL	BDL.
9	30.10.2020	32.0	13.0	10.8	22.2	0.47	9.8	BDL	BDL	BDL	BDL.	BDL.	BDL
	Monthly Average	25.4	14.3	13.4	27.9	0.53	8.4	BDL	BDL	BDL	BDI.	BDL.	BDL.
NAA	AQ Standard	100	60	80	80	4	100	400	05	01	20	1.0	06
Tes	ting Method	IS 5182: Part 23	EPA CFR-40 (pt 50) Appendix-1	IS 5182 (Part-2) RA2006	IS 5182 (Part-6) RA2006	IS 5182 (Purt-10) :1999	Chemical Method	Inda phenol blue method	Absorpti on & Descripti on followed by GC analysis	Solvent extraction followed by Gus Chromat ography analysis	on EPM	thod after 2000 or E filter Pape	quivalent

BDL Values: $SO_2 < 4 \mu g/m^2$, $NO_X < 9 \mu g/m^2$, $O_3 < 4 \mu g/m^2$, $NH_3 < 20 \mu g/m^2$, $Ni < 0.01 \mu g/m^2$, $As < 0.001 u g/m^2$, $C_6H_6 < 0.001 \mu g/m^2$, $BaP < 0.002 u g/m^2$, $Pb < 0.001 \mu g/m^2$, $CO = < 0.1 u g/m^2$

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-8 are Time Weighted Average.

These Parameter not in our NABL Scope.

*** End Report***

Romarks:

TERMS AND CONDITION:-

- 1. The Test result is relevant only to the item tested.
- 2. This report shall not be reproduced in full or part without written approval of Visionte's consultancy services. (P) Ltd
- 3. The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.
- 5. The Inbestory's responsibility under this report is limited to; proven willful negligence.

(An Enviro Engineering Consulting Cell) (ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944

Format No.: VCSPL/FMT/055

Date: 07.12,2020

Test Report No: ENVLAB/20/TR-6628

TEST REPORT

Customer Name & Address

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S1: Near Crusher	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.11.2020,05.11.2020,10.11.2020 12.11.2020,17.11.2020,19.11.2020 24.11.2020,26.11.2020.
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°20.915' Longitude: E82°58.543' Altitude: 999.74 m.	
Sampling Date	02.11.2920,94.11.2920, 09.11.2920,11.11.2020, 16.11.2020,18.11.2020, 23.11.2020,25.11.2020.	Test Completed on	03.11.2020 to 02.12.2020

							Param	eters					
SL No		Particulate Matter as PM ₃₀ (µg/m²)	*Particulate Matter as PM ₂₅ (ug/m²)	Sulphur Diexide us SO ₂ (µg/m²)	Oxides of Nitrogen as NO _X (µg/m²)	*CO mg/m²	*О _з µg/m³	*NH ₁ µg/m ³	*C _c H _c µg/m ³	*BaP ng/m²	*Ni ng/m³	*Pb µg/m²	*As ng/m³
1	02.11.2020	21.0	11.0	15.5	25.7	0.21	8.1	BDL	BDL	BDL	BDL	BDL	BDL
2	04.11.2020	25.0	13.0	11.7	20.2	0.25	7.3	BDL	BDL	BDL	BDL	BDL	BDL
3	09.11.2020	28.0	19.0	13.1	27.5	0.41	8.5	BDL	BDL	BDL	BDL	BDL	BDL
4	11.11.2020	23.0	12.0	12.4	26.1	0.33	9.6	BDL	BDL	BDL	BDL	BDL	BDL
5	16.11.2020	33.0	15.0	14.1	23.3	0.52	7.2	BDL	BDL	BDL	BDL	BDL	BDL
6	18.11.2020	31.0 -	14.0	16.2	29.5	0.49	8.1	BDL	BDL	BDL	BDL	BDL	BDL
7	23.11.2020	24.0	12.0	11.9	34.1	0.43	8.7	BDL	BDL	BDL	BDL.	BDL	BDL
8	25,11,2020	22.0	11.0	13.6	30.2	0.36	9.2	BDL	BDL	BDL	BDL	BDL	BDL
	Monthly Average	25.9	13.4	12.8	27.1	0.38	8.3	BDI.	BDL	BDL	BDL	BDL	BDL
NAA	Q Standard	100	60	80	80	4	100	400	05	01	20	1.0	06
Tes	ting Method	IS 5182: Pari 23	EPA CFR-40 (pt 80) Appendix-1	IS 5182 (Part-2) RA2905	15 5182 (Part-6) RA2006	IS 5182 (Part-19) :1999	Chemical Method	Inde phenel blue method	Absorpti on & Desorpti on followed by GC analysis	Solvent extraction followed by Gas Chromat ography analysis	AAS method after sam on FPM 2000 or Equi- filter Paper		quivalent

gg/m², BaP<0.002 ag/m², Pb<0.001 µg/m², CO<0.1 mg/m²

Remarks: (All the values of PM-10, PM-2.5, SO₂, NOx & CO, O₂ etc presented in row no 1-9 are Time Weighted Average. *These Parameter not in our NABL Scope.

*** End Report***

Remarks:

TERMS AND CONDITION:

- 1. The Test result is relevant only to the item tested.
- 2. This report shall not be reproduced in full or part without written approval of Visiontek consultancy services (P) Ltd
- 3. The laboratory is not responsible for the authorizinty of photocopied lest report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.
- 5. The laboratory's responsibility under this report is limited to; proven willful negligence.

Authorized Signatory

Plot No.-M-228:23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 7752017995 E-mail: visiontek@vespl.org. visiontekin@gmail.com, visiontekin@yahoo.co.in, Visit us at: www.vespl.org

(An Enviro Engineering Consulting Cell) (ISO 9001;2015, ISO 14001;2015 & OHSAS 45001;2018 Certified)

> Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

NABL ACCREDITED

Test Report No: ENVLAB/20/TR-6629

Date: 07.12.2020

TEST REPORT

Customer Name & Address

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S2: Mining Pit	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.11.2020,05.11.2020,10.11.2020 12.11.2020,17.11.2020,19.11.2020 24.11.2020,26.11.2020.
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°20.773° Langitude: E82°58.332° Altitude: 974.45 m.	
Sampling Date	92.11.2020,04.11.2020, 09.11.2020,11.11.2020, 16.11.2020,18.11.2020, 23.11.2020,25.11.2020,	Test Completed on	03.11.2020 to 02.12.2020

	Sampling Date						Parameters						
SL No		Particulate Matter as PM _{IR} (ug/m²)	*Particulate Matter as PM _{2,5} (µg/m²)	Sulphur Dioxide as SO ₂ (µg/m²)	Oxides of Nitrogen as NO _X (µg/m²)	*CO mg/m³	°O ₅	*NH ₃ µg/m ³	*С _г Н _г µg'm³	*BaP ng/m³	"Ni ng/m ³	∗р ₆	*As ng/m³
1	02.11.2020	33.0	17.0	13.1	25.8	0.41	8.1	BDL	BDL	BDL	BDL	BDL	BDL
2	04.11.2020	25.0	14.0	10.5	24.7	0.57	7.8	BDL.	BDL	BDI.	BDL	BDL	BDL
3	09.11.2020	37.0	24.0	15.2	29.3	0.66	7.3	BDL	BDL	BDL.	BDL	BDL	BDL
4	11.11.2020	28.0	18.0	13.9	21.4	0.59	8.4	BDL	BDI.	BDL	BDL	BDL	BDL
5	16.11.2020	22.0	14.0	14.1	26.5	0.34	8.9	BDL	BDL	BDL	BDL	BDL	BDL
6	18.11.2020	26.0	15.0	14.7	28.8	0.45	5.9	BDL	BDL	BDL	BDL	BDL	BDL
7	23.11.2020	23.0	11.0	12.8	24.1	0.52	8.2	BDL	BDL	BDL	BDL	BDL	BDL
8	25.11.2020	34.0	18.0	11.1	21.6	0.44	7.1	BDL	BDL	BDL	BDL.	BDL	BDL
	Monthly Average	28.5	16,4	13.2	25.3	0.50	8.1	BDL	BDL	BDI	BDL	BDL	BDL
NAA	Q Standard	100	60	80	80	4	100	400	05	01	20	1.0	06
Testing Method		IS 5182: Part 23	EPA CFR-40 (pt 50) Appendix-1	IS 5182 (Part-2) RA2006	IS 5182 (Part-6) RA2006	IS 5182 (Part-10) :1999	Chemical Method	Inde phenol blue method	Absorpti on & Desorpti on followed by GC analysis	Solvent extraction followed by Gas Chromat ography unnlysis	AAS method after sam on EPM 2000 or Equiv		quivalen

pg/m², BaP<0.002 ng/m², Pb<0.001 ng/m², CO<0.1 mg/m²

Remarks: (All the values of PM-10, PM-2.5,502, NOx & CO, O3 etc presented in row no 1-9 are Time Weighted Average.

*These Parameter not In our NABL Scope.

*** End Report***

Remarks:

TERMS AND CONDITION:-

- 1. The Test result is relevant only to the item tested.
- 2. This report shall not be reproduced in full or part without written approval of Visiontek consultancy services (P) Ltd
- 3. The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.
- The laboratory's responsibility under this report is limited to; proven willful negligence.

ontek Consultancy Services Pvt. Ltd. (An Enviro Engineering Consulting Cell)

(ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944

Format No.: VCSPL/FMT/055

Date: 07.12.2020

Test Report No: ENVLAB/20/TR-6630

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S3: Near Office	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	03,11,2020,07,11,2020,10,11,2020 14,11,2020,17,11,2020,21,11,2020 24,11,2020,28,11,2020.
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°20.366° Longitude: E82°58.874° Altitude: 955.24 m.	
Sampling Date	02.11.2020,06.11.2020, 09.11.2020,13.11.2020, 16.11.2020,20.11.2020, 23.11.2020,27.11.2020.	Test Completed on	03,11,2020 to 04,12,2020

L Sampling Dute			rarameters											
	Particulate Matter as PM ₁₀ (ug/m²)	*Particulate Matter us PM _{2,9} (µg/m³)	Sulphur Dioxide as SO ₂ (µg/m²)	Oxides of Nitrogen as NO _X (µg/m²)	*CO mg/m³	*О ₃	*NH ₅ µg/m ³	*С«Н» µg/m³	*BaP ng/m³	"Ni ng/m"	*Pb pg/m³	*As ng/m²		
62.11.2020	32.0	17.0	11.4	23.3	9.46	7.1	BDL	BDL	BDL	BDL	BDL	BDL		
06.11.2020	40.0	23.0	15.5	30.5	0.59	7.3	BDL	BDL	BDL	BDL	BDL	BDL		
09.11.2020	29.0	14.6	14.4	28.8	8.65	8.5	BDL	BDL	BDL	BDL	BDL	BDL		
13.11.2020	25.0	12.0	15.9	34.4	0.71	8.4	BDL	BDL	BDL	BDL	BDL	BDL		
16.11.2020	31.0	20.0	16.1	31.9	0.55	8.7	BDL	BDL	BDL	BDL	BDL	BDL		
20.11.2020	37:0	17.0		32.8	-	9.3	BDL	BDL	BOL	BDL	BDL	BDL		
23,11,2020	24.0	13.0	13.8	36.6	0.42	8.7	BDL	BDL	BDL	BDL	BDL	BDL		
27.11.2020	33.0	19.0	13.4	30.7	0.75	9.5	BDL	BDL.	BDL	BDL	BDL	BDL		
Monthly Average	31.4	16.9	14.2	31.1	9,58	8.4	BDL	BDI.	BDL	BDL	BDL	BDL		
Q Standard	100	60	80	80	4	100	400	05	01	20	1.0	06		
iting Method	IS 5182: Part 23	EPA CFR-40 (pt 50) Appendix-1	IS 5182 (Part-2) RA2006	IS 5182 (Part.6) RA2006	IS 5182 (Part-10) :1999	Chemical Method	Indo phenol blue method	Absorpti on & Desorpti on followed by GC analysis	Solvent extraction fellowed by Gas Chrumat egraphy madysis	on EPM	2000 or E	quivalen		
	Date 02.11.2020 06.11.2020 09.11.2020 13.11.2020 16.11.2020 20.11.2020 23.11.2020 27.11.2020 Monthly Average Q Standard	Date Matter as PM ₁₀ (ug/m²) 02.11.2020 32.0 06.11.2020 40.0 09.11.2020 29.0 13.11.2020 31.0 20.11.2020 31.0 20.11.2020 37.0 23.11.2020 33.0 Monthly Average 31.4 Q Standard 100 ting Method IS 5182:	Date Matter as PM ₁₀ (ug/m²) (ug/m²) (ug/m²) (ug/m²) 02.11.2020 32.0 17.0 06.11.2020 40.0 23.0 09.11.2020 29.0 14.0 13.11.2020 25.0 12.0 16.11.2020 31.0 20.0 20.11.2020 37.0 17.0 23.11.2020 37.0 17.0 23.11.2020 33.0 19.0 Monthly 31.4 16.9 Average 100 60 ting Method 18 5182: EPA CFR-40 (pt 50)	Dute Manter as PM ₁₈ as SO ₂ (µg/m²) (µg/m²)	Date Manter as PM ₁₀ (μg/m²) Matter ns PM ₂₀ as SO ₂ as NO ₃ (μg/m²) Nitrogen as NO ₃ (μg/m²) Nitrog	Dute Manter as PM ₁₀ as PM ₂₀ as SO ₂ as NO _X mg/m ³ (μg/m ²) 02.11.2020 32.0 17.0 11.4 23.3 0.46 06.11.2020 40.0 23.0 15.5 30.5 0.59 09.11.2020 29.0 14.6 14.4 28.8 0.65 13.11.2020 25.0 12.0 15.9 34.4 0.71 16.11.2020 31.0 20.0 16.1 31.9 0.58 20.11.2020 37.0 17.0 12.7 32.8 0.48 23.11.2020 24.0 13.0 13.8 36.6 0.42 27.11.2020 33.0 19.0 13.4 30.7 0.75 Monthly Average 31.4 16.9 14.2 31.1 0.58 Q Scandard 100 60 80 80 4 ting Method IS 5182:	Sampling Date Matter Matter Dioxide Nitrogen as PM ₁₉ (ug/m²) (ug/m	Sampling Date Matter Salphur Oxides of *CO *O ₃ *NH ₈ µg/m² µg/	Date Manter as PM ₁₀ us PM ₂₀ as SO ₂ as NO ₃ us/m ² ug/m ² ug/	Particulate Matter as PM16 (ug/m²) Particulate Matter as PM29 (ug/m²) Page Page	Sampling Dute Particulate Matter as PM ₁₈ (ug/m²) Particulate as PM ₂₉ as SO ₂ as NO ₃ (ug/m²) Particulate as PM ₂₉ as SO ₂ as NO ₃ (ug/m²) Particulate as PM ₂₉ as SO ₂ as NO ₃ (ug/m²) Particulate as PM ₂₉ as SO ₂ as NO ₃ (ug/m²) Particulate as SO ₂ as NO ₃ as NO	Sampling Dute Matter Matter as PM ₁₉ (ug/m²) (ug/m²		

pg/m², BaP<0.002 og/m², Pb<0.001 pg/m², CO=0.1 mg/m²

Remarks: (All the values of PM-10, PM-2.5, SO, NOx & CO, O3 etc presented in row no 1-9 are Time Weighted Average.

*These Parameter not in our NABL Scope.

*** End Report***

Remarks:

TERMS AND CONDITIONS-

- 1. The Test result is relevant only to the item tested.
- 2, This report shall not be reproduced in full or part without written approval of Visiontek consultancy services (P) Ltd
- The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.
- The laboratory's responsibility under this report is limited to; proven willful negligence.

Authorized Signatory

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Disi-Khurda, Odisha Tel.: 7752017905 . E-mail: visiontek@vespl.org, visiontekin@gmail.com, visiontekin@yahoo.co.in, Visit us at: www.vespl.org

Committed For Better Environment

(An Enviro Engineering Consulting Cell)
(ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

NABL ACCREDITED

Certificate No.; TC-7944 Format No.: VCSPL/FMT/055

Date: 07.12.2020

Test Report No: ENVLAB/20/TR-6631

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S4: Near Weigh Bridge	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	05.11.2620,97.11.2620,12.11.2020 14.11.2620,19.11.2020,21.11.2020 26.11.2020,28.11.2020.
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°21.079° Longitude: E82°58.775° Altitude: 993.95 m.	
Sampling Date	04,11,2020,06,11,2020, 11,11,2020,13,11,2020, 18,11,2020,20,11,2020, 25,11,2020,27,11,2020,	Test Completed on	03,11,2020 to 04,12,2020

Date						Param	eters					1	
	Particulate Matter as PM ₁₈ (ug/m²)	"Particulate Matter as PM ₂₅ (ug/m²)	Sulphur Dioxide as SO ₂ (ag/m ³)	Oxides of Nitrogen as NO _X (µg/m²)	*CO mg/m³	nt0m³	*NH ₃ µg/m ⁵	*С _с Н, µg/m³	*BaP ng/m²	*Ni ng/m²	*Pb µgim³	*As ng/m³	
04.11.2020	33.0	19.0	17.7	33.2	0.42	9.7	BDL	BDL	BDL	BDL	BDL	BDL	
06.11.2020	28.0	15.0	15.4	37.1	0.31	8,3	BDL	BDL	BDL	BDL	BDL	BDL	
11.11.2020	23.0	11.0	16.1	24.7	0.37	8,6	BDL	BDL	BDL	BDL	BDL	BDL	
13.11.2020	21.0	16.0	11.3	30.9	0.51	7.8	BDL	BDL	BDL	BDL	BDL	BDL	
18.11.2020	36.0	21.0	15.8	32.2	0.49	9.3	BDL	BDL	BDL	BDL	BDL	BDL	
ment of the first decision of the contract of		12.0	13.3	29.1	0.43	9.5	BDL	BDL	BDL	BDL	BDL	BDL	
	37.0	21.0	14.9	27.7	0.62	8.1	BDL	BDL	BDL	BDL		BDL	
27.11.2028	25.0	15.0	15.8	31.5	0.57	8.5	BDL	BDL	BOL	BDL	BDL	BDL	
Monthly Average	28.5	16.3	15,0	30.8	9,47	8.7	MDL	BDL	BDL	BDL	BDL	BDL	
Q Standard	100	60	80	80	4	100	400	05	01	20	1.0	06	
ting Method	IS 5182: Part 23	EPA CFR-40 (pt 50) Appendix-1	IS 5182 (Part-2) RA2864	IS 5182 (Part-6) RA2886	IS 5182 (Part-10) :1999	Chemical Method	Indo phenol blue method	Absorption & Description on followed by GC analysis	Solvent extraction followed by Gas Chromat ography analysis	AAS method after samp			
	04.11.2020 06.11.2020 11.11.2020 13.11.2020 18.11.2020 20.11.3020 25.11.2020 27.11.2028 doubly Average	Date Matter as PM ₁₀ (ug/m ²) 04.11.2020 33.0 06.11.2020 28.0 11.11.2020 23.0 13.11.2020 21.0 18.11.2020 36.0 20.11.2020 35.0 25.11.2020 37.0 27.11.2028 25.0 doubly 28.5 Q Standard 100 ting Method 18.5182:	Date Matter as PM ₁₂ (ug/m ²) (ug/m ²) (ug/m ²) (ug/m ²) (ug/m ²)	Date Matter as PM ₁₀ as PM ₂₅ as SO ₂ (ug/m ²) (ug	Date Matter as PM ₁₀ (ug/m²) Matter as PM ₂₅ as SO ₂ as NO ₃ (ug/m²) Nitrogen as NO ₃ (ug/m²) Nitrog	Date Matter as PM ₂₃ as SO ₂ as NO _K mg/m ² (ug/m ²) 04.11.2020 33.0 19.0 17.7 33.2 0.42 06.11.2020 28.0 15.0 15.4 37.1 0.31 11.11.2020 23.0 11.0 16.1 24.7 0.37 13.11.2020 21.0 16.0 11.3 30.9 0.51 18.11.2020 36.0 21.0 15.8 32.2 0.49 20.11.3020 25.0 12.0 13.3 29.1 0.43 25.11.3020 37.0 21.0 14.9 27.7 0.62 27.11.3028 25.0 15.0 15.8 31.5 0.57 doubtly 28.5 16.3 15.0 30.8 9.47 Average Q Standard 100 60 80 80 4 ting Method IS 5182 EPA CFR-40 (Part-2) (Part-6) Part 23 Part 23 Part 20 (Part-10) RA2004 Part 20 (Part-10) Part 23 Part 23 (Part-10) Part 23 Part 24 (Part-10) RA2004 Part 20 (Part-10) Part 23 Part 20 (Part-10) RA2004 Part 20 (Part-10) RA2004 Part 20 (Part-10) Part 23 Part 20 (Part-10) RA2004 Part 20 (Part-10)	Sampling Particulate Matter As PMax as PMax as PMax as PMax as PMax as PMax as SOx as SOx	Date Matter as PM ₃₂ as SO ₂ as NO _K mg/m ² µg/m ²	Sampling Date	Sampling Date Matter as PMas Matter as PMas (ug/m²) (u	Particulate Particulate Matter as PM ₁₂ as SO ₂ as NO ₂ (ag/m²) (ag	Sampling Date Particulate Matter as PM ₁₂ (ug/m²) (ug	

BDL Value: SO₂<4 µg/m², NO₂<9 µg/m², NO₃<5 µ

These Parameter not in our NABL Scope.

*** End Report***

Remarks:

TERMS AND CONDITION:-

1. The Test result is relevant only to the item tested.

2. This report shall not be reproduced in full or part without written approved of Visiontek consultancy services (P) 1.4d

The laboratory is not responsible for the authenticity of photocopied test report.

4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.

The laboratory's responsibility under this report is limited to proven willful negligence.

Authorized Signatory

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Blubaneswar-751024, Dist-Khurda, Odisha Tel.: 77520#7905' .

E-mail: visiontek@vespl.org, visiontekin@gmail.com, visiontekin@yahoo.co.in, Visit us at: www.vespl.org

Committed For Better Environment

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14011:2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

Date: 05.01.2021

Test Report No: ENVLAB/20/TR-6848

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	SI: Near Crusher	Sampled by	VCSPL'S Representative		
Sample Description	Ambient Air	Sampling Procedure	IS 5182.		
Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.12.2020,05.12.2020,08.12.2020 10.12.2020,15.12.2020,17.12.2020 22.12.2020.		
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°20.915' Loogitude: E82°58.543' Altitude: 999.74 m.			
Sampling Date	02,12,2020,04,12,2020, 07,12,2020,09,12,2020, 14,12,2020,16,12,2020, 21,12,2020,	Test Completed on	03.12.2020 to 29.12.2020		

							Param	eters					
SL No	Sampling Date	Particulate Matter as PM _{rs} (µg/m²)	Particulate Matter as PM ₂₃ (µg/m³)	Sulphur Dioxide as SO ₁ (µg/m ^b)	Oxides of Nitrogen as NO _x (ag/m²)	CO mg/m³	О ₃ µg/m ⁸	NH ₂ µg/m³	C ₆ H ₆ µg/m ³	BaP ng/m²	Ni ng/m²	Pb µg/m³	As ng/m³
1	02,12,2020	28.0	16.0	18.1	30.6	0.47	6.6	BDL.	BDL	BDL	BDL	BD1.	BDL
2	04.12,2020	33.0	20.0	14.9	34.7	0.51	7.4	BDL	BDL	BDL	BDL	BDL	BDL
3	07.12.2020	24.0	11.0	15.7	32.6	0.55	7.1	BDL	BDL	BDL	BDL	BDL	BDL.
4	09,12,2020	34,0	18.0	12.2	38.1	0.49	8.7	BDL	BDL	BDL	BDL	BDL	BDL
5	14.12.2020	30,0	12.0	13.6	35.5	0.32	9.2	BDL	BDL	BDL	BDL	BDL	BDL
6	16.12.2020	26.0	11.0	15.8	30.2	0.37	6.6	BDL	BDL	BDL	BDL	BDL	BDL
7	21.12.2020	23.0	14.0	17.2	28.8	0.58	9.1	BDL	BDL	BDL	BDL.	BDL	BDL
	Monthly Average	28.3	14.6	15.4	32.9	0.47	7.8	BDL	BDL	BDL	BDL	BDL	BDL
NA/	Q Standard	100	60	80	80	4	100	400	05	01	20	1.0	06
Testing Method		IS 5182: Part 23	EPA CFR-40 (pt 50) Appendix-1	IS 5182 (Part-2) RA2006	IS 5182 (Part-6) RA2006	IS 5182 (Part-10) :1999	Chemical Method	Indo phenol blue method	Absorption & Desorption followed by GC analysis	Solvent extraction followed by Gus Chromat ography analysis	on EPM	thod after 2000 or E filter Pape	quivalent

BDL Values: $SO_{1} < 4 \mu g/m^{2}$, $NO_{2} < 9 \mu g/m^{3}$, $O_{3} < 4 \mu g/m^{2}$, $NH_{3} < 20 \mu g/m^{3}$, $Ni < 0.01 ng/m^{2}$, $As < 0.001 ng/m^{2}$, $C_{1}H_{2} < 0.001 \mu g/m^{2}$, $BaP < 0.002 ng/m^{2}$, $Pb < 0.001 \mu g/m^{2}$, $CO_{2} < 0.1 mg/m^{2}$

Remarks: (All the values of PM-10, PM-2.5, SO₂, NOx & CO, O₃ etc presented in row no 1-7 are Time Weighted Average.

Prepared By

*** End Report***

1. The Test result is relevant only to the item tested.

2. This report shall not be reproduced in full or part without written approval of Visiontek consultancy services.(P) Ltd

The laboratory is not responsible for the authenticity of photocopied test report.

4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.

The laboratory's responsibility under this report is limited to; proven willful negligence.

Plot No.-M-22&23, Chandaka Industrial Estate, Paria, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 0674-3511721 E-mail: visiontek@vcspl.org, visiontekin@gmail.com, visiontekin@yahoo.co.in, Visit us at: www.vespl.org

(An Enviro Engineering Consulting Cell)

ISO 9801:2015 ISO 14011:2015 ISO 45001:2018 (OH&S) ISO/IEC 17025:2005

Date: 05.01.2021

Test Report No: ENVLAB/20/TR-6849

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S2: Mining Pit	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.12.2020,05.12.2020,08.12.2020 10.12.2020,15.12.2020,17.12.2020 22.12.2020.
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°20.773' Longitude: E82°58.332' Altitude: 974.45 m.	
Sampling Date	02.12.2020,04.12.2020, 07.12.2020,09.12.2020, 14.12.2020,16.12.2020, 21.12.2020.	Test Completed on	03.12.2020 to 29.12.2020

							Param	eters					
SL No	Sampling Date	Particulate Matter as PM ₁₀ (µg/m²)	Particulate Matter as PM _{2.5} (µg/m²)	Sulphur Dioxide as SO ₂ (µg/m ³)	Oxides of Nitrogen as NO _x (µg/m ³)	CO mg/m³	О _э µg/ш [‡]	NH, μg/m³	С _с Н _с µg/m³	BaP ag/m²	Ni ng/m³	Pb µg/m²	As ng/m²
1	02.12.2020	28.0	15.0	17.1	30.1	0.28	6.1	BDL	BDL	BDL	BDL	BDL	BDI.
2	04.12.2020	21.0	13.0	15.5	23.9	0.35	7.3	BDL	BDL	BDL	BDL	BDI.	BDL
1	07.12.2020	26.0	15.0	12.2	27.7	0.42	7,1	BDL	BDL	BDL	BDL	BDL.	BDL
4	09.12.2020	31.0	16.0	16.8	25.1	0.34	7.9	BDL	BDL	BDL	BDL	BDL	BDL
5	14.12.2020	24.0	11.0	10.9	26.8	0.28	8.4	BDL	BDL	BDL	BDL	BDL	BDL
6	16.12.2020	22.0	14.0	17.4	23.3	0.21	6.6	BDL	BDL.	BDL	BDL	BDL	BDL
7	21.12.2020	19.0	11.0	14.3	33.8	0.49	6.8	BDL	BDL.	BDL	BDL	BDL	BDL
	Monthly Average	24.4	13.6	14.9	27.2	0.34	7.2	BDL	BDL	BDL.	BDL	BDL	BDL.
NA/	AQ Standard	100	60	80	80	4	100	400	05	01	20	1.0	06
Ter	sting Method	IS 5182: Part 23	EPA CFR-40 (pt 50) Appendix-1	IS 5182 (Part-2) RA2006	IS 5182 (Part-6) RA2006	1S 5182 (Part-10) :1999	Chemical Method	Indo phenol blue method	Absorpti on & Desorpti on followed by GC analysis	Solvent extraction followed by Cas Chromat ography analysis	on EPM	thod after 2000 or E filter Pape	quivalent

BDL Values: SO₂<4 μg/m², NO₃<9 μg/m², O₂<4 μg/m², NH₃<20 μg/m², Ni<0.01 ng/m², A₅<0.001 ng/m², C₄H₆<0.001 μg/m², BaP<0.002 ng/m², Pb<0.001 μg/m², CO<0.1 mg/m²

Remarks: (All the values of PM-10, PM-2.5,SO₂,NOx & CO, O₃ etc presented in row no 1-7 are Time Weighted Average.

*** End Report***

TENERAL CONDITION:

1. The Test result is relevant only to the item tested.

2. This report shall not be reproduced in full or part without written approval of Visiontek consultancy services.(P) Ltd

3. The laboratory is not responsible for the authenticity of photocopied test report.

The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.

The laboratory's responsibility under this report is limited to; proven willful negligence.

(An Enviro Engineering Consulting Cell)

ISO 5001: 2015 ISO 1403h;2615 ISO 45001:2018 (OH&S) ISO/IEC 17025: 2005

Date: 05.01.2021

Test Report No: ENVLAB/20/TR-6850

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S3: Near Office	S3: Near Office Sampled by	
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.12.2020,05.12.2020,08.12.2020 12.12.2020,15.12.2020,19.12.2020 22.12.2020.
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°20.366' Longitude: E82°58.874' Altitude: 955.24 m.	
Sampling Date	02.12.2020,04.12.2020, 07.12.2020,11.12.2020, 14.12.2020,18.12.2020, 21.12.2020.	Test Completed on	03.12.2020 to 29.12.2020

							Param	eters					
SL No	Sampling Date	Particulate Matter as PM ₁₀ (µg/m²)	Particulate Matter as PM ₂₅ (ag/or ⁵)	Sulphur Dioxide as SO: (µg/m²)	Oxides of Nitrogen as NO _x (µg/m²)	co co	O ₃	NH ₃ μg/m ³	C ₆ H ₆ µg/m ³	BaP ng/m²	Ni ng/m³	Pb µg/m²	As ng/m³
1	02.12.2020	25.0	18.0	18.8	26.1	0.49	8.2	BDL	BDL	BDL	BDL	BDL	BDL
2	04.12.2020	36.0	15.0	15.3	29.7	0.31	6.5	BDL	BDL	BDL	BDL	BDI.	BDL
3	07.12.2020	21.0	11.6	17.9	24.1	0.37	9.8	BDL	BDL	BDL	BDL	BDI.	BDL
4	11.12.2020	29.0	14.0	12.2	26.9	0.48	8.1	BDL	BDL.	BDL	BDL	BDL	BDL
5	14.12.2020	. 32.0	18.0	15.3	30.5	0.41	8.8	BDL	BDL	BDL	BDL	BDL	BDI;
6	18.12.2020	27.0	14.0	14.8	28.8	0.66	7.1	BDL	BDL	BDL	BDL	BDL	BDL
7	21,12,2020	35.0	19.0	17.6	35.2	0.59	6.7	BDL	BDL.	BDL	BDL	BDL	BDL
	Monthly Average	29.3	15.6	16.0	28.8	0.47	7.9	BDL	BDL	BDL	BDL	BDL	BDL
	AQ Standard	100	60	80	80	4	100	400	05	01	20	1.0	06
Te	sting Method	IS 5182: Part 23	EPA CFR-40 (pt 50) Appendix-1	IS 5182 (Part-2) RA2006	IS 5182 (Part-6) RA2006	18 5182 (Part-10) :1999	Chemical Method	Indo phenol blue method	Absorpti on & Desorpti on followed by GC analysis	Solvent extraction followed by Gas Chromat ography analysis	on EPM	thod after 2000 or E filter Pape	quivalent

BDL Values: SO₂<4 µg/m², NO₃<9 µg/m², O₂<4 µg/m², NH₂< 20 µg/m², Ni<0.01 ng/m², As < 0.001 ng/m², C₄H₆<0.001 µg/m², BaP<0.002 ng/m², Pb<0.001 µg/m², CO<0.1 mg/m²

Remarks: (All the values of PM-10, PM-2.5, SO₂, NOx & CO, O₃ etc presented in row no 1-7 are Time Weighted Average.

repared By

*** End Report***

TERMS AND CONDITION:-

1. The Test result is relevant only to the item tested.

2. This report shall not be reproduced in full or part without written approval of Visiontek consultancy services.(P) Ltd

3. The laboratory is not responsible for the authenticity of photocopied test report.

4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.

The laboratory's responsibility under this report is limited to: proven willful negligence.

(An Enviro Engineering Consulting Cell)

ISD 9001: 2015 ISO 14001:2015 ISO 45001:2018 (OH&S) 150/IEC 17025:2005

Test Report No: ENVLAB/20/TR-6851

Date: 05.01.2021

TEST REPORT

Customer Name & Address

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S4: Near Weigh Bridge	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	05.12.2020,08.12.2020,10.12.2020 12.12.2020,17.12.2020,19.12.2020 22.12.2020.
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°21.079' Longitude: E82°58.775' Altitude: 993.95 m.	
Sampling Date	04.12.2020,07.12.2020, 09.12.2020,11.12.2020, 16.12.2020,18.12.2020, 21.12.2020,	Test Completed on	03.12,2020 to 29.12.2020

							Param	eters					
SL No	Sampling Date	Particulate Matter as PM _p (ng/m²)	Particulate Matter us PM _{2.5} (µg/m²)	Sulpher Dioxide as SO ₁ (µg/m²)	Oxides of Nitrogen as NO _X (µg/m²)	EO mg/m²	O ₃ µg/m²	NH ₃ μg/m³	С _в Н _е µg/m³	BaP ng/m²	Ni ng/m²	Pb µg/m²	As ng/m²
1	04.12.2020	27.0	14.0	13.1	29.2	0.39	8.5	BDL	BDL	BD1.	BDL	BDL	BD1.
2	07.12.2020	21.0	10.0	14.9	25.5	0.45	7.9	BDL	BDL	BDI.	BDL	BD1.	BDL
3	09.12.2020	30.0	18.0	10.8	31.2	0.21	6.2	BDL.	BDL	BDL	BDL	BDL	BDL
4	11.12.2020	26.0	15.0	16.2	24.7	0.48	9.3	BDL	BDL	BDL	BDL	BDL.	BDL
5	16.12.2020	+ 31.0	15.0	14.1	22.8	0.55	9.4	BDL	BDL.	BDI.	BDL.	BDL	BDL
6	18.12.2020	29.0	16.0	16.4	30.5	0.47	8.9	BDL	BDI.	BDL	BDL	BDL	BDL
7	21.12.2020	24.0	11.0	11.2	28.3	0.69	7.4	BDL	BDL.	BDL	BDL	BDL	BDL
	Monthly Average	26.9	14.1	13.8	27.5	0.46	8.2	BDL	BDL.	BDL.	BOL	BDI.	BDL
NA	AQ Standard	100	60	80	80	4	100	400	05	01	20	1.0	06
Tes	sting Method	IS 5182: Part 13	EPA CFR-40 (pt 50) Appendix-1	IS 5182 (Part-2) RA2096	IS 5182 (Part-6) RA2006	IS 5182 (Part-10) :1999	Chemical Method	Indo phenol blue method	Absorpti on & Desorpti on followed by GC analysis	Solvent extraction followed by Gas Chromat ography analysis	on EPM	thod after 2000 or E filter Pape	quivalen

BDL Values: SO₂< 4 µg/m², NO₃< 9 µg/m², O₂<4 µg/m², NH₃< 20 µg/m², Ni<0.01 ng/m², As < 0.001 ng/m², C₁H₂<0.001 дg/m², BaP<0.002 ng/m², Ph<0.001 дg/m², CO-<0.1 mg/m²

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-7 are Time Weighted Average.

*** End Report***

TERMS AS DECONDITION:

ed By

1. The Test result is relevant only to the item tested.

2. This report shall not be reproduced in full or part without written approval of Visiontek consultancy services.(P) Ltd.

The laboratory is not responsible for the authenticity of photocopied test report.

4. The sest item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.

The laboratory's responsibility under this report is limited to proven willful negligence.

· Water Resource Management

· Environmental & Social Study

Visiontek Consultancy Services Pvt. Ltd. (Committed For Better Environment) (Laboratory Services)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

Quality Control & Project Management

Public Health Engineering Renewable Energy

 Agricultural Development Mine Planning & Design Information Technology Mineral/Sub-Soil Exploration

Enstrumment Lah Food Lah Material Lab Soil Lab Mineral Lab

Microbiology Lab

Test Report No: ENVLAB/20/R-8107

Date: 05.02.2021

Waste Management Services

TEST REPORT

Customer Name & Address Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha SAMPLE DETAILS

Sample Location & Code	S1: Near Crusher	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182
Sample Source	Baphlimali Mines, UAIL	Sample Received on	23,01,2021, 24,01,2021, 27,01,2021, 29,01,2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N19°20.915' Longitude : E82°58.543' Altitude : 999.74 m.	×
Sampling Date	22.01.2021, 23.01.2021, 26.01.2021, 28.01.2021	Test Completed on	27.01.2021 to 02.02.2021

							Param	eters					
St. No.	Sampling Date	Particulate Matter as PM ₁₀ (µg/m ⁵)	Particulate Matter us PNL: (ag/m ³)	Sulptur Dioxide as SO ₂ tug/m ⁴	Oxides of Nitrogen as NOx (µg/m²)	CO (mg/m³)	O _A (rg/m²)	ΝΗ ₃ (μg/m ³)	C _e H _c (µg/m ²)	BaP (ng/m²)	Ni (ng/m²)	РЬ (µp/m²)	As (ng/m²)
1	22.01.2021	81.0	44,2	15.2	27.6	0.54	7.1	BDI,	BDL	BDL.	BDL	BDL	BD1.
2	23.01.2021	73.0	41.0	13.7	26.1	0.48	6.5	BDL	BDL	BDL	BDL	BDL	BDL.
3	26.01.2021	69.0	38.2	15.8	29.2	0.51	6.8	BDL	BDL	BDL	BDL	BDL	BDL
4	28.01.2021	76.0	40.8	14.5	27.5	0.43	7.8	BDI,	BDL	BDL	BDL	BDL	BDL
Mont	hiy Average	74.8	41.1	14.8	27.6	0.49	7.1	BDL	BDL	BDL	BDL	BDL	BD1.
NAA	Q Standard	100	60	80	80	4	100	400	05	01	20	1.0	06
Lestin	g Method	IS 5182: Part 23	EPA CaR-40 (pt 50) Appendix 1	18 5(62 (Part-2) RA2017	18 5182 (Part-6) RA2017	IS 5:82 (Part- 10), 1999	Chemical Method	Indo Fheral Blue Method	Absorption & Description fellowed by GC atalysis	Solvent extraction fellowed by Gas Chromatogra phy analysis		iked after a 00 or Equiva Paper	

BDL Values: SO₇ 4 µg/m², NO₈ 9 µg/m², O₇ 4 µg/m², NH₂ 20 µg/m², Ni<0.01 µg/m², As < 0.001 µg/m², C₆H₆<0.001 µg/m², BaP < 0.002 µg/m². Pb=0.001 ag/m1, CO=0.1 mg/m2

Water Resource Management

@ Environmental & Social Study

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

· Quality Control & Project Management

· Renewable Energy

 Agricultural Development e Information Technology

6 Public Health Engineering

· Mine Planning & Design

 Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab Microbiology Lab

Test Report No: ENVLAB/20/R-8108

Date: 05.02,2021

TEST REPORT

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha Customer Name & Address

SAMP	LΕ	DE	FAI	LS
(-C)				_

Sample Location & Code	S2: Mining Pit	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182
Sample Source	Baphlimali Mines, UAIL	Sample Received on	23.01.2021, 24.01.2021, 27.01.2021, 29.01.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N19°20.773' Longitude : E82°58.332' Altitude : 974.45 m.	*
Sampling Date	22.01,2021, 23.01,2021, 26.01,2021, 28.01,2021	Test Completed on	27.01.2021 to 02.02.2021

							Param	eters					arite me
SL No.	Sampling Date	Particulate Matter as PM ₁₀ (jap/m ²)	Particulate Matter 25 PM ₂₄ (µg/m ²)	Sulphur Diuxide as SO ₂ (jug/m ²)	Oxides of Nitrogen as NOs (jeg/m ³)	CO (mg/m³)	О ₁ (µg/m²)	NH; (pg/m²)	C _e H _é (µg/m ³)	BaP (og/m³)	Ni (ng/m²)	Ph (pg/m²)	As (ng/m²)
1	22.01.2021	77.0	42.1	13.8	25,7	0.35	6.8	BDL.	BDL	BDL	BDL	BDL	BDL
2	23.01.2021	71.0	39.5	16.1	27,6	0.43	7.4	BDL	BDL	BDL	BDL	BDL	BDL
3	26.01.2021	80.0	44.8	14.4	28.1	0.37	6.6	BDL	BDL.	BDL	BDL	BOL	BDI.
4	28.01.2021	73.0	38.7	- 15.3	26.3	0.33	8.1	BDL	BDL	BDL	BDL	BDL	BDL
Mont	hly Average	75.3	41.3	14.9	26.9	0.37	7.2	BDL	BDL.	BDL	BDL	BDI.	BD1.
NAA	Q Standard	- 100	60	80	80	4	100	400	05	01	20	1.0	06
Testie	g Method	IS 5182; Part 23	EPA CFR-00 (pt 50) Appendix-1	(5 5182 (Pari-2) RA1017	IS 5182 (Part-6) RA2017	15 5182 (Part- 10):1919	Chemical Method	Indo Phensi Ulue Muthod	Absorption & Description followed by GC analysis	Solvensi extractions followed by Can Chromatogra phy analysis		ilied allier sa th ar Equir: Paper	

BDL Fidures: SO₂< 4 µg/m², NO₃< 9 µg/m², O₃<4 µg/m², NH₂<20 µg/m², Ni<0.01 ng/m², As < 0.901 ng/m², C₄H₄<0.001 µg/m², BaP<0.002 ng/m², Pb=0.001 ug/m2, CO=0.1 mg/m2

Remarks: (All the values of PM-10, PM-2.5, SO₂, NO₃ & CO, O₃ etc presented in row no 1-4 are Time Weighted Average.

Water Resource Management

Environmental & Social Study

isiontek Consultancy Services Pvt. I

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

Quality Control & Project Management

· Renewable Energy

Agricultural Development

e Information Technology · Public Health Engineering Mine Planning & Design

 Mineral/Sub-Soil Exploration Waste Management Services

Material Lab Soil Lab Mineral Lab Microbiology Lab

Laboratory Services Earlmonner Lab Facil Lab

Test Report No: ENVLAB/20/R-8109

Date: 05.02.2021

TEST REPORT

Customer Name & Address Baphiimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha SAMPLE DETAILS

Sample Location & Code	S3: Near Office	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182
Sample Source	Baphlimali Mines, UAIL	Sample Received on	23.01.2021, 24.01.2021, 27.01.2021, 29.01.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N19°20.366 Longitude : E82°58.874' Altitude : 955.24 m.	
Sampling Date	22.01.2021, 23.01.2021, 26.01.2021, 28.01.2021	Test Completed on	27.01.2021 to 02.02.2021

SI. No.							Param	eters					
	Sampling Date	Particulate Matter 91 PM ₁₀ (µg/m ³)	Particulate Matter us PM ₂₈ (µg/m ²)	Sulphur Dinxide #8 SO ₂ (pg/m²)	Oxides of Nitrogen 48 NOx (µg/m²)	(mg/m³)	O ₃ (eg/m³)	VII. (ug/m²)	Calle (µg/m²)	BaP (ng/m²)	Ni (ng/m²)	με _ν (με/m²)	As Utg/m ²
1	22.01.2021	63.0	33.7	16.3	28.5	0.45	8.2	BDL	BDL	BDL	BDL	BDL	BDI.
2	23.01.2021	59.0	31.2	14.6	24.7	0,38	7.5	BDL	BDL	BDL	BDL	BDL	BDL
3	26.01.2021	55.0	29.5	14.1	25.3	0.42	7.1	BDL	BDL	BDL	BDL	BDL	BDI.
4	28.01.2021	67.0	35,8	12.7	23.8	0.40	6.8	BDL	BDL	BDL	BDL	BDL	BDL.
Mont	hly Average	61.0	32.6	14.4	25.6	0.41	7.4	BDL	BDL	BDL	BDL	BDL	BDL
NAA	Q Standard	100	60	80	80	4	100	400	05	01	20	1.0	06
Lestin	g Wethod	18 51821 Part 23	EPA CFR-40 (jit 50) Appendix-4	15 5182 (Part-2) 8 A2017	IS 5182 (Parc-6) RA2017	IS 5182 (Parl- 10jc1199	Characteral Medical	Inds Phonel Blue Mothed	Absorption & Beautytion followed by GC analysis	Solvent extraction followed by Gas Chromatogras phy madysis		find after sa 18 or Equiv: Paper	

BDL Values: SO₂: 4 µg/m³, NO₃: 9 µg/m³, O₃: 4 µg/m³, NH₂: 20 µg/m³, Ni=0.01 µg/m³, Ax < 0.001 µg/m³, C₄H₄: 0.001 µg/m³, BaP<0.002 µg/m³, Pb-0.001 µg·m2, CO-30.1 mg/m2

o Water Resource Management

Environmental & Social Study

isiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

· Quality Control & Project Management

· Renewable Energy

Agricultural Development

e Information Technology Public Health Engineering · Mine Planning & flesign

Miseral/Sub-Sull Exploration

Waste Management Services

Laboratory Services Emirerment Lab Food Lab Material Lab Soil Lab Mineral Lab Microbiology Lab

Test Report No: ENVLAB/20/R-8110

Date: 05.02.2021

TEST REPORT

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha Customer Name & Address

SAMPLE DETAILS

Sample Location & Code	S4: Near Weigh Bridge	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182
Sample Source	Baphlimali Mines, UAII.	Sample Received on	23.01.2021, 24.01.2021, 27.01,2021, 29.01.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N19°21.079' Longitude : E82°58.775' Altitude : 993.95 m'	*
Sampling Date	22.01,2021, 23.01,2021, 26.01,2021, 28.01,2021	Test Completed on	27.01.2021 to 02.02.2021

							Param	eters					
SL No.	Sampling Date	Particulate Matter as PM ₁₀ (µg/m ²)	Particulate Matter as PN125 (pg/m²)	Sulphur Dioxide #5 SO ₂ (yg/m ²)	Oxides of Nitrogen as NOx (µg/m²)	(mg/ss²)	(ick,ict ₂)	NH ₁ (µg/m ²)	C _i H _i (jag/m ²)	BaP (ng/m²)	Ni (ng/m²)	Pb (µg/m²)	As (ng/en ³
1	22.01.2021	79.0	39.3	15.6	27.1	0.42	7.8	BDL	BDL	BDL	BDL	BD1.	BD1.
2	23.01.2021	86.0	45.0	13.1	24.2	0.39	8.6	BDL	BDL	BDL	BDL	BDL	BDI.
3	26.01.2021	82.0	47.6	12.7	25.0	0.33	7.4	BDL	BDL	BDL	BDL	BDL	BDL
4	28.01.2021	75.0	41.8	14.2	26.8	0.40	9.1	BDL	BDL	BD1.	BDL	BDL	BDL
Mont	hly Average	80.5	43.4	13.9	25.8	0.39	8.2	BDL.	BDL	BDL	BDL	BDL	BDL
NAA	Q Standard	. 100	60	80	80	4	100	400	05	01	20	1.0	06
Testin	g Method	85 5182; Part 23	EPA CFR-su (pt 50) Appendix-1	15 5180 (Part-2) RA2017	15 5142 (Part-6) RA2017	68 5182 (Part- 10):1999	Chemical Method	Indo Florred Shor Method	Absorption & Description followed by GC nealysis	Salvent extraction fellawed by Gas Chromotogra pky analysia		And after sa 86 or Equive Paper	

BDL Faluer: SO₁< 4 µg/m³, NO₅< 9 µg/m³, O₂<4 µg/m³, NH₂<20 µg/m³, Ni<0.01 µg/m³, As < 0.001 µg/m³, C₆H₆<0.001 µg/m³, BaF<0.002 µg/m³, Ph=0.001 µg/m2, CO=0.1 mg/m2

Remarks: [All the values of PM-10, PM-2.5, SO₂, NOs & CO, O₃ etc presented in row no 1-4 are Time Weighted Average,

Water Resource Management

Environmental & Social Study

isiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Suh-Surface Investigation

 Quality Control & Project Management · Renewable Energy

@Agricultural Development · Information Technology · Public Health Engineering Mine Planning & Design · Mineral/Sub-Soil Exploration

Waste Management Services

Laboratory Services Enstroyment Lab Material Lab Sell Lab Mineral Lab Microbiology Lab

Test Report No: ENVLAB/20/R-8693

Date: 04,03,2021

TEST REPORT

Customer Name & Address Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

	THE RESIDENCE OF THE STATE OF T	Control of Children	4 974 W 400
Sample Location & Code	S1: Near Crusher	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182
Sample Source	Baphlimali Mines, UAIL	Sample Received on	02.02.2021, 04.02.2021, 09.02.2021, 11.02.2021, 20.02.2021, 22.02.2021, 23.02.2021, 25.02.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N19°20.915' Longitude : E82°58.543' Altitude : 999.74 m.	
Sampling Date	01.02.2021, 03.02.2021, 08.02.2021, 10.02.2021, 19.02.2021, 20.02.2021, 22.02.2021, 24.02.2021	Test Completed on	06.02.2021 to 02.03.2021

							Param	eters					
SL No.	Sampling Date	Particulate Matter as PM ₂₀ (sig/m ³)	Particulate Matter as PM _{2.5} (µg/m ³)	Sulphur Dioxide 88 SO ₂ (ug/m ³)	Oxides of Nitrogen #8 NOx (µg/m²)	CO (mg/m ³)	Ο ₃ (μg/m³)	NH ₃ (μg/m ²)	C ₅ H ₆ (µg/m ²)	Bal ^p (ng/m²)	Ni (ng/m²)	Pb (µg/m²)	As (og/m ³
1	01.02.2021	77.0	42.7	11.4	21.6	0.46	7.3	BDL	BDL	BDL	BDL.	BDL	BDL.
2	03.02.2021	68.0	37.3	13.0	23.3	0.50	8.2	BDL	BDL	BDL	BDL	BDL	BDL
3	08.02,2021	72.0	39.8	12.4	22.5	0.42	7.4	BDL	BDL	BDL	BDL	BDL	BDL
4	10.02.2021	80.0	44.5	11.7	20.8	0.44	7.0	BDL	BDL	BDL	BDL	BDL	BDL
5	19.02.2021	74.0	41.0	13.8	24.7	0.53	6.7	BDL	BDL	BDL	BDL	BDL	BDL
6	20.02.2021	79.0	43.6	11.2	22,5	0.47	7.2	BDL	BDL	BDL	BDL	BDL	BDL
7	22.02.2021	67.0	37.2	12.1	24.3	0.43	7.7	BDL	BDL	BDL	BDL	BDL	BDL
8	24.02.2021	75.0	41.5	12.8	25.2	6.51	6.8	BDL	BDL	BDL	BDL	BDL	BDL.
Mont	hly Average	74.0	41.0	12.3	23.1	0.47	7.3	BDL	BDL	BDL	BDL	BDL	BDL
NAA	Q Standard	100	60	80	80	4	100	400	05	01	20	1.0	06
Testing	g Method	18 5112: Part 23	EPA CFR-49 (pt 50) Appendix-1	15 5182 (Pari-2) RA2017	IS 5181 (Part-6) RAJ017	ES 5182 (Puri- 10):1999	Chemical Mished	Indo Phenoi Blue Mathod	Absorption & Description followed by GC analysis	Solvent extraction followed by Gas Carematogra phy analysis		thod after so to or Equiva	

BDL Values: $SO_5 \le 4 \text{ pg/m}^3$, $NO_8 \le 9 \text{ pg/m}^3$, $O_1 \le 4 \text{ pg/m}^3$, $NI_2 \le 0 \text{ pg/m}^3$, $NI \le 0.01 \text{ ng/m}^3$, $As \le 0.001 \text{ ng/m}^3$, $C_6 H_6 \le 0.001 \text{ pg/m}^3$, $Bal^3 \le 0.002 \text{ ng/m}^3$, Pb<0.001 µg/m³, CO<0.1 mg/m³

Water Resource Management

· Environmental & Social Study

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

· Quality Control & Project Management

Renewable Energy

Agricultural Development
 Information Technology
 Public Health Engineering

Mine Planning & Design

Mineral/Sub-Soil Exploration
 Waste Management Services

Laboratory Services
Environment Lab
Food Lab
Material Lab
Soil Lab
Mineral Lab
Mineral Lab
Microbiology Lab

Test Report No: ENVLAB/20/R-8694

Date: 04.03.2021

TEST REPORT

Customer Name & Address : Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Location & Code	S2: Mining Pit	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182
Sample Source	Baphlimali Mines, UAIL	Sample Received on	02.02.2021, 04.02.2021, 09.02.2021, 11.02.2021, 20.02.2021, 22.02.2021, 23.02.2021, 25.02.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N19°20.773' Longitude : E82°58.332' Altitude : 974.45 m.	
Sampling Date	01.02.2021, 03.02.2021, 08.02.2021, 10.02.2021, 19.02.2021, 20.02.2021, 22.02.2021, 24.02.2021	Test Completed on	06.02.2021 to 02.03.2021

							Param	eters					
SI. No.	Sampling Dute	Particulate Matter as PM ₁₀ (ug/m ²)	Particulate Matter as PM ₂₃ (µg/m³)	Sulphur Dioxide #5 SO ₂ (µg/m³)	Oxides of Nitrogen as NOx (µg/m²)	CO (mg/m²)	О ₅ (µg/m³)	NH ₁ (µg/m²)	C _c H ₄ (µg/m²)	BaP (ng/m²)	Ni (ng/m²)	Pb (µg/m²)	As (ng/m²
1	01.02.2021	79.0	42.4	12.2	20.7	0.38	7.7	BDL	BDL	BDL	BDL	BDL	BDL
2	03.02.2021	84.0	45.7	13.0	24.5	0.43	7.3	BDL	BDL	BDL	BDL	BDL	BDL
3	08.02.2021	76.0	39.8	13.8	26.3	0.46	6.7	BDL	BDL	BDL	BDL	BDL	BDL
4	10.02.2021	72.0	39.0	14.6	22.7	0.37	7.0	BDL	BDL	BDL	BDI.	BDL	BDL
5	19.02.2024	79.0	42.6	13.4	23.5	0.45	8.2	BDL	BDL	BDL	BDL	BDL	BDL
6	20.02.2021	75.0	40.3	11.2	21.8	0.51	7.4	BDL	BDL	BDL	BDL	BDL	BDL
7	22.02.2021	82.0	44.0	12.7	22.4	0.47	6.6	BDL	BDL	BDL	BD1.	BDL	BDL
8	24,92,2021	77.0	41.7	14.3	23.1	0.43	7.1	BDL	BDL	BDL	BDL	BDL	BDL
Mont	hly Average	78.0	41.9	13.2	23.1	0.44	7.3	BDL.	BDL	BDL	BD1.	BDL.	BDL
NAA	Q Standard	100	60	80	80	4	100	400	05	01	20	1.0	06
Testin	g Method	IS 5382: Part 23	EPA CFR-40 (pt 50) Appendix-1	IS 5182 (Part-2) RA2017	IS 5182 (Part-5) RA3917	IN 5182 (Part- 10):1999	Chemical Method	Indo Phenol Blue Method	Absorption & Descrition followed by GC analysis	Solvent extraction fellowed by Gos Chromatogra phy analysis	AAS method after surg FPM 2600 or Equivalent Paper		

BDL Values: SO₅< 4 µg/m², NO₅< 9 µg/m², O₅<4 µg/m², NH₅<20 µg/m², Ni<0.01 µg/m², As < 0.001 µg/m², C₄H₅<0.001 µg/m², BaP<0.002 µg/m², Pb<0.001 µg/m², CO→0.1 mg/m²

(Committed For Better Environment)

Certified for: 1SO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

· Surface & Sub-Surface Investigation

Quality Control & Project Management

 Agricultural Development Information Technology

· Mine Planning & Design · Mineral Sub-Soil Exploration

Date: 04.03.2021

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab

 Water Resource Management Environmental & Social Study

* Renewable Energy

Public Health Engineering

Waste Management Services

Microbiology Lab

Test Report No: ENVLAB/20/R-8695

TEST REPORT

Customer Name & Address : Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

CHARLE SHE IN STREET			
Sample Location & Code	S3: Near Office	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182
Sample Source	Baphlimali Mines, UAIL	Sample Received on	02.02.2021, 06.02.2021, 09.02.2021, 11.02.2021, 20.02.2021, 22.02.2021, 23.02.2021, 27.02.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N19°20.366' Longitude : E82°58.874' Altitude : 955,24 m.	
Sampling Date	01.02.2021, 05.02.2021, 08.02.2021, 10.02.2021, 19.02.2021, 20.02.2021, 22.02.2021, 26.02.2021	Test Completed on	06.02.2021 to 03.03.2021

							Param	eters					
SL No.	Sampling Date	Particulate Matter as PM ₁₁ (pg/m²)	Particulate Matter as PM _{L5} (µg/m ²)	Sulphur Dioxide #8 SO ₁ (µg/m²)	Oxides of Nitrogen as NOs (µg/m²)	(mth/m ₃)	O ₃ (µg/m²)	NH ₃ (µg/m³)	С _е Н _е (µg/m³)	BaP (ng/m³)	Ni (ng/m³)	Ph (ng/m³)	As (ng/m ³
1	01.02.2021	63.0	33.8	7.6	13.3	0.37	6.7	BDL	BDL	BDL	BDL	BDL	BDL
2	05.02.2021	68.0	36.3	6.3	11.6	0.45	7.0	BDL	BDL	BDL	BDL	BDL	BDL
3	08.02.2021	61.0	30.6	8.5	15.2	0.48	7.8	BDL	BDL	BDL	BDL	BDL	BDL
4	10.02,2021	67.0	36.0	7.1	12.6	0.41	8.1	BDL	BDL	BDL	BDL	BDL	BDL
5	19.02.2021	58.0	30,4	5.6	12.2	0.36	6.5	BDL	BDL	BDL	BDL	BDL	BDL.
6	20.02,2021	66.0	35.5	6.2	11.4	0.42	7.3	BDL	BDL	BDL	BDL	BDL	BDL
7	22.02.2021	61.0	33.2	5.8	9.8	0.47	6.6	BDL	BDL	BDL	BDL	BDL	BDL
8	26.02.2021	64.0	34.6	7.3	12.6	0.44	7.5	BDL	BDL.	BDL	BDL.	BDL	BDL
Mont	hly Average	63.5	33.8	6.8	7.6	0.43	7.2	BDL	BDL	BDL	BDL	BDL	BDL
NAA	Q Standard	100	60	80	80	4	100	400	05	01	20	1.0	06
Testin	g Method	IS 51821 Part 23	EPA CFR-40 (pc 80) Appendis-1	IS 5282 (Part.2) BA2017	85 5182 (Part-6) RA2017	1S 5182 (Part- 10):1999	Chemical Method	Indo Phenol Blue Method	Absorption & Description followed by GC analysis	Solvent extraction followed by Gar Chromotogra phy analysis	AA5 method after son EPAI 2000 or Equivab Paper		

BDL Velues: SO₂<4 µg/m², NO₃<9 µg/m², O₃<4 µg/m², NH₃<20 µg/m², NI<0.01 ng/m², As < 0.001 ng/m², C₄H₄<0.001 µg/m², BaP<0.002 ng/m², Pb<0.001 µg/m², CO<0.1 mg/m²

· Water Resource Management

· Environmental & Social Study

isiontek Consultancy Services Pvt. I

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

Quality Control & Project Management

· Renewable Energy

 Agricultural Development Information Technology · Public Health Engineering · Mine Planning & Design

 Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lub Material Lab Self Lab Mineral Lab & Microbiology Lab

Test Report No: ENVLAB/20/R-8696

Date: 04.03.2021

TEST REPORT

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha Customer Name & Address SAMPLE DETAILS

Sample Location & Code	S4: Near Weigh Bridge	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182
Sample Source	Baphlimali Mines, UAIL	Sample Received on	04.02.2021, 06.02.2021, 09.02.2021, 11.02.2021, 20.02.2021, 22.02.2021, 25.02.2021, 27.02.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N19°21.079' Longitude : E82°58.775' Altitude : 993.95 m'	
Sampling Date	03.02.2021, 05.02.2021, 08.02.2021, 10.02.2021, 19.02.2021, 20.02.2021, 24.02.2021, 26.02.2021	Test Completed on	09.02.2021 to 03.03.2021

							Param	eters					
St. No.	Sampling Dute	Particulate Matter as PM ₁₀ (µg/m²)	Particulate Matter as PM ₂₈ (µg/m ³)	Sulphur Dioxide as SO ₇ (ug/ur')	Oxides of Nitrogen as NOx (ng/m²)	CO (mg/m²)	O ₃ (µg/m²)	NH ₃ (pg/m ³)	С _с Н _с (µg/m²)	BaP (ng/m²)	Ni (ng/m²)	Pb (µg/m²)	As (ng/m²
1	03.02.2021	87.0	47.3	13.1	22.2	0.45	8.2	BDL	BDL	BDL	BDL	BDL	BDL
2	05.02.2021	82.0	45.4	15.2	24.7	0.52	7.3	BDL	BDL	BDL	BDL	BDL	BDL
3	08.02.2021	91.0	50.0	14.5	25.1	0.49	9.2	BDL	BDL	BDL	BDL	BDL	BDL
4	10.02.2021	85.0	46.3	12.7	21.4	0.47	7.6	BDL	BDL	BDL	BDL	BDL	BDL
5	19.02.2021	78.0	43.3	13.3	24.0	0.56	8.5	BDL	BDL	BDL	BDL	BDL	BDL
6	20.02.2021	83.0	45.8	14.0	25.6	0.51	8.1	BDL	BDL	BDL	BDL	BDL	BDL
7	24.02.2021	80.0	43.7	11.6	20.8	0.55	7.4	BDL	BDL	BDL	BDL	BDL	BDL
8	26.02.2021	76.0	41.5	12.4	23.7	0.48	7.8	BDL	BDL	BDL	BDL	BDL	BDL
Mont	hly Average	82.8	45.4	13.4	23.4	0.50	8.0	BDL	BDL	BDL	BDL	BDL	BDL
NAA	Q Standard	100	60	80	80	4	100	400	05	01	20	1.0	06
Testin	g Method	IS 5182; Part 23	EPA CFR-40 (pt 50) Appendix-1	1S 5182 (Part-2) RA2017	25 5182 (Part-6) RA2017	IS 5182 (Part- 10(c1999	Chemical Method	Inds Phenol Blue Method	Almorption & Description followed by GC analysis	Solvent narraction followed by Gas Chromatogra- phy analysis	AAS method after san EPM 2000 or Equival Paper		mpilag on dent filter

BDL Values: SO₅<4 µg/m³, NO₅<9 µg/m³, O₅<4 µg/m³, NH₅<20 µg/m³, Ni<0.01 µg/m³, As < 0.001 µg/m³, C₆H₆<0.001 µg/m³, BaP<0.002 µg/m³, Ptr=0.001 pg/m2, CO-=0.1 mg/m2

Water Resource Management

· Environmental & Social Study

isiontek Consultancy Services Pvt. I

Certified for: 1SO 9001:2015, 1SO 14001:2015, 1SO 45001:2018 (OH&S), 1SO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

· Quality Control & Project Management

 Information Technology · Reacouble Energy · Public Health Engineering

· Agricultural Development

Mine Planning & Design

 Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Feed Lab Material Lab Soil Lab Mineral Lab Microbiology Lab

Test Report No: ENVLAB/20/R-9381

Date: 31.03.2021

TEST REPORT

Customer Name & Address Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha SAMPLE DETAILS

Sample Location & Code	S1: Near Crusher	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182
Sample Source	Baphlimati Mines, UAIL	Sample Received on	02.03.2021, 04.03.2021, 09.03.2021, 11.03.2021, 16.03.2021, 18.03.2021, 23.03.2021, 25.03.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N19°20.915' Longitude : E82°58.543' Altitude : 999.74 m.	
Sampling Date	01.03.2021, 03.03.2021, 08.03.2021, 10.03.2021, 15.03.2021, 17.03.2021, 22.03.2021, 24.03.2021	Test Completed on	05.03.2021 to 30.03.2021

							Param	eters				-	
SL No.	Sampling Date	Particulate Matter as PM ₂₀ (µg/m ²)	Particulate Matter 28 PM _{2.5} (pg/m ²)	Sulphur Dioxide as SO ₂ (pg/m ³)	Oxides of Nitrogen as NOx (µg/m²)	CO (mg/m³)	O ₃ (µg/m²)	NH _J (µg/m³)	С ₄ Н ₆ (µg/ш²)	BaP (ng/m²)	Ni (ng/m³)	Pb (µg/m²)	As {eg/m²
1	01.03,2021	74.0	41.6	10.6	19.7	0.51	6.2	BDL	BDL	BDL	BDL	BDL.	BDL
2	03.03.2021	81.0	45.7	14.4	22.1	0.48	7.6	BDL	BDL	BDL	BDL	BDL	BDL
3	08.03.2021	76.0	42.3	11.2	18.5	0.53	6.4	BDL.	BDL	BDL	BDL	BDL	BDL
4	10.03.2021	69.0	38.8	9.5	17.3	0.46	5.7	BDL	BDL	BDL	BDL	BDL	BDL
5	15.03.2021	73.0	41.0	11.7	21.2	0.49	6.1	BDL	BDL	BDL	BDL	BDL	BDL
6	17.03.2021	67.0	37.4	10.3	19.7	0.54	6.6	BDL	BDL	BDL	BDL	BDL	BDL
7	22.03.2021	71.0	39.5	10.8	18.6	0.57	6.0	BDL	BDL	BDL	BDL	BDL	BDL
8	24.03.2021	66.0	37.1	9.2	19.0	0.48	7.2	BDL	BDL	BDL	BDL	BDL	BDL
Monti	aly Average	72.1	40.4	11.0	19.5	0.51	6.5	BDL	BDL.	BDL	BDL	BDL	BDL
NAA	2 Standard	100	60	80	80	4	100	400	05	01	20	1.0	06
	Method	15 5182: Part 23	EPA CFR-40 (pt 50) Appendix-1	18 5162 (Part-2) RA2017	25 5182 (Part-6) RA2017	IS 5152 (Part- 10):1999	Chemical Method	Info Phonol Blac Method	Absorption & Description followed by GC analysis	Solvest extraction followed by Gas Chromatogra phy analysis	EPM 2010 or Equiv.		mpling on

BDL Values: SO₂<4 μg/m², NO₃<9 μg/m², O₃<4 μg/m², NH₃<20 μg/m², Ni<0.01 κg/m², As < 0.001 κg/m², C₄H₄<0.001 μg/m², BaP<0.002 κg/m², Pb<0.001 µg/m3, CO-<0.1 mg/m3

Water Resource Management

Environmental & Social Study

isiontek Consultancy Services Pvt. I

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Suh-Surface Investigation

Quality Control & Project Management

· Renewable Energy

Agricultural Development

· Public Health Engineering

· Information Technology

· Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Material Lab Sell Lab Mineral Lab

Laboratory Services Environment Lab

Food I ab

Microbiology Lab

Test Report No: ENVLAB/20/R-9382

Date: 31.03.2021

TEST REPORT

Customer Name & Address Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha SAMPLE DETAILS

Sample Location & Code	S2: Mining Pit	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182
Sample Source	Baphlimati Mines, UAIL	Sample Received on	02.03.2021, 04.03.2021, 09.03.2021, 11.03.2021, 16.03.2021, 18.03.2021, 23.03.2021, 25.03.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N19°20.773' Longitude : E82°58.332' Altitude : 974.45 m.	
Sampling Date	01.03.2021, 03.03.2021, 08.03.2021, 10.03.2021, 15.03.2021, 17.03.2021, 22.03.2021, 24.03.2021	Test Completed on	05.03.2021 to 30.03.2021

							Param	eters				7	
SI, No.	Sampling Date	Particulate Matter as PM ₁₁ (ng/m²)	Particulate Matter as PM _{2.4} (µg/w ²)	Sulphur Dioxide #5 SO ₂ (µg/m²)	Oxides of Nitrogen as NOx (µg/m²)	CO (mg/m²)	O ₃ (pg/m²)	NH ₃ (jug/m ³)	C _c H _c (µg/m²)	BaP (ng/m³)	Ni (ng/m³)	Pb (µg/m²)	As (ng/m³
1	01.03.2021	73.0	41.2	11.4	23.2	0.45	6.4	BDL	BDL	BDL	BDL	BDL	BDL
2	03.03.2021	78.0	43.7	10.3	19.5	0.41	7.1	BDL	BDL	BDL	BDL	BDL	BDL
3	08.03.2021	71.0	39.8	12.5	20.7	0.47	6.2	BDI.	BDL.	BDL	BDL	BDL	BDL
4	10.03.2021	76.0	42.5	11.2	20.3	0.51	5.7	BDL	BDL	BDL	BDL	BDL	BDL
5	15.03.2021	84.0	47.3	13.6	22.0	0.45	6.6	BDL	BDL	BDL	BDL	BDL	BDL
6	17.03.2021	70.0	39.0	10.4	18.6	0.48	7.3	BDL	BDL	BDL	BDL	BDL	BDL
7	22.03.2021	67.0	37.2	9.8	19.2	0.53	6.5	BDL	BDL	BDL	BDL	BDL	BDL
8	24.03.2021	71.0	40.6	11.3	17.5	0.45	6.8	BDL	BDL	BDL	BDL	BDL	BDL
Month	ily Average	73.8	41.4	11.3	20.1	0.47	6.6	BDL	BDL	BDL	BDL	BDL	BDL
NAAC	Q Standard	100	60	80	80	4	100	400	05	01	20	1.0	06
2015 (3)	; Method	IS 5182; Part 23	EPA CFR-40 (pt 50) Appendix-1	15 5182 (Part-2) RA2017	18 5182 (Part-6) RA2017	IS \$182 (Part- 10):1999	Chemical Method	Inde Photol Blue Method	Absorption & Desorption followed by GC analysis	Selvent extraction followed by Gas Chromotogra phy analysis	Paper		

BDL Values: SO₂< 4 µg/m², NO₂< 9 µg/m², O₂<4 µg/m², NH₂<20 µg/m², Ni<0.01 µg/m², As < 0.001 µg/m², C₄H₄<0.001 µg/m², BaP<0.002 µg/m², Pb<0.001 pg/m2, CO-<0.1 mg/m2

· Water Resource Management

· Environmental & Social Study

isiontek Consultancy Services Pvt. I

· Agricultural Development

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

· Surface & Sub-Surface Investigation

· Quality Control & Project Management

· Information Technology · Renewable Energy · Public Health Engineering Mine Planning & Design

* Waste Management Services

Mineral Sub-Soil Exploration

Laboratory Services Favironmest Lab Food i ah Morerial Lab Sell Lab Mineral Lab Misrobiology Eats

Test Report No: ENVLAB/20/R-9383

Date: 31.03.2021

TEST REPORT

Customer Name & Address Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha SAMPLE DETAILS

Sample Location & Code	S3: Near Office	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182
Sample Source	Baphlimali Mines, UAIL	Sample Received on	02.03.2021, 04.03.2021, 09.03.2021, 11.03.2021, 16.03.2021, 18.03.2021, 23.03.2021, 25.03.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N19°20.366' Longitude : E82°58.874' Altitude : 955.24 m.	The state of the s
Sampling Date	01.03.2021, 03.03.2021, 08.03.2021, 10.03.2021, 15.03.2021, 17.03.2021, 22.03.2021, 24.03.2021	Test Completed on	05.03.2021 to 30.03.2021

							Param	eters					
SI. No.	Sampling Date	Particulate Matter 25 PM ₁₀ (µg/m ²)	Particulate Matter 83 PM _{2.5} (ag/m ³)	Sulphur Dioxide as SO ₂ (µg/m²)	Oxides of Nitrogen as NOx (µg/m³)	CO (mg/m³)	O ₃ (jug/m ³)	NH ₃ (jeg/m ³)	C ₄ H ₄ (µg/m³)	BaP (ng/m²)	Ni (ng/m³)	Рь (µg/m²)	As (ng/m²
1	01.03.2021	57.0	30.7	5.7	10.8	0.51	6.2	BDL	BDL	BDL	BDL	BDL.	BDL
2	03.03.2021	64.0	34.2	6.1	12.3	0.48	5.5	BDL	BDL	BDL	BDL	BDL	BDL
3	08.03.2021	60.0	31.8	6.6	11.7	0.53	5.2	BDL	BDL	BDL	BDL	BDL	BDL
4	10.03.2021	66.0	35.6	7.4	13.0	0.55	6.0	BDL	BDL	BDL	BDL	BDL	BDL
5	15.03.2021	62.0	33.3	6.8	11.5	0.47	5.7	BDL	BDL	BDL.	BDL	BDL	BDL
6	17.03.2021	55.0	29.8	5.6	10.3	0.45	6.1	BDL	BDL	BDL	BDL	BDL	BDL
7	22.03.2021	59.0	31.7	6.3	12.5	0.48	6.5	BDL	BDL	BDI.	BDL	BDL	BDL
8	24.03.2021	63.0	34.0	6.7	11.2	0.51	7.2	BDL	BDL	BDL	BDL	BDL	BDL
Montl	nly Average	60.8	32.6	6.4	11.7	0.50	6.1	BDL	BDL	BDL	BDL	BDL	BDL
NAAG	Q Standard	100	60	80	80	4	100	400	05	01	20	1.0	06
	Method	IS 5182; Part 23	EPA CFR-40 (pt 50) Appendix-1	48 5182 (Part-2) RA2017	IS 5182 (Part-6) 8.A2817	IS 5182. (Part- 10):1959	Chemical Method	Indo Phonol Blue Method	Absorption & Description followed by GC analysis	Solvent extraction followed by Gas Chromatogra phy analysis	AAS method after samp EPM 2000 or Equivalen Paper P=0.002 mg/m ³ ,		mpling on

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-8 are Time Weighted Average.

Pb=0.001 µg/m2, CO=0.1 mg/m2

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

Quality Centrol & Project Management

· Information Technology

 Mine Planning & Design Mineral/Sub-Soil Exploration Material Lab Soil Lab Mineral Lab

Microbiology Lab

Laboratory Services Environment Lab Food Lab

· Infrastructure Enginering · Water Resource Management

· Environmental & Social Study

· Renewable Energy

 Agricultural Development · Public Health Engineering

Waste Management Services

Date: 31.03.2021

Test Report No: ENVLAB/20/R-9384

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Location & Code	S4: Near Weigh Bridge	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182
Sample Source	Baphlimali Mines, UAIL	Sample Received on	02.03.2021, 04.03.2021, 09.03.2021, 11.03.2021, 16.03.2021, 18.03.2021, 23.03.2021, 25.03.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N19°21.079' Longitude : E82°58.775' Altitude : 993.95 m'	
Sampling Date	01.03.2021, 03.03.2021, 08.03.2021, 10.03.2021, 15.03.2021, 17.03.2021, 22.03.2021, 24.03.2021	Test Completed on	05.03.2021 to 30.03.2021

	Sampling Date	Parameters											
SI. No.		Particulate Matter as PM ₃₄ (µg/m ³)	Particulate Matter as PM ₁₈ (µg/m²)	Sulphur Dioxide as SO ₂ (µg/m²)	Oxides of Nitrogen as NOx (ag/m²)	CO (mg/m³)	O ₁ (µg/m ²)	NH ₃ (pg/m ³)	C ₆ H ₄ (µg/m ²)	BaP (ug/m²)	Ni (ng/m ⁵)	РЬ (µg/m³)	As (ng/m
1	01.03.2021	83.0	46.3	11.5	19.8	0.55	7.4	BDL	BDL	BDL	BDL	BDL	BDL
2	03.03.2021	77.0	43.5	13.3	23.1	0.48	6.7	BDL	BDL	BDL	BDL	BDL	BDL
3	08.03.2021	86.0	48.8	11.7	20.6	0.53	7.1	BDL	BDL.	BDL	BDL	BDL	BDL
4	10.03.2021	79.0	44.5	10.2	20.2	0.61	8.3	BDL	BDL	BDL	BDL	BDL	BDL
5	15.03.2021	84.0	47.3	12.5	21.7	0.54	7.7	BDL	BDL	BDL	BDL	BDL	BDL
5	17,03,2021	81.0	45.7	12.8	19.5	0.57	7.2	BDL	BDL	BDL	BDL	BDL	BDL
7	22.03.2021	90.0	50.1	14.1	22.8	0.52	6.8	BDL	BDL	BDL	BDL	BDL	BDL
8	24.03.2021	76.0	42.8	11.3	18.6	0.56	7.3	BDL	BDL	BDL	BDL	BDL	BDL
Mont	hly Average	82.0	46.1	12.2	20.8	0.55	7.3	BDL	BDL	BDL	BDL	BDL	BDL
NAA	Q Standard	100	60	80	80	4	100	400	0.5	01	20	1.0	06
Testing	g Method	(S 5182; Part 23	EPA CFR-40 (pt 50) Appendix-1	15 5181 (Pert-2) RA2017	18 5182 (Part-6) RA2017	IS 5182 (Part- 10):1999	Chemical Method	Indu Pherol Dise Method	Absorption & Description followed by GC analysis	Solvent extraction followed by Gas Chrountogro phy analysis	AAS net	ånd after sæ 16 or Equiva Faper	mpling or

| μg/m², O₅<4 μg/m², NH₅<20 μg/m², Ni<0.01 μg/m², As<0.001 μg/m², C₆H₆<0.001 μg/m², BaP<0.002 μg/m², Pb=0.001 pg/m3, CO=0.1 mg/m3

ANNEXURE: 5

Ambient Air Quality Monitoring Report (Buffer

Zone)

(An Enviro Engineering Consulting Cell) (ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

NABL ACCREDITED Certificate No.: TC-7944

Format No.: VCSPL/FMT/055

Date: 06.11.2020

Test Report No: ENVLAB/20/TR-5204

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S5: Andirakanch	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	02.10.2020,07.10.2020,09.10.2020 14.10.2020,16.10.2020,21.10.2020 23.10.2020,28.10.2020,30.10.2020
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19*19.079' Longitude: F33*0,738' Altitude: 739.14 m.	
Sampling Date	01.10.2020,06.10.2020, 08.10.2020,13.10.2020, 15.10.2020,20.10.2020 22.10.2020,27.10,2020 29.10.2020,	Test Completed on	92.19.2928 to 94.11.2029

257				Param	ieters	
SL. No	Sampling Date	Particulate Matter as PM ₁₀ (µg/m²)	*Particulate Matter as PM _{2.0} (ag/m²)	Sulphur Dioxide as SO ₂ (µg/m²)	Oxides of Nitrogen as NO _x (µg/m²)	*Carbon Monoxide as CO (ing/m²)
1	01.18,2020	56.0	31.0	5.1	14.3	0.44
2	96.10.2020	50.0	28.0	6.8	17.4	0.34
3	98.10.2020	61.0	36.0	7.6	19.5	0.52
4	13.10.2020	48.0	31.0	9.2	22.3	0.39
5	15.10,2020	52.0	32,0	7,7	16.6	0.51
6	20.10,2020	59.0	25.0	7.2	20.4	0.46
7	22.10.2020	61.0	29.0	8.5	19.1	0.39
8	27.10.2020	53.0	36.0	6.7	15.7	0.56
9	29.10.2020	59.0	37.0	6.3	17.3	0.54
	Monthly Average	55.4	31.8	7.2	18.0	0.46
CPC	B, New Delhi AAQ Standard	100	60	80	80	4
Testing Method		Gravimetric Inq Gravimetric EPA Testing Method IS 5182c CFR.49		Improved West & Grake Method IS 5182 (Part-2) RA2006	Modified Jacob & Hochhelser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method IS 5182 (Part. 10):1999
				tion limit for SO ₂ : 4.0 re during determinat	μg/m ³ , NO _X : 9.0 μg/m ³	Nil

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-9 are Time Weighted Average.

*These Parameter not in our NABL Scope.

*** End Report***

Remarks:

TERMS AND CONDITION:-

- 1. The Test result is relevant only to the item tested.
- 2. This report shall not be reproduced in fall or part without written approval of Visionte's consultancy services.(P) Ltd.
- 3. The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test from will not be retained for more than 15 days from the date of levine of test report except in case as required by applicable regulations.

5. The laboratory's responsibility under this report is limited to; proven willful negligence.

(An Enviro Engineering Consulting Cell) (ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

Test Report No: ENVLAB/20/TR-5205

Date: 06.11.2020

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S6: Paikupakhal	Sampled by	VCSPL'S Representative	
Sample Description	Ambient Air	Sampling Procedure	IS 5182.	
Sample Source	Baphlimali Mines, UAIL	Sample Received on	02.10.2020,07.10.2020,09.10.2020 14.10.2020,16.10.2020,21.10.2020 23.10.2020,28.10.2020,30.10.2020	
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°20,197° Longitude: E82°59,589° Altitude: 874.17 m.		
Sampling Date	01.10.2020,06.10.2020, 08.10.2020,13.10.2020, 15.10.2020,20.10.2020 22.10.2020,27.10.2020 29.10.2020,	Test Completed on	02.10.2020 to 04.11.2020	

355				Param	neters	
SI No	Sampling Date	Particulate Mutter us PM _{es} (ug/m²)	"Particulate Matter as PM_s (ug/m²)	Sulphur Dioxide as SO ₂ (ug/m²)	Oxides of Nitrogen as NO ₅ (µg/m²)	"Carbon Monoxide us CO (mg/m²)
1	01.10.2020	49.0	31.0	10.5	25.7	0.39
2	96.14.2020	53.0	37.0	7.4	14.3	0.46
3	08.10.2020	45,0	23.0	6.9	11.9	0.53
4	13.16.2020	57.0	28.0	9.6	17.7	6.47
5	15.14.2020	60.0	33.0	10.1	18.1	0.66
6	20.14,2020	56.0	35.0	9.0	18.4	0.81
7	22.16,2020	50.0	29.0	7.2	16.5	6.49
8	27.10.2020	55.9	26,0	10.4	22,2	0.38
9	29.16.2020	47.0	24.0	8.8	13.9	0.69
	Monthly Average	52.4	29.6	8.9	17.6	0.54
CPO	CB, New Delhi AAQ Standard	100	60	80	80	4
Testing Method		Gravimetric		Improved West & Geake Method IS 5182 (Part-2) RA2086	Modified Jacob & Hochheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method IS 5182 (Part- 10):1999
				tion limit for SO ₂ : 4.0 re during determinat	μg/m², NO _X : 9.0 μg/m² ilon:	NII

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-9 are Time Weighted Average.

*These Parameter not in our NABL Scope.

*** End Report***

Remarks:

TERMS AND CONDITION:-

1. The Test result is relevant only to the item tested.

2. This report shall not be reproduced in full or part without written approval of Visiostek consultancy services. (P) Ltd.

3. The laboratory is not responsible for the authenticity of photocopied test report.

4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations,

5. The laboratory's responsibility under this report is limited to; proven willful negligence.

(An Enviro Engineering Consulting Cell) (ISO 9001;2015, ISO 14001;2015 & OHSAS 45001;2018 Certified)

NABL ACCREDITED

Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

Test Report No: ENVLAB/20/TR-5206

Date: 96.11.2020

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S7: Adri	Sampled by	VCSPL/S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	02.10.2020,07.10.2020,09.10.2020 14.10.2020,16.10.2020,21.10.2020 23.10.2020,28.10.2020,30.10.2020
Sample Condition	Gaseous Sanaple Solution Refrigerated	Latitude: N19°21,928° Longitude: E82°56,705° Altitude: 691,90 m.	
Sampling Date	01.10.2020,06.10.2020, 08.10.2020,13.10.2020, 15.10.2020,20.10.2020 22.10.2020,27.10.2020 29.10.2020,	Test Completed on	92.10.2020 to 04.11.2020

				Param	neters	
SL. No	Sampling Date	Particulate Matter as PM ₁₀ (µg/m²)	*Particulate Matter as PM ₂₅ (µg/m²)	Sulphur Dioxide as SO ₂ (µg/m²)	Oxides of Nitrogen as NO _X (µg/m²)	*Carbon Monoside as CO (mg/m²)
1	01.10.2020	50.0	27.0	7.9	15.1	0.44
2	96.10.2020	45.0	22,0	6.7	19.4	6.77
3	08.10.2020	54.0	27.0	8.1	20.5	0.67
4	13.10.2020	60.0	31.0	7.4	15,9	0.71
5	15.14.2020 .	48.0	26.0	8.7	15.4	0.49
6	20.16.2020	53.0	27.0	6,9	18.9	0.76
7	22.14.2020	61.0	31.0	7.7	17.8	0.66
8	27,10,2020	58.0	30.0	6.2	20.2	0,48
9	29.10.2020	62.0	32.0	8.4	14.6	0.69
	Monthly Average	54.6	28.1	7.6	17.5	0.63
CP(CB, New Delhi AAQ Standard	100	60	80	80	4
Testing Method		Gravimetric		Improved West & Geals Method IS 5182 (Part-2) RA2006	Modified Jacob & Huchheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method IS 5182 (Part- 10):1999
				tion limit for SO ₂ ; 4.0 re during determinat	μg/m³, NO _X ; 9.0 μg/m³ ion:	No

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-9 are Time Weighted Average.

*These Parameter not in our NABL Scope.

*** End Report***

Remarks.

TERMS AND CONDITIONS

1. The Test result is relevant only to the item tested.

2. This report shall not be reproduced in full or part without written approval of Visionte's consultancy services (P) Ltd.

3. The laboratory is not responsible for the authenticity of photocopied test report.

4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.

5. The laboratory's responsibility under this report is limited to: proven willful negligence.

(An Enviro Engineering Consulting Cell)
(ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944 Format No.: VCSPLJFMT/055

Test Report No: ENVLAB/20/TR-5207

Date: 06.11.2020

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S8: Chandragiri	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	02.10.2020,07.10.2020,09.10.2020 14.10.2020,16.10.2020,21.10.2020 23.10.2020,28.10.2020,30.10.2020
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°23.107° Langitude: E82°59.221° Altitude: 656.54 m.	
Sampling Date	01.10.2020,06.10.2020, 08.10.2020,13.10.2020, 15.10.2020,20.10.2020 22.10.2020,27.10.2020 29.10.2020,	Test Completed on	92.19.2020 to 94,11,2020

32				Param	eters	
SL. No	Sampling Date	Particulate Matter as PM ₂₀ (µg/m²)	*Particulate Matter as PM _{3,t} (µg/m²)	Sulphur Dioxide as SO ₂ (µg/m ²)	Oxides of Nitrogen as NO _N (µg/m²)	*Carbon Monoxide us CO (mg/m²)
1	01.10,2020	53.0	26.0	8.3	18.5	0.43
2	86.10.2020	46.8	31.0	6.9	14.9	0.37
3	08.10.2020	51.0	29.0	7.1	16.6	0.52
4	13.10.2020	64.0	39.0	7.7	18.5	0.62
5	15,10,2020	50.0	30.0	8.2	19.1	0.33
6	28,10,2020	43.0	28.0	9.6	23.5	0.48
7	22.10.2020	49.0	31.0	9.7	26.6	0.61
8	27.10,2020	56.0	29.0	8.8	17.5	0.57
9	29.10.2020	51,0	26.0	8.9	14.6	0.45
	Monthly Average	51.4	29.9	8.4	18.9	0.49
CPC	B, New Delhi AAQ Standard	100	60	80	80	4
Testing Method		Gravimetric		Improved West & Geake Method IS 5182 (Part-2) RA2006	Modified Jacob & Horbheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method IS 5182 (Part- 10):1999
				tion limit for SO ₂ : 4.0 re during determinat	$\mu g/m^2$, NO_X : 9.0 $\mu g/m^2$	Nil

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-9 are Time Weighted Average.

"These Parameter not in our NABL Scope.

*** End Report***

Remarks:

TERMS AND CONDITION:-

1. The Test result is relevant only to the item tested.

2. This report shall not be reproduced in fall or part without written approval of Visiontel: consultancy services.(P) Ltd.

3. The laboratory is not responsible for the authenticity of photocopied test report,

4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.

5. The laboratory's responsibility under this report is limited to; proven willful negligence.

ontek Consultancy Services Pvt. I

(An Enviro Engineering Consulting Cell) (ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

Test Report No: ENVLAB/20/TR-6632

Date: 07.12.2020

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S5: Andirakanch	Sampled by	VCSPL'S Representative	
Sample Description	Ambient Air	Sampling Procedure	1S 5182.	
Sample Source	Baphlimali Mines, UALL	Sample Received on	04.11.2020,06.11.2020,11.11.2020 13.11.2020,18.11.2020,20.11.2020 25.11.2020,27.11.2020.	
Sample Condition	Gascous Sample Solution Refrigerated	Latitude: N19°19,079° Longitude: E83°0,738° Altitude: 739,14 m.		
Sampling Date	03.11.2020,05.11.2020, 10.11.2020,12.11.2020, 17.11.2020,29.11.2020 24.11.2020,26.11.2020	Test Completed on	04.11.2020 to 30.11.2020	

				Param	eters	
SI No	Sampling Date	Particulate Matter as PM ₁₆	*Particulate Matter as PM ₂ ; (ug/m²)	Sulphur Diexide as SO ₂ (µg/m ²)	Oxides of Nitrogen us NO _X (µg/m²)	*Carbon Monoxide as CO (mg/m²)
	****	(µg/m²) 56.0	34.0	5.7	13.3	0.22
1	03.11.2020		30.0	6,3	17.9	0.31
2	05.11.2020	47.0	37.0	6.1	14.4	0.39
3	10.11,2020	61.0	100000000000000000000000000000000000000	8.9	23.2	0.46
4	12.11,2020	49.6	30.0	7.4	17.8	0.3
5	17.11.2020	64.0	30.0	8.2	23.7	0.34
6	19.11.2020	59.0	38.0		18.1	0.26
7	24.11.2020	67.0	36.0	6.6	20.4	0,29
8	26.11.2020	70.0	42.0	7.3	20.4	
	Monthly Average	59.1	34.6	7.1	18.6	0,32
CP	CB, New Delhi AAQ	100	60	80	80	4
Testing Method		Standard Gravimetric EPA Testing Method IS 5182: CFR- Part 25 (pt 5) Appens		Improved West & Geake Method 18:5182 (Port-3) RA2006	Modified Jacob & Hochhriser Method 15 5182 (Part-6) RA3006	Non Dispersive Infrared Method IS 5182 (Part- 10):1999
			Remarks: : Detec	are during determinat) µg/m², NO _X : 9.0 µg/m² tion:	Nii Time Weighted Average.

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-9 are Time Weighted Average.

*These Parameter not in our NABL Scope.

*** End Report***

Remarks:

TERMS AND CONDITION:-

The Test result is relevant only to the item tested.

- This report shall not be reproduced in full or part without written approval of Viriontek consultancy services (P) 1.td.
- 3. The laboratory is not responsible for the authenticity of photocopied test report
- 4. The test stem will not be retained for more than 15 days from the date of issue of test report except m case as required by applicable regulations.
- 5. The laboratory's responsibility under this report is limited to; proven willful negligence.

(An Enviro Engineering Consulting Cell) (ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

Test Report No: ENVLAB/20/TR-6633

Date: 07.12.2020

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd., Tikiri, Rayagada, Odisha

Sample Location & Code	S6: Paikopakhal	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	04.11.2020,06.11.2020,11.11.2020 13.11.2020,18.11.2020,20.11.2020 25.11.2020,27.11.2020.
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°20.197' Longitude: F82°59,589' Altitude: 874.17 m.	
Sampling Date	03.11.2020,05.11.2020, 10.11.2020,12.11.2020, 17.11.2020,29.11.2020 24.11.2020,26.11.2020	Test Completed on	02.10.2020 to 04.11.2020

SL. No	Sampling Date	Parameters				
		Particulate Matter as PM _{th} (µg/m²)	"Particulate Matter as PM _{2,2} (µg/m ³)	Sulphur Dinxide as SO ₂ (ag/m ³)	Oxides of Nitrogen as NO _X (µg/m ³)	*Carbon Monoxide as CO (mg/m²)
1	03.11.2020	61.0	39.0	10.8	23.7	0.29
2	05.11.2020	57.0	33.0	9.6	21.4	0.41
3	10.11.2020	53.0	28.0	8.5	18.2	0.32
4	12.11.2020	57.0	30.0	8.6	23.3	0.58
5	17.11.2020 .	65.0	41.0	9.3	19.1	0.63
6	19.11.2020	69.0	33.0	11.9	26.2	0.24
7	24.11.2020	56.0	27.0	9.2	17.7	0.46
8	26.11.2020	42.0	28.0	8.7	20.8	0.32
Monthly Average		57.5	32.4	9.6	21.3	0.41
CPCB, New Delhi AAQ Standard		100	60	80	80	4
Testing Method IS 5		Gravimetric IS 5182: Part 25	Gravimetric EPA CFR-40 (pt 50) Appendix-1	Improved West & Genke Method IS 5182 (Part-2) RA2006	Modified Jacob & Hochhelser Method IS 5182 (Part-6) KA2006	Non Dispersive Infrared Method IS 5182 (Part- 10):1999
			Remarks: Detection limit for SO ₃ : 4.0 μg/m ³ , NO _x : 9.0 μg/m ³ Any unusual feature during determination: Nil			

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-9 are Time Weighted Average.

*These Parameter not in our NABL Scope.

*** End Report***

Remarks:

TERMS AND CONDITION:-

1. The Test result is relevant only to the item tested.

This report shall not be reproduced in full or part without written approval of Visionte's consultancy services. (P) Ltd.

3. The laboratory is not responsible for the authenticity of photocopied test report.

The test stem will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.

5. The laboratory's responsibility under this report is limited to; proven willful negligence.

(An Enviro Engineering Consulting Cell) (ISO 9001;2015, ISO 14001;2015 & OHSAS 45001;2018 Certified)

NABL ACCREDITED Certificate No.: TC-7944

Format No.: VCSPL/FMT/055

Test Report No: ENVLAB/20/TR-6634

Date: 07.12.2020

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	57: Adri	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlinali Mines, UAIL	Sample Received on	04.11.2020,06.11.2020,11.11.2020 13.11.2020,18.11.2020,20.11.2020 25.11.2020,27,11.2020,
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°21.928' Longitude: E82°56.705' Altitude: 691.90 m.	
Sampling Date	03.11.2020,05.11.2020, 10.11.2020,12.11.2020, 17.11.2020,29.11.2020 24.11.2020,26.11.2020	Test Completed on	94.11.2020 to 30.11.2020

				Param	eters	
No.	Sampling Date	Particulate Matter as PM ₂₀ (µg/m ²)	*Particulate Matter as PM ₂₅ (µg/m³)	Sulphur Dioxide as SO ₂ (µg/m ³)	Oxides of Nitrogen as NO _x (µg/m²)	*Carbon Monexide as CO (mg/m²)
1	03.11.2020	65.0	31.0	6.3	15,2	0.47
2	05.11.2020	53.0	27.6	7.5	19.3	0.33
3	10.11.2020	51.0	33.0	5.6	17.1	0.51
4	12.11.2020	67.0	42.0	4.9	11.9	0.36
5	17.11.2020 -	48.0	30.0	8.2	14.5	0.45
6.	19.11.2020	55.0	28.0	6.6	18.7	0.39
7	24.11.2020	61.0	37.0	7.2	21,2	0.34
8	26.11.2020	48.0	29.0	8.9	24.5	0.48
	Monthly Average	56.0	32.1	6.9	17.8	0.42
CPC	CB, New Delhi AAQ Standard	100	60	80	80	4
Testing Method		Gravimetrie IS 5182: Part 23	Gravimetric Improved West Modified Jacob &		Hochheiser Method 18 5182 (Part-6) RA2006	Non Dispersive Infrared Method 18 5182 (Part- 10):1999
			Remarks: Detec Any unusual featu	tion limit for SO ₂ : 4.0 ere during determinat	pg/m³, NO _X : 9.0 pg/m³ ion:	Nil

Remarks: (All the values of PM-10, PM-2.5, \$O2, NOx & CO, O3 etc presented in row no 1-9 are Time Weighted Average.

*** End Report***

Remarks

TERMS AND CONDITION:-

1. The Test result is relevant only to the item tested.

2. This report shall not be reproduced in full or part without written approval of Visiontek consultancy services (P) Ltd

The laboratory is not responsible for the authenticity of photocopied test report.

4. The test stem will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.

The laboratory's responsibility under this report is limited to; proven willful negligener.

[&]quot;These Parameter not in our NABL Scope.

(An Enviro Engineering Consulting Cell) (ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944

Format No.: VCSPL/FMT/055

Test Report No: ENVLAB/20/TR-6635

Date: 07.12.2020

TEST REPORT

Customer Name & Address

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S8: Chandragiri	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	04.11.2020,06.11.2020,11.11.2020 13.11.2020,18.11.2020,20.11.2020 25.11.2020,27.11.2020.
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°23,107° Longitude: E82°59,221° Altitude: 656.54 m.	
Sampling Date	03.11.2020,05.11.2020, 10.11.2020,12.11.2020, 17.11.2020,29.11.2020 24.11.2020,26.11.2020	Test Completed on	94.11.2020 to 30.11.2020

	Sampling Date					
Ne		Particulate Matter as PM _m (µg/m²)	"Particulate Matter as PM _{2.0} (ug/m ³)	Sulphur Dioxide as SO ₂ (µg/m ³)	Oxides of Nitrogen as NO _X (µg/m ³)	'Carbon Monoxide as CO (mg/m²)
1	03.11.2020	59.0	40.0	8.9	23.3	0.53
2	05.11.2020	53.0	35.0	9.2	21.5	0.67
3	10.11.2020	48.0	32.0	8.4	19.5	0.61
4	12.11.2020	56.0	28.0	8.1	21.6	0.55
5	17.11.2020 .	50.0	34.0	9.5	18.3	0.49
6.	19.11.2020	59.0	36.0	9.9	24.4	0.59
7	24.11.2020	51.0	27.0	8.6	19.3	0.48
8	26.11.2020	65.0	38.0	8.3	26.1	0,31
	Monthly Average	55.0	33.8	8.9	21.8	0.53
CP	CB, New Delhi AAQ Standard	100	60	80	80	4
Testing Method		Gravimetrie IS 5182: Part 23	Gravimetric Improved West Modified Jacob & EPA & Geake Hochbelser Method IS 5182 (Part-6) (pt 50) IS 5182 (Fart-2) RA2006 RA2006		Non Dispersive Infrared Method IS 5182 (Part- 10):1999	
			Remarks: r Desce	tion limit for SO ₂ : 4.0 re during determinat	μg/m², NO _x : 9.0 μg/m² ion:	Nil

Remarks: (All the values of PM-10, PM-2.5,SO2,NOx & CO, O3 etc presented in row no 1-9 are Time Weighted Average.

*** End Report***

Remarks:

TERMS AND CONDITIONS

- 1. The Test result is relevant only to the item tested.
- 2. This report shall not be reproduced in full or purt without written approval of Visiontek consultancy services (P) Ltd
- 3. The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.

The laboratory's responsibility under this report is limited to; proven willful negligence.

^{*}These Parameter not in our NABL Scope.

(An Enviro Engineering Consulting Cell)

Date: 05.01.2021

ISO 9001: 2015 ISO 14001:2015 ISO 45001:2018 (OH&S) ISO/IEC 17025:2005

Test Report No: ENVLAB/20/TR-6852

TEST REPORT

Customer Name & Address : Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S5: Andirakanch	Sampled by	VCSPL'S Representative	
Sample Description	Ambient Air	Sampling Procedure	IS 5182.	
Sample Source	Baphlimali Mines, UAIL	Sample Received on	02.12.2020,04.12,2020,09.12.2020 11.12.2020,16.12.2020,18.12.2020 23.12.2020.	
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°19.079' Longitude: E83°0,738' Altitude: 739.14 m.		
Sampling Date	01.12.2020,03.12.2020, 08.12.2020,10.12.2020, 15.12.2020,17.12.2020 22.12.2020.	Test Completed on	02,12,2020 to 26,12,2020	

25.0		Parameters				
SL. No	Sampling Date	Particulate Matter as PM ₁₀ (µg/m²)	Particulate Matter as PM ₂₅ (ng/m²)	Sulphur Dioxide as SO ₂ (µg/m ⁵)	Oxides of Nitrogen as NO _X (µg/m²)	Carbon Monoxide as CO (mg/m²)
1	01.12.2020	49,0	30.0	7.8	19.5	0.31
2	03.12.2020	53.0	36.0	5.9	15.3	0.37
3	08.12.2020	58.0	26,0	9.2	13.1	0.45
4	10.12.2020	61.0	41.0	8.5	18.8	0.59
5	15.12.2020	62.0	33.0	9.2	21.5	0.41
6	17.12.2020	51.0	29.6	10.5	26.3	0.39
7	22.12.2020 *	55.0	31.0	7.8	20.4	0.32
	Monthly Average	55.6	32.3	8.4	19.3	0.41
CPC	B, New Delhi AAQ Standard	100	60	80	80	4
Testing Method		Gravimetric IS 5182: Part 23	Gravimetric Improved West Modified Jacob &		Non Dispersive Infrared Method IS 5182 (Part- 10):1999	
			Remarks: : Detect	ion limit for SO ₂ : 4.0 re during determinat	μg/m², NO _x : 9.0 μg/m² ion:	Nil

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-7 are Time Weighted Average.

*** End Report***

1. The Test result is relevant only to the item tested.

2. This report shall not be reproduced in full or part without written approval of Visiontek consultancy services.(P) Ltd

The laboratory is not responsible for the authenticity of photocopied test report.

4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.

3. The laboratory's responsibility under this report is limited to; proven willful negligence.

(An Enviro Engineering Consulting Cell)

Date: 05.01.2021

ISO 9001: 2015 ISO 14001:2015 ISO 45001:2018 (OHAS) ISO/IEC 17025:2005

Test Report No: ENVLAB/20/TR-6853

TEST REPORT

Customer Name & Address : Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S6: Paikupakhal	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	02.12.2026,04.12.2020,09.12.2020 11.12.2020,16.12.2020,18.12.2020 23.12.2020.
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°20.197' Longitude: E82°59.589' Altitude: 874.17 m.	The state of the s
Sampling Date	01.12.2020,03.12.2020, 08.12.2020,10.12.2020, 15.12.2020,17.12.2020 22.12.2020.	Test Completed on	02.12.2020 to 26.12.2020

				Param	eters	
SL. No	Sampling Date	Particulate Matter as PM ₁₀ (µg/m²)	Particulate Sulphur Dioxide Matter as PM ₂₈ as SO ₂ (µg/m²) (µg/m²)		Oxides of Nitrogen as NO _X (ng/m²)	Carbon Monoxide ns CO (mg/m²)
1	01.12.2020	59.0	32.0	10.1	14.4	0.45
2	03.12.2020	51.0	28.0	8.8	19.7	0.27
3	08.12.2020	62.0	39.0	7.6	15.5	0.51
4	10.12.2020	42.0	29.0	8.5	28.1	0.4
5	15.12.2020	59.0	44.0	9.9	17.7	0.31
6	17.12.2020	43.0	21.0	93	23.8	0,33
7	22.12.2020	60.0	39.0	8.7	16.3	0,44
	Monthly Average	53.7	33.1	9.0	18.2	0.39
CPC	B, New Delhi AAQ Standard	100	60	80	80	4
Testing Method		Gravimetric IS 5182: Part 23	Gravimetric Improved West Modified Jacob & EPA		Hochheiser Method IS 5182 (Part-6)	Non Dispersive Infrared Method IS 5182 (Part- 10):1999
			Remarks: 1 Detect Any unusual featu	tion limit for SO ₂ : 4.0 re during determinat	$\mu g/m^2$, NO _N : 9.0 $\mu g/m^2$ ion:	Nil

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-7 are Time Weighted Average.

*** End Report***

TERMS AND CONDITION:-

- 1. The Test result is relevant only to the item tested.
- 2. This report shall not be reproduced in fall or part without written approval of Visiontck consultancy services.(P) Ltd
- 3. The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.
- The laboratory's responsibility under this report is limited to; proven willful negligence.

(An Enviro Engineering Consulting Cell)

180 9001; 2015 180 1400; 2015 180 45001; 2018 (OH&S) 180/IEC 17025; 2005

Test Report No: ENVLAB/20/TR-6854

Date: 05.01.2021

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

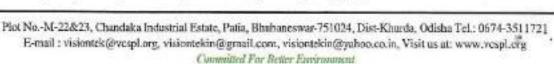
Sample Location & Code	S7: Adri	Sampled by	VCSPL'S Representative
Sample Description Ambient Air		Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	02.12.2020,04.12.2020,09.12.2020 11.12.2020,16.12.2020,18.12.2020 23.12.2020.
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°21.928' Longitude: E82°56.705' Altitude: 691.90 m.	
Sampling Date	01.12.2020,03.12.2020, 08.12.2020,10.12.2020, 15.12.2020,17.12.2020 22.12.2020,	Test Completed on	02.12.2020 to 26.12.2020

		Parameters				
SL. No	Sampling Date	Particulate Matter as PM ₁₀ (µg/m²)	Particulate Matter as PM ₂₈ (µg/m²)	Sulphur Dioxide as SO ₂ (µg/m³)	Oxides of Nitrogen as NO _X (4g/m ⁵)	Carbon Monoxide as CO (mg/m²)
1	01.12.2020	68.0	37.0	5.7	14.4	0.58
2	03.12.2020	64.0	39.0	6.1	18.7	8.65
3	08.12.2020	56.0	33.0	8.3	21.6	0.7
4	10.12,2020	53.0	37.0	9.6	24.8	0.38
5	15.12.2020	68.0	32.0	7.2	17.9	0.44
6	17.12.1020 -	62.0	38.0	7.9	20,4	0.71
7	22.12.2020	47.0	30.0	8.5	16.9	0.66
	Monthly Average	59.7	35.1	7.6	19.2	0.59
CPC	B, New Delhi AAQ Standard	100	60	80	80	4
Testing Method		Gravimetric IS 5182: Part 23	Gravimetric Improved West Modified Jacob &		Hochheiser Method IS 5182 (Part-6)	Non Dispersive Infrared Method 15 5182 (Part- 10):1999
				ion limit for SO ₂ : 4.0 re during determinan	μg/m ² , NO _X : 9.0 μg/m ³ on:	Nil

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-7 are Time Weighted Average.

*** End Report***

TERME AND CONDITION:-


1. The Test result is relevant only to the item tested.

2. This report shall not be reproduced in fall or part without written approval of Visiontek consultancy services (P) Ltd

3. The laboratory is not responsible for the authenticity of photocopied test report.

4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.

5. The laboratory's responsibility under this report is limited to; proven willful negligence.

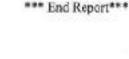
(An Enviro Engineering Consulting Cell)

180 9001:2015 180 14011:2015 180 45001:2018 (OH&S) 180/IEC 17025:2005

Date: 05.01.2021

Test Report No: ENVLAB/20/TR-6855

TEST REPORT


Customer Name & Address

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S8: Chandragiri	Sampled by	VCSPL'S Representative	
Sample Description	Ambient Air	Sampling Procedure	IS 5182.	
Sample Source	Baphlimali Mines, UAIL	Sample Received on	02.12.2020,04.12.2020,09.12.2020 11.12.2020,16.12.2020,18.12.2020 23.12.2020.	
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°23,107' Longitude: E82°59,221' Altitude: 656,54 m.		
Sampling Date	01.12.2020,03.12.2020, 08.12.2020,10.12.2020, 15.12.2020,17.12.2020 22.12.2020.	Test Completed on	02.12.2020 to 26.12.2020	

2011				Param	ieters	
SL. No	Sampling Date	Particulate Matter as PM ₁₀ (µg/m²)	*Particulate Matter as PM ₂₈ (µg/m ³)	Sulphur Dioxide as SO ₂ (µg/m²)	Oxides of Nitrogen as NO _X (µg/m²)	*Carbon Monoxide as CO (mg/m²)
1	01.12.2020	49.0	31.0	7.6	26.2	0.57
2	03.12.2020	52.0	26.0	5.8	24.8	0.63
3	08.12,2020	58.0	33.0	8.4	23.9	0.39
4	10.12.2020	49.0	40.0	9.2	21.2	0.61
5	15.12.2020	43.0	29.0	7.4	27.7	0.52
6	17.12.2020 -	55.0	25.0	6.5	22.1	0.48
7	22.12.2020	54.0	32.0	8.9	20.5	0.73
	Monthly Average	51.4	30.9	7.7	23.8	0.56
CPC	B, New Delhi AAQ Standard	100	60	80	80	4
Testing Method		Gravimetric IS 5182: Part 23	Gravimetric EPA CFR-40 (pt 50) Appendix-1	Improved West & Genke Method IS 5182 (Part-2) RA2006	Modified Jacob & Hochheiser Method 18 5182 (Part-6) RA2006	Non Dispersive Infrared Method IS 5182 (Part- 10):1999
- 5000			Remarks: : Detect Any unusual featu	tion limit for SO ₂ : 4.0 re during determinat	μg/m², NO _x ; 9.0 μg/m² lon;	NII

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-7 are Time Weighted Average.

ENDS AND CONDITION

- 1. The Test result is relevant only to the item tested.
- 2. This report shall not be reproduced in full or part without written approval of Visiontek consultancy services.(P) Ltd
- 3. The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations,
- 5. The laboratory's responsibility under this report is limited to; proven willful negligence.

· Infrastructure Enginering

o Water Resource Management

· Environmental & Social Study

isiontek Consultancy Services Pvt. I

(Committed For Better Environment)

Certified for: 1SO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

o Surface & Sub-Surface Investigation

· Quality Control & Project Management

Renewable Energy

Agricultural Development

· Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soft Exploration e Information Technology

· Waste Management Services

Laboratory Services Eartreement Lab Food Lab Material Lab Soft Lab Mineral Lab Mirrelinlogy Lab

Test Report No: ENVLAB/20/R-8111

Date: 05.02.2021

TEST REPORT

Customer Name & Address : Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Location & Code	a & Code S5: Andirakanch Sampled by		VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAII.	Sample Received on	05.01.2021, 08.01.2021, 12.01.2021, 15.01.2021, 19.01.2021, 22.01.2021, 27.01:2021, 30.01.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N 19°19.0 Longitude : E 83°0.73 Altitude : 739.14 m	38'
Sampling Date	04.01.2021, 07.01.2021, 11.01.2021, 14.01.2021, 18.01.2021, 21.01.2021, 25.01.2021, 29.01.2021	Test Completed on	08.01,2021 to 02.02,2021

			Parameters				
SL No.	Sampling Date	Particulate Matter 88 PMm (ng/m²)	Particulate Matter as PM _{LS} (ug/m²)	Sulphur Dioxide as SO ₂ (µg/m²)	Oxides of Nitrogen as NOx (µg/m³)	(mg/m³)	
1	04.01.2021	53.0	28.8	8.7	20.3	0.35	
2	07.01.2021	57.0	31.0	7.3	18.5	0.32	
3	11.01.2023	50.0	27.7	8.4	21.1	0.37	
4	14.01.2021	55.0	29.5	9.1	23.4	0.42	
5	18.01.2021	60.0	32.0	9.7	20.6	0.36	
6	21.01.2021	52.0	28.3	8.8	19.2	0.38	
7	25.01.2021	58.0	31.6	8.3	20.5	0.41	
8	29.01.2021	54.0	30.7	7.6	18.2	0.33	
Mo	nthly Average	54.9	30.0	8-5	20.2	0.37	
	CB, New Delhi AQ Standard	100	60	80	80	4	
Testing Method		Gravimetric IS 5182: Part 23	Gravimetric EPA CFR-00 (pt 50) Appendix-1	Improved West & Geake Method 18 5183 (Part-2) RA2006	Modified Jacob & Hechkeiser Method 18 5182 (Part-6) RA2006	Non Dispersive Infrared Method 1S 5182 (Part-10):1999	

Any unusual feature during determination: Nil

Remarks: (All the values of PM-11. PM-2.5. SO2, NOx & CO presented in row no 1-8 are Time Weighted Average.)

· Infrastructure Enginering

Water Resource Management

· Environmental & Social Study

Visiontek Consultancy Services Pvt. Ltd
(Committed For Better Environment)
(Laboratory Services

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

Quality Control & Project Management

· Renewable Energy

4 Agricultural Development o Information Technology

Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration

Microbiology Lab Waste Management Services

Environment Lab

Food Lab

Materiel Lob Sell Lab

Mineral Lab

Test Report No: ENVLAB/20/R-8112

Date: 05.02.2021

TEST REPORT

Customer Name & Address : Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Location & Code	S6: Paikupakhal	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	05,01,2021, 08,01,2021, 12,01,2021, 15,01,2021, 19,01,2021, 22,01,2021, 27,01,2021, 30,01,2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude :N 19°20.19 Longitude :E 82°59.50 Altitude : 874.17 m	97'
Sampling Date	04.01.2021, 07.01.2021, 11.01.2021, 14.01.2021, 18.01.2021, 21.01.2021, 25.01.2021, 29.01.2021	Test Completed on	08.01.2021 to 02.02.2021

SL No.	Sampling Date		Parameters				
		Particulate Matter as PM _m (ag/m ²)	Particulate Matter as PM ₂₈ (µg/m ²)	Sulphur Dioxide as SO ₂ (ug/m ⁵)	Oxides of Nitrogen as NOx (µg/m³)	CO (mg/m²)	
1	04.01.2021	56.0	30.7	9.3	20.2	0.35	
2	07.01.2021	49.0	26.3	7.7	16.8	0.29	
3	11.01.2021	53.0	29.0	8.8	14.6	0.31	
4	14.01.2021	58.0	31.4	9.6	21.7	0.34	
5	18.01.2021	51.0	24.8	8.3	18.2	0.42	
6	21,01,2021	47.0	25.5	7.6	15.7	0.38	
7	25.01.2021	50.0	27.3	8.1	16.4	0.41	
8	29.01.2021	54.0	30.0	7.4	18.5	0.37	
Mor	othly Average	52.3	28.1	8.4	17.8	0.35	
	CB, New Delhi AQ Standard	100	60	80	80	4	
Testing Method		Gravimetrie IS 5182: Part 23	Gravimetric EPA CFR-40 (pt 50) Appendix-1	Improved West & Geake Method IS 5182 (Part-2) RA2006	Modified Jacob & Hothleiser Method IS 5482 (Part-6) RA2006	Non Dispersive Infrared Methor IS 5182 (Part-10):1999	

Remarks: (All the values of PM-15, PM-15, SO5, NOx & CO presented in row no 1-8 are Time Weighted Ayerage.)

o Water Resource Management

Environmental & Sorial Study

isiontek Consultancy Services Pvt. I

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

· Quality Control & Project Management

Renewable Energy

 Agricultural Development Information Technology a Public Health Engineering Mine Planning & Design Mineral/Sub-Suil Exploration

Waste Management Services

Laboratory Services Food Lab Material Lab Seit Lab Mineral Lah Microbiology Lab

Test Report No: ENVLAB/20/R-8113

Date: 05,02,2021

TEST REPORT

Customer Name & Address : Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Location & Code \$7; Adri		Sampled by	VCSPL'S Representative
Sample Description	uple Description Ambient Air		15 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	05.01.2021, 08.01.2021, 12.01.2021. 15.01.2021, 19.01.2021, 22.01.2021, 27.01.2021, 30.01.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N 19°21.9 Longitude : E 82°56.7 Altitude : 691.90 m	05"
Sampling Date	04.01.2021, 07.01.2021, 11.01.2021, 14.01.2021, 18.01.2021, 21.01.2021, 25.01.2021, 29.01.2021	Test Completed on	08.01.2021 to 02.02.2021

	Sampling Date		Parameters				
SL No.		Particulate Matter as PM _{to} (ag/m ²)	Particulate Matter as PM _{L5} (µg/m ³)	Sulphur Dioxide as SO ₂ (µg/m²)	Oxides of Nitrugen 88 NOx (µg/m²)	CO (mg/m²)	
1	64.01.2021	61.0	33.0	6.6	23.2	0.48	
2	07.01.2021	57.0	31.2	7.3	21.4	0.51	
3	11.01.2021	53.0	29.2	6.8	19.5	0.45	
4	14.01.2021	60.0	32.7	8.4	22.0	0.42	
5	18.01.2021	64.0	35.2	9.1	18.4	0.39	
6	21.01.2021	59.0	32.6	8.6	21.0	0.43	
7	25.01.2021	55.0	30.0	7.5	17.6	0.41	
8	29.01.2021	51.0	28.6	8.3	19.4	0.45	
Mor	nthly Average	57.5	31.6	7.8	20.3	0.44	
3.75%	PCB, New Delhi AQ Standard	100	60	80	80	4	
Testing Method		Gravimetric 1S 5182: Part 23	Gravimetric EPA CFR-40 (pt 50) Appendix-1	Improved West & Geake Method IS 5182 (Part-2) RA2066	Modified Jacob & Hochheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method 1S 5182 (Part-10):1999	

Remarks: (All the values of PM-11, PM-2.5, SO2, NOx & CO presented in row no 1-8 are Time Weighted Average.)

Infrastructure Enginering

e Water Resource Management

Environmental & Social Study

Visiontek Consultancy Services Pvt. Lt

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

Quality Control & Project Management

· Renewable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soll Lab Mineral Lab Microbiology Lab

Test Report No: ENVLAB/20/R-8114

Date: 05.02.2021

TEST REPORT

Customer Name & Address : Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

DOMESTIC LINE SPECIAL PROPERTY.			
Sample Location & Code	S8: Chandragiri	tragiri Sampled by	
Sample Description	Ambient Air	Sampling Procedure	1S 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	05.01.2021, 08.01.2021, 12.01.2021, 15.01.2021, 19.01.2021, 22.01.2021, 27.04.2021, 30.01.2021
Sample Condition	Gascous Sample Solution Refrigerated	Latitude : N 19°23.1 Longitude : E 82°59.2 Altitude : 656.54 m	21'
Sampling Date	04.01.2021, 07.01.2021, 11.01.2021, 14.01.2021, 18.01.2021, 21.01.2021, 25.01.2021, 29.01.2021	Test Completed on	08.01.2021 to 02.02.2021

	Sampling Date		Parameters				
Sl. No.		Particulate Matter as PM ₁₀ (pg/m ²)	Particulate Matter as PM _{2.8} (µg/m ³)	Sulphur Dioxide as SO ₂ (µg/m ²)	Oxides of Nitrogen as NOx (µg/m³)	CO (mg/m²)	
1	04.01.2021	50.0	27.7	7.0	22.8	0.42	
2	07.01.2021	47.0	25.1	8.2	25.1	0.35	
3	11,01,2021	53.0	28.6	7.7	20.7	0.38	
4	14.01,2021	45.0	24.3	7.1	21.5	0.44	
5	18.01.2021	49.0	26.8	9,3	26.0	0.46	
6	21.01.2021	51.0	28.3	8.4	23.7	0.37	
7	25.01.2021	44.0	24.6	7.5	20.3	0.45	
8	29.01.2021	56.0	31.2	6.8	21.4	0.43	
Mor	nthly Average	49.4	27.1	7.8	22.7	0.41	
0.050	CB, New Delhi AQ Standard	100	60	80	80	4	
Testing Method		Gravimetric IS 5182: Part 23	Gravimetric EPA CFR-40 (pt 50) Appendix-1	Improved West & Geale Method IS 5182 (Part-2) RA2006	Modified Jacob & Hockheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method 18 5182 (Part-10):1999	

Remarks: (All the values of PM-15, PM-25, SO2, NOx & CO presented in row no 1-8 are Time Weighted Average.)

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

· Quality Control & Project Management

 Agricultural Development Olnformation Technology

 Mine Planning & Design Mineral Sub-Seil Exploration

Material Lab Sell Lab Mineral Lab

Laboratory Services Food Lab

Date: 04.03.2021

 Infrastructure Enginering · Water Resource Management

· Environmental & Social Study

· Renewable Energy

Public Bealth Engineering

Waste Management Services

Microbialogy Lab

Test Report No: ENVLAB/20/R-8697

TEST REPORT

Customer Name & Address :

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Location & Code	S5: Andirakanch	Sampled by	VCSPL'S Representative
Sample Description	Ambient Alr	Sampling Procedure	18 5182.
s Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.02.2021, 05.02.2021, 10.02.2021, 12.02.2021, 17.02.2021, 19.02.2021, 26.02.2021, 01.03.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N 19°19.079° Longitude : E 83°0.738° Altitude : 739.14 m.	
Sampling Date	02.02.2021, 04.02.2021, 09.02.2021, 11.02.2021, 16.02.2021, 18.02.2021, 25.02.2021, 27.02.2021	Test Completed on	06.02.2021 to 03.03.2021

SI.	Sampling Date	Parameters					
No.		Particulate Matter as PM ₅₀ (µg/m ³)	Particulate Matter as PM _{2.5} (μg/m ³)	Sulphur Dioxide as SO ₂ (µg/m ²)	Oxides of Nitrogen as NOx (µg/m²)	CO (mg/m²)	
1	02.02.2021	56.0	30.7	9.4	19.5	0.43	
2	04.02.2021	51.0	27.4	8.5	16.7	0.38	
3	09.02.2021	47.0	25.8	8.8	20.2	0.35	
4	11.02.2021	52.0	28.6	7.5	17.3	0.41	
5	16.02.2021	55.0	29.5	9.2	18.6	0.39	
6	18.02.2021	58.0	31.2	8.7	21.3	0.36	
7	25.02.2021	53.0	29.0	8.2	17.7	0.37	
8	27.02.2021	50.0	27.3	9.1	20.6	0.39	
Mo	onthly Average	52.8	28.7	8.7	19.0	0.39	
	PCB, New Delhi AAQ Standard	100	60	80	80	4	
Testing Method		Gravimetric IS 5182: Part 23	Gravimetric EPA CFR-40 (pt 50) Appendix-1	Improved West & Genke Method IS 5182 (Part-2) RA2006	Modified Jacob & Hockheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method 15 5182 (Part-10):1999	

Remarks: (All the values of PM-16, PM-25, SO2, NOx & CO presented in row no 1-8 are Time Weighted Average.)

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

Quality Centrol & Project Management

*Agricultural Development · Information Technology

· Mine Planning & Design

· Mineral/Sub-Suil Exploration

Laboratory Services Eurironment Lab Food Lab Material Lab Soil Lab Mineral Lab

· Infrastructure Enginering · Water Resource Management

Environmental & Social Study

· Renewable Energy

@ Public Health Engineering

Microbiology Lab · Waste Management Services

Test Report No: ENVLAB/20/R-8698

Date: 04.03.2021

TEST REPORT

Customer Name & Address :

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada,

SAMPLE DETAILS

Sample Location & Code	ocation & Code S6: Paikupakhal		VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.02.2021, 05.02.2021, 10.02.2021, 12.02.2021, 17.02.2021, 19.02.2021, 26.02.2021, 01.03.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude :N 19°20,19 Longitude :E 82°59,58 Altitude : 874,17 m	77
Sampling Date	02.02.2021, 04.02.2021, 09.02.2021, 11.02.2021, 16.02.2021, 18.02.2021, 25.02.2021, 27.02.2021	Test Completed on	06.02.2021 to 03.03.2021

SL No.		i .		Parameters		
	Sampling Date	Particulate Matter as PM ₁₀ (µg/m³)	Particulate Matter as PM ₂₅ (µg/m ³)	Sulphur Dioxide as SO ₂ (µg/m²)	Oxides of Nitrogen as NOx (µg/m²)	CO (mg/m³)
1	02.02.2021	52.0	28.7	8.7	17.6	0.32
2	04.02.2021	57.0	30.6	8.2	18.3	0.35
3	09.02.2021	50.0	26.4	9.5	20.1	0.29
4	1,1.02.2021	46.0	24.5	10.1	19.8	0.31
5	16.02.2021	49.0	26.8	8.6	21.3	0.34
6	18.02.2021	54.0	29.1	7.8	20.7	0.37
7	25.02.2021	51.0	27.3	7.3	18.2	0.33
8	27,02,2021	55.0	29.8	8.4	19.7	0.30
Mo	onthly Average	51.8	27.9	8.6	19.5	0.33
	PCB, New Delhi AAQ Standard	100	60	80	80	4
Testing Method		Gravimetric IS 5182: Part 23	Gravimetrie EPA CFR-40 (pt 50) Appendix-1	Improved West & Geake Method IS 5182 (Part-2) RA2006	Modified Jacob & Hochheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method IS 5182 (Part-10):1999

Remarks: (All the values of PM-10, PM-25, SO₂, NOx & CO presented in row no 1-8 are Time Weighted Average.)

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

Quality Control & Project Management

*Agricultural Development Claformation Technology

Mine Planning & Design

Mineral/Sub-Soil Exploration

Date: 04.03.2021

Laboratory Services Environment Lah Feed Lub Material Lab Soll Lab Mineral Lab

· Infrastructure Enginering Water Resource Management

· Environmental & Social Study

· Renewable Energy

Public Health Engineering

Waste Management Services

Mirrobiology Lab

Test Report No: ENVLAB/20/R-8699

TEST REPORT

Customer Name & Address :

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS


THE RESERVE OF THE PARTY OF THE			
Sample Location & Code	ample Location & Code S7: Adri		VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.02.2021, 05.02.2021, 10.02.2021, 12.02.2021, 17.02.2021, 19.02.2021, 26.02.2021, 01.03.2021
Sample Condition	Gascous Sample Solution Refrigerated	Latitude : N 19°21.928° Longitude : E 82°56.705° Altitude : 691.90 m	
Sampling Date	02.02.2021, 04.02.2021, 09.02.2021, 11.02.2021, 16.02.2021, 18.02.2021, 25.02.2021, 27.02.2021	Test Completed on	06.02.2021 to 03.03.2021

	Sampling Date		Parameters				
Sl. No.		Particulate Matter as PM ₃₀ (µg/m ³)	Particulate Matter as PM _{2.5} (µg/m ³)	Sulphur Dioxide as SO ₂ (µg/m ³)	Oxides of Nitrogen as NOx (µg/m²)	CO (mg/m³)	
1	02.02.2021	58.0	31.2	9.2	22.1	0.44	
2	04.02.2021	51.0	28.0	8.4	19.6	0.42	
3	09.02.2021	54.0	29.6	8.7	20.3	0.39	
4	11.02.2021	60.0	32.7	7.3	18.2	0.43	
5	16.02.2021	52,0	28.3	8.1	21.6	0.35	
6	18.02.2021	49.0	26.4	7.6	19.5	0.40	
7	25.02.2021	53.0	29.0	6.8	17.8	0.43	
8	27.02.2021	56.0	30.7	7.7	20.7	0.46	
Mo	onthly Average	54.1	29.5	8.0	20.0	0.42	
	PCB, New Delhi AAQ Standard	100	60	80	80	4	
Testing Method		Gravimetric IS 5182: Part 23	Gravimetric EPA CFR-40 (pt 50) Appendix-1	Improved West & Geake Method IS 5182 (Part-2) RA2006	Modified Jacob & Hochheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method IS 5182 (Part-10):1999	

Remarks: (All the values of PM-10, PM-25, SO2, NOx & CO presented in row no 1-8 are Time Weighted Average.)

Certified for: 1SO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

 Agricultural Development Quality Control & Project Management · Information Technology

 Mine Planning & Design Mineral/Sub-Soil Exploration

Soil Lab Mineral Lab Microbiology Lab

Materiol Lab

Laboratory Services Environment Lab Food Lab

· Infrastructure Enginering · Water Resource Management

Environmental & Social Study

Renewable Energy

· Public Health Engineering

· Waste Management Services

Date: 04.03.2021

Test Report No: ENVLAB/20/R-8701

TEST REPORT

Customer Name & Address :

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Location & Code	S8: Chandragiri	Chandragiri Sampled by	
Sample Description	Ambient Air	Sampling Procedure	18 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.02.2021, 05.02.2021, 10.02.2021, 12.02.2021, 17.02.2021, 19.02.2021, 26.02.2021, 01.03.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N 19°23.1 Longitude : E 82°59.2 Altitude : 656.54 n	107' 121'
Sampling Date	02.02.2021, 04.02.2021, 09.02.2021, 11.02.2021, 16.02.2021, 18.02.2021, 25.02.2021, 27.02.2021	Test Completed on	06.02.2021 to 03.03.2021

SL No.	Sampling Date	Parameters				
		Particulate Matter as PM ₁₀ (µg/m³)	Particulate Matter as PM _{2.5} (µg/m ³)	Sulphur Dioxide as SO ₂ (µg/m ³)	Oxides of Nitrogen as NOx (µg/m²)	CO (mg/m²)
1	02.02.2021	49.0	26.3	7.6	18.5	0.39
2	04.02.2021	54.0	28.7	8.4	20.2	0.43
3	09.02.2021	51.0	27.4	8.0	19.7	0.36
4	11,02,2021	46.0	24.2	7.7	17.4	0.32
5	16.02.2021	43.0	22.8	6.8	18.1	0.40
6	18.02.2021	48.0	25.5	8.3	20.0	0.35
7	25.02.2021	53.0	29.2	9.0	22.3	0.38
8	27.02.2021	47.0	25.4	8.1	19.7	0.41
Mo	nthly Average	48.9	26.2	8.0	19.5	0.38
	PCB, New Delhi AAQ Standard	100	60	80	80	4
Testing Method		Gravimetric IS 5182: Part 23	Gravimetric EPA CFR-40 (pt 50) Appendix-I	Improved West & Geake Method IS 5182 (Part-2) RA2006	Modified Jacob & Hochheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method 1S 5182 (Part-10):1999

Remarks: (All the values of PM-10, PM-25, SO2, NOx & CO presented in row no 1-8 are Time Weighted Average.)

· Infrastructure Enginering

· Water Resource Management

Environmental & Social Study

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for: 1SO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

Quality Control & Project Management

Renewable Energy
 Public Bealth Engineering

Agricultural Development
 Information Technology

Mine Planning & Design
 Mineral Sub-Soll Exploration

Waste Management Services

Laboratory Services
Environment Lab
Food Lab
Material Lab
Soil Lab
Miserial Lab
Miserial Lab
&
Miserial Lab
&
Miserial Lab

Test Report No: ENVLAB/20/R-9385

Date: 31.03,2021

TEST REPORT

Customer Name & Address ;

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Location & Code	ation & Code S5: Andirakanch Sampled by		VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.03.2021, 05.03.2021, 10.03.2021, 12.03.2021, 17.03.2021, 19.03.2021, 24.03.2021, 26.03.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude ; N 19°19.0 Longitude ; E 83°0.73 Altitude : 739.14 m	979°
Sampling Date	02.03.2021, 04.03.2021, 09.03.2021, 11.03.2021, 16.03.2021, 18.03.2021, 23.03.2021, 25.03.2021	Test Completed on	06.03.2021 to 30.03.2021

SI.	Sampling Date	Parameters				
No.		Particulate Matter as PM ₁₀ (µg/m ³)	Particulate Matter as PM _{2.5} (µg/m ³)	Sulphur Dioxide as SO ₂ (µg/m ³)	Oxides of Nitrogen as NOx (µg/m³)	CO (mg/m³)
1	02.03.2021	48.0	25.2	7.6	16.2	0.37
2	04.03.2021	53.0	28.0	5.8	13.5	0.43
3	09.03.2021	46.0	24.3	7.1	14.8	0.43
4	11.03.2021	49.0	26.7	6.3	12.5	The Control of the Co
5	16.03,2021	54.0	29,2	7.7	15.1	0.36
6	18.03.2021	51.0	26.8	6.6	13.7	0.39
7	23.03,2021	47.0	25.5	6.2	13.2	0.33
8	25.03.2021	50.0	27.0	5.3	12.5	0.35
Mo	nthly Average	49.8	26.6	6.6	13.9	0.41
	PCB, New Delhi AQ Standard	100	60	80	80	4
Testing Method		Gravimetric IS 5182: Part 23	Gravimetrie EPA CFR-40 (pt 50) Appendix-1	Improved West & Geake Method 3S 5182 (Part-2) RA2006	Modified Jacob & Hochheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method 1S 5182 (Part-10):1999

Remarks: (All the values of PM-10, PM-25, SO1, NOx & CO presented in row no 1-8 are Time Weighted Average.)

Infrastructure Enginering

Water Resource Management

· Environmental & Social Study

isiontek Consultancy Services Pvt. Lt

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation.

Quality Control & Project Management

· Renewable Energy

 Agricultural Development . Information Technology · Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration

Sell Lab Mineral Lab Microbiology Lab

Laboratory Services Environment Lab Food Lab

Material Lab

Waste Management Services

Test Report No: ENVLAB/20/R-9386

Date: 31.03.2021

TEST REPORT

Customer Name & Address

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada,

SAMPLE DETAILS

Sample Location & Code	on & Code S6: Paikupakhal Sampled by		VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.03.2021, 05.03.2021, 10.03.2021, 12.03.2021, 17.03.2021, 19.03.2021, 24.03.2021, 26.03.2021
Sample Condition	Gascous Sample Solution Refrigerated	Latitude :N 19°20.15 Longitude :E 82°59.58 Altitude : 874.17 m	55
Sampling Date	02.03.2021, 04.03.2021, 09.03.2021, 11.03.2021, 16.03.2021, 18.03.2021, 23.03.2021, 25.03.2021	Test Completed on	06.03.2021 to 30.03.2021

SL No.	Sampling Date	Parameters				
		Particulate Matter as PM ₁₀ (µg/m ³)	Particulate Matter as PM _{2.5} (µg/m ²)	Sulphur Dioxide as SO ₂ (µg/m²)	Oxides of Nitrogen as NOx (µg/m²)	CO (mg/m²)
1	02.03.2021	46.0	24.5	7.4	15.4	0.28
2	04.03.2021	50.0	26.3	6.3	13.7	0.31
3	09.03.2021	53.0	28.2	6.8	11.6	0.34
4	11.03.2021	48.0	25.7	7.2	15.3	0.26
5	16.03.2021	45.0	24.0	5.7	12.8	0.28
6	18.03.2021	42.0	22.6	6.1	13.4	0.33
7	23.03.2021	49.0	26.1	6.5	14.6	0.34
8	25.03.2021	52.0	27.3	5.4	10.2	0.29
Mo	onthly Average	48.1	25.6	6.4	13.4	0.30
CPCB, New Delhi AAQ Standard		100	60	80	80	4
Testing Method		Gravimetric IS 5182: Part 23	Gravimetric EPA CFR-40 (pt 50) Appendix-1	Improved West & Geake Method IS 5182 (Part-2) RA2006	Modified Jacob & Hochheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method IS 5182 (Part-10):1999

feature during determination: Nil

Remarks: (All the values of PM-10, PM-13, SO₂ NOx & CO presented in row no 1-8 are Time Weighted Average.)

· Infrastructure Enginering

· Water Resource Management

· Environmental & Social Study

siontek Consultancy Services Pvt. I

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Surface & Sub-Surface Investigation
- Quality Centrol & Project Management
- Reacomble Energy
- Agricultural Development · Information Technology · Public Health Engineering
- Mine Planning & Design
- ◆ Mineral/Sub-Soil Exploration

Microbiology Lab · Waste Management Services

Laboratory Services Environment Lub Food Lub

Material Lab Soil Lab

Mineral Lab

Test Report No: ENVLAB/20/R-9387

Date: 31.03.2021

TEST REPORT

Customer Name & Address :

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada,

SAMPLE DETAILS

Sample Location & Code	S7: Adri	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.03.2021, 05.03.2021, 10.03.2021, 12.03.2021, 17.03.2021, 19.03.2021, 24.03.2021, 26.03.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N 19°21.928° Longitude : E 82°56.705° Altitude : 691.90 m	
Sampling Date	02.03.2021, 04.03.2021, 09.03.2021, 11.03.2021, 16.03.2021, 18.03.2021, 23.03.2021, 25.03.2021	Test Completed on	96.03.2021 to 30.03.2021

	Sampling Date	10	Parameters				
SL No.		Particulate Matter as PM ₁₀ (µg/m ³)	Particulate Matter as PM _{2.5} (µg/m ³)	Sulphur Dioxide as SO ₂ (µg/m³)	Oxides of Nitrogen as NOx (µg/m³)	CO (mg/m³)	
1	02.03.2021	49.0	25.8	7.3	15.2	0.37	
2	04.03.2021	43.0	22.3	8.2	16,3	0.41	
3	09.03.2021	50.0	26.7	6.4	13.7	0.35	
4	1.1.03.2021	42.0	22.6	6.6	14.6	0.38	
5	16.03.2021	47.0	24.2	7.1	12.8	0.43	
6	18.03.2021	43.0	22.0	5.6	11.3	0.39	
7	23.03.2021	49.0	26.4	6.2	14.5	0.41	
8	25.03.2021	45.0	24.5	6.7	13.2	0.44	
Mo	onthly Average	46.0	24.3	6.8	14.0	0.40	
	PCB, New Delhi AAQ Standard	100	60	80	80	4	
Testing Method		Gravimetric IS 5182: Part 23	Gravimetric EPA CFR-40 (pt 50) Appendix-1	Improved West & Geake Method 1S 5182 (Part-2) RA2006	Modified Jacob & Hochheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method IS 5182 (Part-10):1999	

Remarks: (All the values of PM-16, PM-25, SO2, NOx & CO presented in row no 1-8 are Time Weighted Average.)

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

· Infrastructure Enginering

- Water Resource Management
- · Environmental & Social Study
- Surface & Sub-Surface Investigation
- Quality Control & Project Management
- · Renewable Energy
- Agricultural Development
- · Information Technology
- · Public Health Engineering
- Mine Planning & Design
- Mineral/Sub-Soil Exploration

Microbiology Lab Wiste Management Services

Laboratory Services Food Lab

Material Lab Sell Lab

Minoral Lab

Test Report No: ENVLAB/20/R-9388

Date: 31.03.2021

TEST REPORT

Customer Name & Address :

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada,

SAMPLE DETAILS

Sample Location & Code	S8: Chandragiri	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.03.2021, 05.03.2021, 10.03.2021, 12.03.2021, 17.03.2021, 19.03.2021, 24.03.2021, 26.03.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N 19°23.107' Longitude : E 82°59,221' Altitude : 656.54 m	
Sampling Date	02.03.2021, 04.03.2021, 09.03.2021, 11.03.2021, 16.03.2021, 18.03.2021, 23.03.2021, 25.03.2021	Test Completed on	06.03.2021 to 30.03.2021

SI. No.	Sampling Date	Parameters				
		Particulate Matter as PM ₁₉ (µg/m³)	Particulate Matter as PM _{2.5} (µg/m³)	Sulphur Dioxide as SO ₂ (µg/m³)	Oxides of Nitrogen as NOx (µg/m²)	CO (mg/m³)
1	02.03.2021	51.0	26.4	5.8	13.2	0.44
2	04.03.2021	44.0	23.1	6.4	15.0	0.38
3	09.03.2021	47.0	24.8	8.1	17.6	0.36
4	11.03.2021	42.0	21.6	6.7	14.4	0.29
5	16.03.2021	45.0	23.7	7.3	16.2	0.34
6	18.03.2021	40.0	20.5	5.5	13.7	0.37
7	23.03.2021	47.0	25.0	6.3	14.8	0.41
8	25.03.2021	52.0	27.3	6.7	15.3	0.36
Mo	onthly Average	46.0	24.1	6.6	15.0	0.37
CPCB, New Delhi AAQ Standard		100	60	80	80	4
Testing Method		Gravimetric IS 5182: Part 23	Gravimetrie EPA CFR-40 (pt-50) Appendix-1	Improved West & Geake Method IS 5182 (Part-2) RA2006	Modified Jacob & Hothheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method IS 5182 (Part-10):1999

Any unusual feature during determination: Nil

Remarks: (All the values of PM-16, PM-25, SO2, NOx & CO presented in row no 1-8 are Time Weighted Average.)

ANNEXURE: 5

Ambient Air Quality Monitoring Report (Buffer

Zone)

(An Enviro Engineering Consulting Cell) (ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

NABL ACCREDITED Certificate No.: TC-7944

Format No.: VCSPL/FMT/055

Date: 06.11.2020

Test Report No: ENVLAB/20/TR-5204

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S5: Andirakanch	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	02.10.2020,07.10.2020,09.10.2020 14.10.2020,16.10.2020,21.10.2020 23.10.2020,28.10.2020,30.10.2020
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19*19.079' Longitude: F33*0,738' Altitude: 739.14 m.	
Sampling Date	01.10.2020,06.10.2020, 08.10.2020,13.10.2020, 15.10.2020,20.10.2020 22.10.2020,27.10,2020 29.10.2020,	Test Completed on	92.19.2928 to 94.11.2029

257				Param	ieters	
SL. No	Sampling Date	Particulate Matter as PM ₁₀ (µg/m²)	"Particulate Matter as PM _{2.0} (ag/m²)	Sulphur Dioxide as SO ₂ (µg/m²)	Oxides of Nitrogen as NO _x (µg/m²)	*Carbon Monoxide as CO (ing/m²)
1	01.18,2020	56.0	31.0	5.1	14.3	0.44
2	96.10.2020	50.0	28.0	6.8	17.4	0.34
3	98.10.2020	61.0	36.0	7.6	19.5	0.52
4	13.10.2020	48.0	31.0	9.2	22.3	0.39
5	15.10,2020	52.0	32,0	7,7	16.6	0.51
6	20.10,2020	59.0	25.0	7.2	20.4	0.46
7	22.10.2020	61.0	29.0	8.5	19.1	0.39
8	27.10.2020	53.0	36.0	6.7	15.7	0.56
9	29.10.2020	59.0	37.0	6.3	17.3	0.54
	Monthly Average	55.4	31.8	7.2	18.0	0.46
CPC	B, New Delhi AAQ Standard	100	60	80	80	4
Testing Method		Gravimetrie 15 5182c Part 23	Gravimetric Improved West Modified Jacob &		Non Dispersive Infrared Method IS 5182 (Part. 10):1999	
				tion limit for SO ₂ : 4.0 re during determinat	μg/m ³ , NO _X : 9.0 μg/m ³	Nil

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-9 are Time Weighted Average.

*These Parameter not in our NABL Scope.

*** End Report***

Remarks:

TERMS AND CONDITION:-

- 1. The Test result is relevant only to the item tested.
- 2. This report shall not be reproduced in fall or part without written approval of Visionte's consultancy services.(P) Ltd.
- 3. The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test from will not be retained for more than 15 days from the date of levine of test report except in case as required by applicable regulations.

5. The laboratory's responsibility under this report is limited to; proven willful negligence.

(An Enviro Engineering Consulting Cell) (ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

Test Report No: ENVLAB/20/TR-5205

Date: 06.11.2020

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S6: Paikupakhal	Sampled by	VCSPL'S Representative	
Sample Description	Ambient Air	Sampling Procedure	IS 5182.	
Sample Source	Baphlimali Mines, UAIL	Sample Received on	02.10.2020,07.10.2020,09.10.2020 14.10.2020,16.10.2020,21.10.2020 23.10.2020,28.10.2020,30.10.2020	
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°20,197' Longitude: E82°59,589' Altitude: 874,17 m.		
Sampling Date	01.10.2020,06.10.2020, 08.10.2020,13.10.2020, 15.10.2020,20.10.2020 22.10.2020,27.10.2020 29.10.2020,	Test Completed on	02.10.2020 to 04.11.2020	

V65				Param	neters	
SI No	Sampling Date	Particulate Mutter us PM _{es} (ug/m²)	"Particulate Matter as PM_s (ug/m²)	Sulphur Dioxide as SO ₂ (ug/m²)	Oxides of Nitrogen as NO ₅ (µg/m²)	"Carbon Monoxide us CO (mg/m²)
1	01.10.2020	49.0	31.0	10.5	25.7	0.39
2	96.14.2020	53.0	37.0	7.4	14.3	0.46
3	08.10.2020	45,0	23.0	6.9	11.9	0.53
4	13.16.2020	57.0	28.0	9.6	17.7	6.47
5	15.14.2020	60.0	33.0	10.1	18.1	0.66
6	20.14,2020	56.0	35.0	9.0	18.4	0.81
7	22.16,2020	50.0	29.0	7.2	16.5	6.49
8	27.10.2020	55.9	26,0	10.4	22,2	0.38
9	29.16.2020	47.0	24.0	8.8	13.9	0.69
	Monthly Average	52.4	29.6	8.9	17.6	0.54
CPO	CB, New Delhi AAQ Standard	100	60	80	80	4
Testing Method Gravimetric IS 5182; Part 23		IS \$182;	Gravimetric EPA CFR-40 (pt 50) Appendix-1	Improved West & Geake Method IS 5182 (Part-2) RA2086	Modified Jacob & Hochheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method IS 5182 (Part- 10):1999
				tion limit for SO ₂ : 4.0 re during determinat	μg/m², NO _X : 9.0 μg/m² ilon:	NII

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-9 are Time Weighted Average.

*These Parameter not in our NABL Scope.

*** End Report***

Remarks:

TERMS AND CONDITION:-

1. The Test result is relevant only to the item tested.

2. This report shall not be reproduced in full or part without written approval of Visiostek consultancy services. (P) Ltd.

3. The laboratory is not responsible for the authenticity of photocopied test report.

4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations,

5. The laboratory's responsibility under this report is limited to; proven willful negligence.

(An Enviro Engineering Consulting Cell) (ISO 9001;2015, ISO 14001;2015 & OHSAS 45001;2018 Certified)

NABL ACCREDITED

Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

Test Report No: ENVLAB/20/TR-5206

Date: 96.11.2020

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S7: Adri	Sampled by	VCSPL/S Representative	
Sample Description	Ambient Air	Sampling Procedure	IS 5182.	
Sample Source	Baphlimali Mines, UAIL	92.10.2020,07.10.20 Sample Received on 14.10.2020,16.10.20 23.10.2020,28.10.20		
Sample Condition	Gaseous Sanaple Solution Refrigerated	Latitude: N19°21,928° Longitude: E82°56,705° Altitude: 691,90 m.		
Sampling Date	01.10.2020,06.10.2020, 08.10.2020,13.10.2020, 15.10.2020,20.10.2020 22.10.2020,27.10.2020 29.10.2020,	Test Completed on	92.10.2020 to 04.11.2020	

				Param	neters	
SL. No	Sampling Date	Particulate Matter as PM ₁₀ (µg/m²)	*Particulate Matter as PM ₂₅ (µg/m²)	Sulphur Dioxide as SO ₂ (µg/m²)	Oxides of Nitrogen as NO _X (µg/m²)	*Carbon Monoside as CO (mg/m²)
1	01.10.2020	50.0	27.0	7.9	15.1	0.44
2	96.10.2020	45.0	22,0	6.7	19.4	6.77
3	08.10.2020	54.0	27.0	8.1	20.5	0.67
4	13.10.2020	60.0	31.0	7.4	15,9	0.71
5	15.14.2020 .	48.0	26.0	8.7	15.4	0.49
6	20.16.2020	53.0	27.0	6,9	18.9	0.76
7	22.14.2020	61.0	31.0	7.7	17.8	0.66
8	27,10,2020	58.0	30.0	6.2	20.2	0,48
9	29.10.2020	62.0	32.0	8.4	14.6	0.69
	Monthly Average	54.6	28.1	7.6	17.5	0.63
CP(CB, New Delhi AAQ Standard	100	60	80	80	4
Testing Method		Gravimetrie IS 5182; Part 23	Gravimetric Improved West Modified Jacob &		Non Dispersive Infrared Method IS 5182 (Part- 10):1999	
				tion limit for SO ₂ ; 4.0 re during determinat	μg/m³, NO _X ; 9.0 μg/m³ ion:	No

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-9 are Time Weighted Average.

*These Parameter not in our NABL Scope.

*** End Report***

Remarks.

TERMS AND CONDITIONS

1. The Test result is relevant only to the item tested.

2. This report shall not be reproduced in full or part without written approval of Visionte's consultancy services (P) Ltd.

3. The laboratory is not responsible for the authenticity of photocopied test report.

4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.

5. The laboratory's responsibility under this report is limited to: proven willful negligence.

(An Enviro Engineering Consulting Cell)
(ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944 Format No.: VCSPLJFMT/055

Test Report No: ENVLAB/20/TR-5207

Date: 06.11.2020

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S8: Chandragiri	Sampled by	VCSPL'S Representative	
Sample Description	Ambient Air	Sampling Procedure	IS 5182.	
Sample Source	Baphlimali Mines, UAIL	Sample Received on	02.10.2020,07.10.2020,09.10.2020 14.10.2020,16.10.2020,21.10.2020 23.10.2020,28.10.2020,30.10.2020	
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°23.107° Longitude: E82°59.221° Altitude: 656.54 m.		
Sampling Date	01.10.2020,06.10.2020, 08.10.2020,13.10.2020, 15.10.2020,20.10.2020 22.10.2020,27.10.2020 29.10.2020,	Test Completed on	02.19.2020 to 04,11,2020	

32		Parameters					
SL. No	Sampling Date	Particulate Matter as PM ₂₀ (µg/m²)	*Particulate Matter as PM _{3,t} (µg/m²)	Sulphur Dioxide as SO ₂ (µg/m ²)	Oxides of Nitrogen as NO _N (µg/m²)	*Carbon Monoxide us CO (mg/m²)	
1	01.10,2020	53.0	26.0	8.3	18.5	0.43	
2	86.10.2020	46.8	31.0	6.9	14.9	0.37	
3	08.10.2020	51.0	29.0	7.1	16.6	0.52	
4	13.10.2020	64.0	39.0	7.7	18.5	0.62	
5	15,10,2020	50.0	30.0	8.2	19.1	0.33	
6	28,10,2020	43.0	28.0	9.6	23.5	0.48	
7	22.10.2020	49.0	31.0	9.7	26.6	0.61	
8	27.10,2020	56.0	29.0	8.8	17.5	0.57	
9	29.10.2020	51,0	26.0	8.9	14.6	0.45	
	Monthly Average	51.4	29.9	8.4	18.9	0.49	
CPC	B, New Delhi AAQ Standard	100	60	80	80	4	
Testing Method I		Gravimetric IS 5182: Part 23	EPA & Geake Hachheiser CFR-40 Method IS 5182 (I		Modified Jacob & Horbheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method IS 5182 (Part- 10):1999	
				tion limit for SO ₂ : 4.0 re during determinat	$\mu g/m^2$, NO_X : 9.0 $\mu g/m^2$	Nil	

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-9 are Time Weighted Average.

"These Parameter not in our NABL Scope.

*** End Report***

Remarks:

TERMS AND CONDITION:-

1. The Test result is relevant only to the item tested.

2. This report shall not be reproduced in fall or part without written approval of Visiontel: consultancy services.(P) Ltd.

3. The laboratory is not responsible for the authenticity of photocopied test report,

4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.

5. The laboratory's responsibility under this report is limited to; proven willful negligence.

ontek Consultancy Services Pvt. I

(An Enviro Engineering Consulting Cell) (ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

Test Report No: ENVLAB/20/TR-6632

Date: 07.12.2020

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S5: Andirakanch	Sampled by	VCSPL'S Representative	
Sample Description	Ambient Air	Sampling Procedure	1S 5182.	
Sample Source	Baphlimali Mines, UALL	Sample Received on	04.11.2020,06.11.2020,11.11.2020 13.11.2020,18.11.2020,20.11.2020 25.11.2020,27.11.2020.	
Sample Condition	Gascous Sample Solution Refrigerated	Latitude: N19°19.079° Longitude: E83°0.738° Altitude: 739.14 m.		
Sampling Date	03.11.2020,05.11.2020, 10.11.2020,12.11.2020, 17.11.2020,29.11.2020 24.11.2020,26.11.2020	Test Completed on	04.11.2020 to 30.11.2020	

				Param	eters	
SI No	Sampling Date	Particulate Matter as PM ₁₆	*Particulate Matter as PM ₂ ; (ug/m²)	Sulphur Diexide as SO ₂ (µg/m ²)	Oxides of Nitrogen us NO _X (µg/m²)	*Carbon Monoxide as CO (mg/m²)
	****	(µg/m²) 56.0	34.0	5.7	13.3	0.22
1	03.11.2020		30.0	6,3	17.9	0.31
2	05.11.2020	47.0	37.0	6.1	14.4	0.39
3	10.11,2020	61.0	100000000000000000000000000000000000000	8.9	23.2	0.46
4	12.11,2020	49.6	30.0	7.4	17.8	0.3
5	17.11.2020	64.0	30.0	8.2	23.7	0.34
6	19.11.2020	59.0	38.0		18.1	0.26
7	24.11.2020	67.0	36.0	6.6	20.4	0,29
8	26.11.2020	70.0	42.0	7.3	20.4	
	Monthly Average	59.1	34.6	7.1	18.6	0,32
CP	CB, New Delhi AAQ Standard	100	60	80	80	4
Testing Method IS:		Gravimetric EPA		Improved West & Geake Method 18:5182 (Port-3) RA2006	Modified Jacob & Hochhriser Method 15 5182 (Part-6) RA3006	Non Dispersive Infrared Metho IS 5182 (Part- 10):1999
			Remarks: : Detec	are during determinat) µg/m², NO _X : 9.0 µg/m² tion:	Nii Time Weighted Average.

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-9 are Time Weighted Average.

*These Parameter not in our NABL Scope.

*** End Report***

Remarks:

TERMS AND CONDITION:-

The Test result is relevant only to the item tested.

- This report shall not be reproduced in full or part without written approval of Viriontek consultancy services (P) 1.td.
- 3. The laboratory is not responsible for the authenticity of photocopied test report
- 4. The test stem will not be retained for more than 15 days from the date of issue of test report except m case as required by applicable regulations.
- 5. The laboratory's responsibility under this report is limited to; proven willful negligence.

(An Enviro Engineering Consulting Cell) (ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

Test Report No: ENVLAB/20/TR-6633

Date: 07.12.2020

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd., Tikiri, Rayagada, Odisha

Sample Location & Code	S6: Paikopakhal	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	04.11.2020,06.11.2020,11.11.2020 13.11.2020,18.11.2020,20.11.2020 25.11.2020,27.11.2020.
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°20.197' Longitude: F82°59,589' Altitude: 874.17 m.	
Sampling Date	ate 03.11.2020,05.11.2020, 10.11.2020,12.11.2020, 17.11.2020,29.11.2020 24.11.2020,26.11.2020		02.10.2020 to 04.11.2020

				Param	eters	
No	Sampling Date	Particulate Matter as PM _{th} (µg/m²)	"Particulate Matter as PM _{2,2} (µg/m ³)	Sulphur Dinxide as SO ₂ (ag/m ³)	Oxides of Nitrogen as NO _X (µg/m ³)	*Carbon Monoxide as CO (mg/m²)
1	03.11.2020	61.0	39.0	10.8	23.7	0.29
2	05.11.2020	57.0	33.0	9.6	21.4	0.41
3	10.11.2020	53.0	28.0	8.5	18.2	0.32
4	12.11.2020	57.0	30.0	8.6	23.3	0.58
5	17.11.2020 .	65.0	41.0	9.3	19.1	0.63
6	19.11.2020	69.0	33.0	11.9	26.2	0.24
7	24.11.2020	56.0	27.0	9.2	17.7	0.46
8	26.11.2020	42.0	28.0	8.7	20.8	0.32
	Monthly Average	57.5	32.4	9.6	21.3	0.41
CPC	CB, New Delhi AAQ Standard	100	60	80	80	4
Testing Method IS		Gravimetric IS 5182: Part 25	Gravimetric Improved West Modified Jacob &		Non Dispersive Infrared Method IS 5182 (Part- 10):1999	
				tion limit for SO ₃ : 4.0 re during determinat	pg/m², NO _x : 9.0 µg/m² ion:	NII

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-9 are Time Weighted Average.

*These Parameter not in our NABL Scope.

*** End Report***

Remarks:

TERMS AND CONDITION:-

1. The Test result is relevant only to the item tested.

This report shall not be reproduced in full or part without written approval of Visionte's consultancy services. (P) Ltd.

3. The laboratory is not responsible for the authenticity of photocopied test report.

The test stem will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.

5. The laboratory's responsibility under this report is limited to; proven willful negligence.

(An Enviro Engineering Consulting Cell) (ISO 9001;2015, ISO 14001;2015 & OHSAS 45001;2018 Certified)

NABL ACCREDITED Certificate No.: TC-7944

Format No.: VCSPL/FMT/055

Test Report No: ENVLAB/20/TR-6634

Date: 07.12.2020

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	57: Adri	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlinali Mines, UAIL	Sample Received on	04.11.2020,06.11.2020,11.11.2020 13.11.2020,18.11.2020,20.11.2020 25.11.2020,27,11.2020,
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°21.928' Longitude: E82°56.705' Altitude: 691.90 m.	
Sampling Date	03.11.2020,05.11.2020, 10.11.2020,12.11.2020, 17.11.2020,29.11.2020 24.11.2020,26.11.2020	Test Completed on	94.11.2020 to 30.11.2020

				Param	eters	
No.	Sampling Date	Particulate Matter as PM ₂₀ (µg/m ²)	*Particulate Matter as PM ₂₅ (µg/m³)	Sulphur Dioxide as SO ₂ (µg/m ³)	Oxides of Nitrogen as NO _x (µg/m²)	*Carbon Monexide as CO (mg/m²)
1	03.11.2020	65.0	31.0	6.3	15,2	0.47
2	05.11.2020	53.0	27.6	7.5	19.3	0.33
3	10.11.2020	51.0	33.0	5.6	17.1	0.51
4	12.11.2020	67.0	42.0	4.9	11.9	0.36
5	17.11.2020 -	48.0	30.0	8.2	14.5	0.45
6.	19.11.2020	55.0	28.0	6.6	18.7	0.39
7	24.11.2020	61.0	37.0	7.2	21,2	0.34
8	26.11.2020	48.0	29.0	8.9	24.5	0.48
	Monthly Average	56.0	32.1	6.9	17.8	0.42
CPC	CB, New Delhi AAQ Standard	100	60	80	80	4
Testing Method		Gravimetrie IS 5182: Part 23	Gravimetric Improved West Modified Jacob &		Hochheiser Method 18 5182 (Part-6) RA2006	Non Dispersive Infrared Method 18 5182 (Part- 10):1999
			Remarks: Detec Any unusual featu	tion limit for SO ₂ : 4.0 ere during determinat	pg/m³, NO _X : 9.0 pg/m³ ion:	Nil

Remarks: (All the values of PM-10, PM-2.5, \$O2, NOx & CO, O3 etc presented in row no 1-9 are Time Weighted Average.

*** End Report***

Remarks

TERMS AND CONDITION:-

1. The Test result is relevant only to the item tested.

2. This report shall not be reproduced in full or part without written approval of Visiontek consultancy services (P) Ltd

The laboratory is not responsible for the authenticity of photocopied test report.

4. The test stem will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.

The laboratory's responsibility under this report is limited to; proven willful negligener.

[&]quot;These Parameter not in our NABL Scope.

(An Enviro Engineering Consulting Cell) (ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944

Format No.: VCSPL/FMT/055

Test Report No: ENVLAB/20/TR-6635

Date: 07.12.2020

TEST REPORT

Customer Name & Address

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S8: Chandragiri	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	04.11.2020,06.11.2020,11.11.2020 13.11.2020,18.11.2020,20.11.2020 25.11.2020,27.11.2020.
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°23,107° Longitude: E82°59,221° Altitude: 656.54 m.	
Sampling Date	03.11.2020,05.11.2020, 10.11.2020,12.11.2020, 17.11.2020,29.11.2020 24.11.2020,26.11.2020	Test Completed on	94.11.2020 to 30.11.2020

	Sampling Date	Parameters					
Ne		Particulate Matter as PM _m (µg/m²)	"Particulate Matter as PM _{2.0} (ug/m ³)	Sulphur Dioxide as SO ₂ (µg/m ³)	Oxides of Nitrogen as NO _X (µg/m ³)	'Carbon Monoxide as CO (mg/m²)	
1	03.11.2020	59.0	40.0	8.9	23.3	0.53	
2	05.11.2020	53.0	35.0	9.2	21.5	0.67	
3	10.11.2020	48.0	32.0	8.4	19.5	0.61	
4	12.11.2020	56.0	28.0	8.1	21.6	0.55	
5	17.11.2020 .	50.0	34.0	9.5	18.3	0.49	
6.	19.11.2020	59.0	36.0	9.9	24.4	0.59	
7	24.11.2020	51.0	27.0	8.6	19.3	0.48	
8	26.11.2020	65.0	38.0	8.3	26.1	0,31	
	Monthly Average	55.0	33.8	8.9	21.8	0.53	
CP	CB, New Delhi AAQ Standard	100	60	80	80	4	
Testing Method		Gravimetrie IS 5182: Part 23	Gravimetric Improved West Modified Jacob & EPA & Geske Hochbelser Method IS 5182 (Part-6) (pt 50) IS 5182 (Fart-2) RA2006 RA2006		Non Dispersive Infrared Method IS 5182 (Part- 10):1999		
			Remarks: r Desce	tion limit for SO ₂ : 4.0 re during determinat	μg/m², NO _x : 9.0 μg/m² ion:	Nil	

Remarks: (All the values of PM-10, PM-2.5,SO2,NOx & CO, O3 etc presented in row no 1-9 are Time Weighted Average.

*** End Report***

Remarks:

TERMS AND CONDITIONS

- 1. The Test result is relevant only to the item tested.
- 2. This report shall not be reproduced in full or purt without written approval of Visiontek consultancy services (P) Ltd
- 3. The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.

The laboratory's responsibility under this report is limited to; proven willful negligence.

^{*}These Parameter not in our NABL Scope.

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 45001:2018 (OHAS) ISO/IEC 17025:2005

Test Report No: ENVLAB/20/TR-6852

Date: 05.01.2021

TEST REPORT

Customer Name & Address

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S5: Andirakanch	Sampled by	VCSPL'S Representative	
Sample Description	Ambient Air	Sampling Procedure	1S 5182.	
Sample Source	Baphlimali Mines, UAIL	Sample Received on	02.12.2020,04.12,2020,09.12.2020 11.12.2020,16.12.2020,18.12.2020 23.12.2020.	
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°19.079° Longitude: E83°0,738° Altitude: 739.14 m.		
Sampling Date	01.12.2020,03.12.2020, 08.12.2020,10.12.2020, 15.12.2020,17.12.2020 22.12.2020.	Test Completed on	02,12,2020 to 26.12,2020	

25.0		Parameters					
SL. No	Sampling Date	Particulate Matter as PM ₁₀ (µg/m²)	Particulate Matter as PM ₂₅ (ng/m²)	Sulphur Dioxide as SO ₂ (µg/m ⁵)	Oxides of Nitrogen as NO _X (µg/m²)	Carbon Monoxide as CO (mg/m²)	
1	01.12.2020	49,0	30.0	7.8	19.5	0.31	
2	03.12.2020	53.0	36.0	5.9	15.3	0.37	
3	08.12.2020	58.0	26,0	9.2	13.1	0.45	
4	10.12.2020	61.0	41.0	8.5	18.8	0.59	
5	15.12.2020	62.0	33.0	9.2	21.5	0.41	
6	17.12.2020	51.0	29.6	10.5	26.3	0.39	
7	22.12.2020 *	55.0	31.0	7.8	20.4	0.32	
	Monthly Average	55.6	32.3	8.4	19.3	0.41	
CPC	CB, New Delhi AAQ Standard	100	60	80	80	4	
Testing Method		Gravimetric IS 5182: Part 23	Gravimetric Improved West Modified Jacob &		Non Dispersive Infrared Method IS 5182 (Part- 10):1999		
			Remarks: : Detect	tion limit for SO ₃ : 4.0 re during determinat	μg/m², NO _x : 9.0 μg/m² ion:	Nil	

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-7 are Time Weighted Average.

*** End Report***

- 1. The Test result is relevant only to the item tested.
- 2. This report shall not be reproduced in fall or part without written approval of Visiontek consultancy services.(P) Ltd
- The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.
- 3. The laboratory's responsibility under this report is limited to; proven willful negligence.

(An Enviro Engineering Consulting Cell)

Date: 05.01.2021

ISO 9001: 2015 ISO 14001:2015 ISO 45001:2018 (OHAS) ISO/IEC 17025:2005

Test Report No: ENVLAB/20/TR-6853

TEST REPORT

Customer Name & Address : Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S6: Paikupakhal	Sampled by	VCSPL'S Representative	
Sample Description	Ambient Air	Sampling Procedure	IS 5182.	
Sample Source	Baphlimali Mines, UAIL	Sample Received on	02.12.2020,04.12.2020,99.12.2020 11.12.2020,16.12.2020,18.12.2020 23.12.2020.	
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°20.197' Longitude: E82°59.589' Altitude: 874.17 m.	The state of the s	
Sampling Date	01.12.2020,03.12.2020, 08.12.2020,10.12.2020, 15.12.2020,17.12.2020 22.12.2020.	Test Completed on	02.12.2020 to 26.12.2020	

				Param	eters	
SL. No	Sampling Date	Particulate Matter as PM ₁₀ (µg/m²)	Particulate Matter as PM±s (ag/m²)	Sulphur Dioxide as SO ₂ (µg/m ²)	Oxides of Nitrogen as NO _X (ng/m²)	Carbon Monoxide ns CO (mg/m²)
1	01.12.2020	59.0	32.0	10.1	14.4	0.45
2	03.12.2020	51.0	28.0	8.8	19.7	0.27
3	08.12.2020	62.0	39.0	7.6	15.5	0.51
4	10.12.2020	42.0	29.0	8.5	28.1	0.4
5	15.12.2020	59.0	44.0	9.9	17.7	0.31
6	17.12.2020	43.0	21.0	93	23.8	0,33
7	22.12.2020	60.0	39.0	8.7	16.3	0,44
	Monthly Average	53.7	33.1	9.0	18.2	0.39
CPC	B, New Delhi AAQ Standard	100	60	80	80	4
Testing Method		Gravimetric IS 5182: Part 23	Gravimetric Improved West Modified Jacob &		Hochheiser Method IS 5182 (Part-6)	Non Dispersive Infrared Method IS 5182 (Part- 10):1999
			Remarks: 1 Detect Any unusual featu	tion limit for SO ₂ : 4.0 re during determinat	$\mu g/m^2$, NO _N : 9.0 $\mu g/m^2$ ion:	Nil

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-7 are Time Weighted Average.

*** End Report***

TERMS AND CONDITION:-

- 1. The Test result is relevant only to the item tested.
- 2. This report shall not be reproduced in fall or part without written approval of Visiontck consultancy services.(P) Ltd
- 3. The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.
- The laboratory's responsibility under this report is limited to; proven willful negligence.

(An Enviro Engineering Consulting Cell)

180 9001; 2015 180 1400; 2015 180 45001; 2018 (OH&S) 180/IEC 17025; 2005

Test Report No: ENVLAB/20/TR-6854

Date: 05.01.2021

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

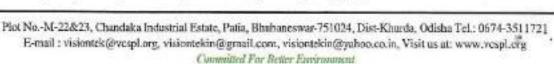
Sample Location & Code	S7: Adri	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	02.12.2020,04.12.2020,09.12.2020 11.12.2020,16.12.2020,18.12.2020 23.12.2020.
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°21.928' Longitude: E82°56.705' Altitude: 691.90 m.	
Sampling Date	01.12.2020,03.12.2020, 08.12.2020,10.12.2020, 15.12.2020,17.12.2020 22.12.2020,	Test Completed on	02.12.2020 to 26.12.2020

		Parameters					
SL. No	Sampling Date	Particulate Matter as PM ₁₀ (µg/m²)	Particulate Matter as PM ₂₈ (µg/m²)	Sulphur Dioxide as SO ₂ (µg/m³)	Oxides of Nitrogen as NO _X (4g/m ⁵)	Carbon Monoxide as CO (mg/m²)	
1	01.12.2020	68.0	37.0	5.7	14.4	0.58	
2	03.12.2020	64.0	39.0	6.1	18.7	8.65	
3	08.12.2020	56.0	33.0	8.3	21.6	0.7	
4	10.12,2020	53.0	37.0	9.6	24.8	0.38	
5	15.12.2020	68.0	32.0	7.2	17.9	0.44	
6	17.12.1020 -	62.0	38.0	7.9	20,4	0.71	
7	22.12.2020	47.0	30.0	8.5	16.9	0.66	
	Monthly Average	59.7	35.1	7.6	19.2	0.59	
CPC	B, New Delhi AAQ Standard	100	60	80	80	4	
Testing Method IS		Gravimetric IS 5182: Part 23	Gravimetric Improved West Modified Jacob &		Non Dispersive Infrared Method 15 5182 (Part- 10):1999		
				ion limit for SO ₂ : 4.0 re during determinan	μg/m ² , NO _X : 9.0 μg/m ³ on:	Nil	

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-7 are Time Weighted Average.

*** End Report***

TERME AND CONDITION:-


1. The Test result is relevant only to the item tested.

2. This report shall not be reproduced in fall or part without written approval of Visiontek consultancy services (P) Ltd

3. The laboratory is not responsible for the authenticity of photocopied test report.

4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.

5. The laboratory's responsibility under this report is limited to; proven willful negligence.

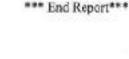
(An Enviro Engineering Consulting Cell)

180 9001:2015 180 14011:2015 180 45001:2018 (OH&S) 180/IEC 17025:2005

Date: 05.01.2021

Test Report No: ENVLAB/20/TR-6855

TEST REPORT


Customer Name & Address

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	S8: Chandragiri	Sampled by	VCSPL'S Representative	
Sample Description	Ambient Air	Sampling Procedure	IS 5182.	
Sample Source	Baphlimali Mines, UAIL	Sample Received on	02.12.2020,04.12.2020,09.12.2020 11.12.2020,16.12.2020,18.12.2020 23.12.2020.	
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude: N19°23,107' Longitude: E82°59,221' Altitude: 656,54 m.		
Sampling Date	01.12.2020,03.12.2020, 08.12.2020,10.12.2020, 15.12.2020,17.12.2020 22.12.2020.	Test Completed on	02.12.2020 to 26.12.2020	

2011				Param	ieters	
SL. No	Sampling Date	Particulate Matter as PM ₁₀ (µg/m²)	*Particulate Matter as PM ₂₈ (µg/m ³)	Sulphur Dioxide as SO ₂ (µg/m²)	Oxides of Nitrogen as NO _X (µg/m²)	*Carbon Monoxide as CO (mg/m²)
1	01.12.2020	49.0	31.0	7.6	26.2	0.57
2	03.12.2020	52.0	26.0	5.8	24.8	0.63
3	08.12,2020	58.0	33.0	8.4	23.9	0.39
4	10.12.2020	49.0	40.0	9.2	21.2	0.61
5	15.12.2020	43.0	29.0	7.4	27.7	0.52
6	17.12.2020 -	55.0	25.0	6.5	22.1	0.48
7	22.12.2020	54.0	32.0	8.9	20.5	0.73
	Monthly Average	51.4	30.9	7.7	23.8	0.56
CPC	B, New Delhi AAQ Standard	100	60	80	80	4
Testing Method		Gravimetric IS 5182: Part 23	Gravimetric Improved West Modified Jacob &		Non Dispersive Infrared Method IS 5182 (Part- 10):1999	
- 5000			Remarks: : Detect Any unusual featu	tion limit for SO ₂ : 4.0 re during determinat	μg/m², NO _x ; 9.0 μg/m² lon;	NII

Remarks: (All the values of PM-10, PM-2.5, SO2, NOx & CO, O3 etc presented in row no 1-7 are Time Weighted Average.

ENDS AND CONDITION

- 1. The Test result is relevant only to the item tested.
- 2. This report shall not be reproduced in full or part without written approval of Visiontek consultancy services.(P) Ltd
- 3. The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations,
- 5. The laboratory's responsibility under this report is limited to; proven willful negligence.

· Infrastructure Enginering

o Water Resource Management

· Environmental & Social Study

isiontek Consultancy Services Pvt. I

(Committed For Better Environment)

Certified for: 1SO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

o Surface & Sub-Surface Investigation

· Quality Control & Project Management

Renewable Energy

Agricultural Development

· Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soft Exploration e Information Technology

· Waste Management Services

Laboratory Services Eartreement Lab Food Lab Material Lab Soft Lab Mineral Lab Mirrelinlogy Lab

Test Report No: ENVLAB/20/R-8111

Date: 05.02.2021

TEST REPORT

Customer Name & Address : Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Location & Code	S5: Andirakaneh	Sampled by	VCSPL'S Representative	
Sample Description	Ambient Air	Sampling Procedure	IS 5182.	
Sample Source	Baphlimali Mines, UAII.	Sample Received on	05.01.2021, 08.01.2021, 12.01.20 15.01.2021, 19.01.2021, 22.01.20 27.01:2021, 30.01.2021	
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N 19°19.0 Longitude : E 83°0.73 Altitude : 739.14 m	38'	
Sampling Date	04.01.2021, 07.01.2021, 11.01.2021, 14.01.2021, 18.01.2021, 21.01.2021, 25.01.2021, 29.01.2021	Test Completed on	08.01,2021 to 02.02,2021	

		Parameters					
SL No.	Sampling Date	Particulate Matter 88 PMm (ng/m²)	Particulate Matter as PM _{LS} (ug/m²)	Sulphur Dioxide as SO ₂ (µg/m²)	Oxides of Nitrogen as NOx (µg/m³)	(mg/m³)	
1	04.01.2021	53.0	28.8	8.7	20.3	0.35	
2	07.01.2021	57.0	31.0	7.3	18.5	0.32	
3	11.01.2023	50.0	27.7	8.4	21.1	0.37	
4	14.01.2021	55.0	29.5	9.1	23.4	0.42	
5	18.01.2021	60.0	32.0	9.7	20.6	0.36	
6	21.01.2021	52.0	28.3	8.8	19.2	0.38	
7	25.01.2021	58.0	31.6	8.3	20.5	0.41	
8	29.01.2021	54.0	30.7	7.6	18.2	0.33	
Monthly Average		54.9	30.0	8-5	20.2	0.37	
CPCB, New Delhi AAQ, Standard		100	60	80	80	4	
Testing Method		Gravimetric IS 5182: Part 23	Gravimetric EPA CFR-00 (pt 50) Appendix-1	Improved West & Geake Method 18 5183 (Part-2) RA2006	Modified Jacob & Hechkeiser Method 18 5182 (Part-6) RA2006	Non Dispersive Infrared Method 1S 5182 (Part-10):1999	

Any unusual feature during determination: Nil

Remarks: (All the values of PM-11. PM-2.5. SO2, NOx & CO presented in row no 1-8 are Time Weighted Average.)

· Infrastructure Enginering

Water Resource Management

· Environmental & Social Study

Visiontek Consultancy Services Pvt. Ltd
(Committed For Better Environment)
(Laboratory Services

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

Quality Control & Project Management

· Renewable Energy

4 Agricultural Development o Information Technology

Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration

Microbiology Lab Waste Management Services

Environment Lab

Food Lab

Materiel Lob Sell Lab

Mineral Lab

Test Report No: ENVLAB/20/R-8112

Date: 05.02.2021

TEST REPORT

Customer Name & Address : Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Location & Code	S6: Paikupakhal	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	05,01,2021, 08,01,2021, 12,01,2021, 15,01,2021, 19,01,2021, 22,01,2021, 27,01,2021, 30,01,2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude :N 19°20.19 Longitude :E 82°59.50 Altitude : 874.17 m	97'
Sampling Date	04.01.2021, 07.01.2021, 11.01.2021, 14.01.2021, 18.01.2021, 21.01.2021, 25.01.2021, 29.01.2021	Test Completed on	08.01.2021 to 02.02.2021

SL No.		Parameters				
	Sampling Date	Particulate Matter as PM _m (ag/m ²)	Particulate Matter as PM ₂₈ (µg/m ²)	Sulphur Dioxide as SO ₂ (ug/m ⁵)	Oxides of Nitrogen as NOx (µg/m³)	CO (mg/m²)
1	04.01.2021	56.0	30.7	9.3	20.2	0.35
2	07.01.2021	49.0	26.3	7.7	16.8	0.29
3	11.01.2021	53.0	29.0	8.8	14.6	0.31
4	14.01.2021	58.0	31.4	9.6	21.7	0.34
5	18.01.2021	51.0	24.8	8.3	18.2	0.42
6	21,01,2021	47.0	25.5	7.6	15.7	0.38
7	25.01.2021	50.0	27.3	8.1	16.4	0.41
8	29.01.2021	54.0	30.0	7.4	18.5	0.37
Monthly Average		52.3	28.1	8.4	17.8	0.35
CPCB, New Delhi AAQ Standard		100	60	80	80	4
Te	sting Method	Gravimetrie IS 5182: Part 23	Gravimetric EPA CFR-40 (pt 50) Appendix-1	Improved West & Geake Method IS 5182 (Part-2) RA2006	Modified Jacob & Hothleiser Method IS 5482 (Part-6) RA2006	Non Dispersive Infrared Methor IS 5182 (Part-10):1999

Remarks: (All the values of PM-15, PM-15, SO5, NOx & CO presented in row no 1-8 are Time Weighted Ayerage.)

o Water Resource Management

Environmental & Sorial Study

isiontek Consultancy Services Pvt. I

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

· Quality Control & Project Management

Renewable Energy

 Agricultural Development Information Technology a Public Health Engineering Mine Planning & Design Mineral/Sub-Suil Exploration

Waste Management Services

Laboratory Services Food Lab Material Lab Seit Lab Mineral Lah Microbiology Lab

Test Report No: ENVLAB/20/R-8113

Date: 05,02,2021

TEST REPORT

Customer Name & Address : Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Location & Code	le Location & Code S7: Adri		VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	15 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	05.01.2021, 08.01.2021, 12.01.2021, 15.01.2021, 19.01.2021, 22.01.2021, 27.01.2021, 30.01.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N 19°21.9 Longitude : E 82°56.7 Altitude : 691.90 m	05"
Sampling Date	04.01.2021, 07.01.2021, 11.01.2021, 14.01.2021, 18.01.2021, 21.01.2021, 25.01.2021, 29.01.2021	Test Completed on	08.01.2021 to 02.02.2021

	Sampling Date	Parameters				
SL No.		Particulate Matter as PM _{to} (ag/m ³)	Particulate Matter as PM _{L5} (µg/m ³)	Sulphur Dioxide as SO ₂ (µg/m²)	Oxides of Nitrugen 88 NOx (µg/m²)	CO (mg/m²)
1	64.01.2021	61.0	33.0	6.6	23.2	0.48
2	07.01.2021	57.0	31.2	7.3	21.4	0.51
3	11.01.2021	53.0	29.2	6.8	19.5	0.45
4	14.01.2021	60.0	32.7	8.4	22.0	0.42
5	18.01.2021	64.0	35.2	9.1	18.4	0.39
6	21.01.2021	59.0	32.6	8.6	21.0	0.43
7	25.01.2021	55,0	30.0	7.5	17.6	0.41
8	29.01.2021	51.0	28.6	8.3	19.4	0.45
Monthly Average		57.5	31.6	7.8	20.3	0.44
CPCB, New Delhi AAQ Standard		100	60	80	80	4
Testing Method		Gravimetric IS 5182: Part 23	Grasimetric EPA CFR-40 (pt 50) Appendix-1	Improved West & Geake Method IS 5182 (Part-2) RA2066	Modified Jacob & Hochheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method 1S 5182 (Part-10):1999

Remarks: (All the values of PM-11, PM-2.5, SO2, NOx & CO presented in row no 1-8 are Time Weighted Average.)

Infrastructure Enginering

e Water Resource Management

Environmental & Social Study

Visiontek Consultancy Services Pvt. Lt

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

Quality Control & Project Management

· Renewable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soll Lab Mineral Lab Microbiology Lab

Test Report No: ENVLAB/20/R-8114

Date: 05.02.2021

TEST REPORT

Customer Name & Address : Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

DOMESTIC LINE SPECIAL PROPERTY.			
Sample Location & Code	S8: Chandragiri	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	1S 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	05.01.2021, 08.01.2021, 12.01.2021, 15.01.2021, 19.01.2021, 22.01.2021, 27.04.2021, 30.01.2021
Sample Condition	Gascous Sample Solution Refrigerated	Latitude : N 19°23.1 Longitude : E 82°59.2 Altitude : 656.54 m	21'
Sampling Date	04.01.2021, 07.01.2021, 11.01.2021, 14.01.2021, 18.01.2021, 21.01.2021, 25.01.2021, 29.01.2021	Test Completed on	08.01.2021 to 02.02.2021

Sl. No.	Sampling Date		Parameters				
		Particulate Matter as PM ₁₀ (pg/m ²)	Particulate Matter as PM _{2.8} (µg/m ³)	Sulphur Dioxide as SO ₂ (µg/m ²)	Oxides of Nitrogen as NOx (µg/m³)	CO (mg/m²)	
1	04.01.2021	50.0	27.7	7.0	22.8	0.42	
2	07.01.2021	47.0	25.1	8.2	25.1	0.35	
3	11,01,2021	53.0	28.6	7.7	20.7	0.38	
4	14.01,2021	45.0	24.3	7.1	21.5	0.44	
5	18.01.2021	49.0	26.8	9,3	26.0	0.46	
6	21.01.2021	51.0	28.3	8.4	23.7	0.37	
7	25.01.2021	44.0	24.6	7.5	20.3	0.45	
8	29.01.2021	56.0	31.2	6.8	21.4	0.43	
Monthly Average		49.4	27.1	7.8	22.7	0.41	
CPCB, New Delhi AAQ Standard		100	60	80	80	4	
Testing Method		Gravimetric IS 5182: Part 23	Gravimetric EPA CFR-40 (pt 50) Appendix-1	Improved West & Geale Method IS 5182 (Part-2) RA2006	Modified Jacob & Hockheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method 18 5182 (Part-10):1999	

Remarks: (All the values of PM-15, PM-25, SO2, NOx & CO presented in row no 1-8 are Time Weighted Average.)

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

· Quality Control & Project Management

 Agricultural Development Olnformation Technology

 Mine Planning & Design Mineral Sub-Seil Exploration

Material Lab Sell Lab Mineral Lab

Laboratory Services Food Lab

Date: 04.03.2021

 Infrastructure Enginering · Water Resource Management

· Environmental & Social Study

· Renewable Energy

Public Bealth Engineering

Waste Management Services

Microbialogy Lab

Test Report No: ENVLAB/20/R-8697

TEST REPORT

Customer Name & Address :

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Location & Code	55: Andirakanch Sampled by		VCSPL'S Representative
Sample Description	Ambient Alr	Sampling Procedure	18 5182.
s Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.02.2021, 05.02.2021, 10.02.2021, 12.02.2021, 17.02.2021, 19.02.2021, 26.02.2021, 01.03.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N 19°19.0 Longitude : E 83°0.73 Altitude : 739.14 m	18'
Sampling Date	02.02.2021, 04.02.2021, 09.02.2021, 11.02.2021, 16.02.2021, 18.02.2021, 25.02.2021, 27.02.2021	Test Completed on	06.02.2021 to 03.03.2021

SI.	Sampling Date	Parameters					
No.		Particulate Matter as PM ₅₀ (µg/m ³)	Particulate Matter as PM _{2.5} (μg/m ³)	Sulphur Dioxide as SO ₂ (µg/m ²)	Oxides of Nitrogen as NOx (µg/m²)	CO (mg/m²)	
1	02.02.2021	56.0	30.7	9.4	19.5	0.43	
2	04.02.2021	51.0	27.4	8.5	16.7	0.38	
3	09.02.2021	47.0	25.8	8.8	20.2	0.35	
4	11.02.2021	52.0	28.6	7.5	17.3	0.41	
5	16.02.2021	55.0	29.5	9.2	18.6	0.39	
6	18.02.2021	58.0	31.2	8.7	21.3	0.36	
7	25.02.2021	53.0	29.0	8.2	17.7	0.37	
8	27.02.2021	50.0	27.3	9.1	20.6	0.39	
Monthly Average		52.8	28.7	8.7	19.0	0.39	
CPCB, New Delhi AAQ Standard		100	60	80	80	4	
Testing Method		Gravimetric IS 5182: Part 23	Gravimetric EPA CFR-40 (pt 50) Appendix-1	Improved West & Genke Method IS 5182 (Part-2) RA2006	Modified Jacob & Hockheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method 15 5182 (Part-10):1999	

Remarks: (All the values of PM-16, PM-25, SO2, NOx & CO presented in row no 1-8 are Time Weighted Average.)

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

Quality Control & Project Management

*Agricultural Development · Information Technology

· Mine Planning & Design

· Mineral/Sub-Suil Exploration

Laboratory Services Eurironment Lab Food Lab Material Lab Soil Lab Mineral Lab

· Infrastructure Enginering Water Resource Management

Environmental & Social Study

· Renewable Energy

@ Public Health Engineering

Microbiology Lab · Waste Management Services

Test Report No: ENVLAB/20/R-8698

Date: 04.03.2021

TEST REPORT

Customer Name & Address :

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada,

SAMPLE DETAILS

Sample Location & Code	S6: Paikupakhal	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.02.2021, 05.02.2021, 10.02.2021, 12.02.2021, 17.02.2021, 19.02.2021, 26.02.2021, 01.03.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude :N 19°20,19 Longitude :E 82°59,58 Altitude : 874,17 m	77
Sampling Date	02.02.2021, 04.02.2021, 09.02.2021, 11.02.2021, 16.02.2021, 18.02.2021, 25.02.2021, 27.02.2021	Test Completed on	06.02.2021 to 03.03.2021

SL No.		Parameters				
	Sampling Date	Particulate Matter as PM ₁₀ (µg/m³)	Particulate Matter as PM ₂₅ (µg/m ³)	Sulphur Dioxide as SO ₂ (µg/m²)	Oxides of Nitrogen as NOx (µg/m²)	CO (mg/m³)
1	02.02.2021	52.0	28.7	8.7	17.6	0.32
2	04.02.2021	57.0	30.6	8.2	18.3	0.35
3	09.02.2021	50.0	26.4	9.5	20.1	0.29
4	1,1.02.2021	46.0	24.5	10.1	19.8	0.31
5	16.02.2021	49.0	26.8	8.6	21.3	0.34
6	18.02.2021	54.0	29.1	7.8	20.7	0.37
7	25.02.2021	51.0	27.3	7.3	18.2	0.33
8	27,02,2021	55.0	29.8	8.4	19.7	0.30
Mo	onthly Average	51.8	27.9	8.6	19.5	0.33
	PCB, New Delhi AAQ Standard	100	60	80	80	4
Testing Method		Gravimetric IS 5182: Part 23	Gravimetrie EPA CFR-40 (pt 50) Appendix-1	Improved West & Geake Method IS 5182 (Part-2) RA2006	Modified Jacob & Hochheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method IS 5182 (Part-10):1999

Remarks: (All the values of PM-10, PM-25, SO₂, NOx & CO presented in row no 1-8 are Time Weighted Average.)

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

Quality Control & Project Management

*Agricultural Development Claformation Technology

Mine Planning & Design

Mineral/Sub-Soil Exploration

Date: 04.03.2021

Laboratory Services Environment Lah Feed Lub Material Lab Soll Lab Mineral Lab

 Infrastructure Enginering Water Resource Management

· Environmental & Social Study

· Renewable Energy

Public Health Engineering

Waste Management Services

Mirrobiology Lab

Test Report No: ENVLAB/20/R-8699

TEST REPORT

Customer Name & Address :

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS


THE RESERVE OF THE PARTY OF THE			
Sample Location & Code	S7: Adri	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.02.2021, 05.02.2021, 10.02.2021, 12.02.2021, 17.02.2021, 19.02.2021, 26.02.2021, 01.03.2021
Sample Condition	Gascous Sample Solution Refrigerated	Latitude : N 19°21.9 Longitude : E 82°56.7 Altitude : 691.90 m	05'
Sampling Date	02.02.2021, 04.02.2021, 09.02.2021, 11.02.2021, 16.02.2021, 18.02.2021, 25.02.2021, 27.02.2021	Test Completed on	06.02.2021 to 03.03.2021

SI. No.		Parameters				
	Sampling Date	Particulate Matter as PM ₃₀ (µg/m ³)	Particulate Matter as PM _{2.5} (µg/m ³)	Sulphur Dioxide as SO ₂ (µg/m ³)	Oxides of Nitrogen as NOx (µg/m²)	CO (mg/m³)
1	02.02.2021	58.0	31.2	9.2	22.1	0.44
2	04.02.2021	51.0	28.0	8.4	19.6	0.42
3	09.02.2021	54.0	29.6	8.7	20.3	0.39
4	11.02.2021	60.0	32.7	7.3	18.2	0.43
5	16.02.2021	52,0	28.3	8.1	21.6	0.35
6	18.02.2021	49.0	26.4	7.6	19.5	0.40
7	25.02.2021	53.0	29.0	6.8	17.8	0.43
8	27.02.2021	56.0	30.7	7.7	20.7	0.46
Mo	onthly Average	54.1	29.5	8.0	20.0	0.42
	PCB, New Delhi AAQ Standard	100	60	80	80	4
Testing Method		Gravimetric IS 5182: Part 23	Gravimetric EPA CFR-40 (pt 50) Appendix-1	Improved West & Geake Method IS 5182 (Part-2) RA2006	Modified Jacob & Hochheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method IS 5182 (Part-10):1999

Remarks: (All the values of PM-10, PM-25, SO2, NOx & CO presented in row no 1-8 are Time Weighted Average.)

Certified for: 1SO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

 Agricultural Development Quality Control & Project Management · Information Technology

 Mine Planning & Design Mineral/Sub-Soil Exploration

Soil Lab Mineral Lab Microbiology Lab

Materiol Lab

Laboratory Services Environment Lab Food Lab

· Infrastructure Enginering · Water Resource Management

Environmental & Social Study

Renewable Energy

· Public Health Engineering

· Waste Management Services

Date: 04.03.2021

Test Report No: ENVLAB/20/R-8701

TEST REPORT

Customer Name & Address :

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Location & Code	S8: Chandragiri	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	18 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.02.2021, 05.02.2021, 10.02.2021, 12.02.2021, 17.02.2021, 19.02.2021, 26.02.2021, 01.03.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N 19°23.1 Longitude : E 82°59.2 Altitude : 656.54 n	107' 121'
Sampling Date	02.02.2021, 04.02.2021, 09.02.2021, 11.02.2021, 16.02.2021, 18.02.2021, 25.02.2021, 27.02.2021	Test Completed on	06.02.2021 to 03.03.2021

	Sampling Date	Parameters					
SL No.		Particulate Matter as PM ₁₀ (µg/m³)	Particulate Matter as PM _{2.5} (µg/m ³)	Sulphur Dioxide as SO ₂ (µg/m ³)	Oxides of Nitrogen as NOx (µg/m²)	CO (mg/m²)	
1	02.02.2021	49.0	26.3	7.6	18.5	0.39	
2	04.02.2021	54.0	28.7	8.4	20.2	0.43	
3	09.02.2021	51.0	27.4	8.0	19.7	0.36	
4	11,02,2021	46.0	24.2	7.7	17.4	0.32	
5	16.02.2021	43.0	22.8	6.8	18.1	0.40	
6	18.02.2021	48.0	25.5	8.3	20.0	0.35	
7	25.02.2021	53.0	29.2	9.0	22.3	0.38	
8	27.02.2021	47.0	25.4	8.1	19.7	0.41	
Mo	nthly Average	48.9	26.2	8.0	19.5	0.38	
CPCB, New Delhi AAQ Standard		100	60	80	80	4	
Testing Method		Gravimetric IS 5182: Part 23	Gravimetric EPA CFR-40 (pt 50) Appendix-I	Improved West & Geake Method IS 5182 (Part-2) RA2006	Modified Jacob & Hochheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method 1S 5182 (Part-10):1999	

Remarks: (All the values of PM-10, PM-25, SO2, NOx & CO presented in row no 1-8 are Time Weighted Average.)

· Infrastructure Enginering

· Water Resource Management

Environmental & Social Study

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for: 1SO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

Quality Control & Project Management

Renewable Energy
 Public Bealth Engineering

Agricultural Development
 Information Technology

Mine Planning & Design
 Mineral Sub-Soll Exploration

Waste Management Services

Laboratory Services
Environment Lab
Food Lab
Material Lab
Soil Lab
Misconhology Lab
Misconhology Lab

Test Report No: ENVLAB/20/R-9385

Date: 31.03,2021

TEST REPORT

Customer Name & Address ;

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Location & Code	S5: Andirakanch	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.03.2021, 05.03.2021, 10.03.2021, 12.03.2021, 17.03.2021, 19.03.2021, 24.03.2021, 26.03.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude ; N 19°19.0 Longitude ; E 83°0.73 Altitude : 739.14 m	979°
Sampling Date	02.03.2021, 04.03.2021, 09.03.2021, 11.03.2021, 16.03.2021, 18.03.2021, 23.03.2021, 25.03.2021	Test Completed on	06.03.2021 to 30.03.2021

SI.		Parameters					
No.	Sampling Date	Particulate Matter as PM ₁₀ (µg/m ³)	Particulate Matter as PM _{2.5} (µg/m ³)	Sulphur Dioxide as SO ₂ (µg/m ³)	Oxides of Nitrogen as NOx (µg/m³)	CO (mg/m³)	
1	02.03.2021	48.0	25.2	7.6	16.2	0.37	
2	04.03.2021	53.0	28.0	5.8	13.5	0.43	
3	09.03.2021	46.0	24.3	7.1	14.8	0.43	
4	11.03.2021	49.0	26.7	6.3	12.5	The Control of the Co	
5	16.03,2021	54.0	29,2	7.7	15.1	0.36	
6	18.03.2021	51.0	26.8	6.6	13.7	0.39	
7	23.03,2021	47.0	25.5	6.2	13.2	0.33	
8	25.03.2021	50.0	27.0	5.3	12.5	0.35	
Mo	nthly Average	49.8	26.6	6.6	13.9	0.41	
	PCB, New Delhi AQ Standard	100	60	80	80	4	
Testing Method		Gravimetric IS 5182: Part 23	Gravimetrie EPA CFR-40 (pt 50) Appendix-1	Improved West & Geake Method 3S 5182 (Part-2) RA2006	Modified Jacob & Hochheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method 1S 5182 (Part-10):1999	

Remarks: (All the values of PM-10, PM-25, SO1, NOx & CO presented in row no 1-8 are Time Weighted Average.)

Infrastructure Enginering

Water Resource Management

· Environmental & Social Study

isiontek Consultancy Services Pvt. Lt

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation.

Quality Control & Project Management

· Renewable Energy

 Agricultural Development . Information Technology · Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration

Sell Lab Mineral Lab Microbiology Lab

Laboratory Services Environment Lab Food Lab

Material Lab

Waste Management Services

Test Report No: ENVLAB/20/R-9386

Date: 31.03.2021

TEST REPORT

Customer Name & Address

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada,

SAMPLE DETAILS

Sample Location & Code	S6: Paikupakhal	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.03.2021, 05.03.2021, 10.03.2021, 12.03.2021, 17.03.2021, 19.03.2021, 24.03.2021, 26.03.2021
Sample Condition	Gascous Sample Solution Refrigerated	Latitude :N 19°20.15 Longitude :E 82°59.58 Altitude : 874.17 m	55
Sampling Date	02.03.2021, 04.03.2021, 09.03.2021, 11.03.2021, 16.03.2021, 18.03.2021, 23.03.2021, 25.03.2021	Test Completed on	06.03.2021 to 30.03.2021

SL No.	Sampling Date	Parameters				
		Particulate Matter as PM ₁₀ (µg/m ³)	Particulate Matter as PM _{2.5} (µg/m ²)	Sulphur Dioxide as SO ₂ (µg/m²)	Oxides of Nitrogen as NOx (µg/m²)	CO (mg/m²)
1	02.03.2021	46.0	24.5	7.4	15.4	0.28
2	04.03.2021	50.0	26.3	6.3	13.7	0.31
3	09.03.2021	53.0	28.2	6.8	11.6	0.34
4	11.03.2021	48.0	25.7	7.2	15.3	0.26
5	16.03.2021	45.0	24.0	5.7	12.8	0.28
6	18.03.2021	42.0	22.6	6.1	13.4	0.33
7	23.03.2021	49.0	26.1	6.5	14.6	0.34
8	25.03.2021	52.0	27.3	5.4	10.2	0.29
Mo	onthly Average	48.1	25.6	6.4	13.4	0.30
CPCB, New Delhi AAQ Standard		100	60	80	80	4
Testing Method		Gravimetric IS 5182: Part 23	Gravimetric EPA CFR-40 (pt 50) Appendix-1	Improved West & Geake Method IS 5182 (Part-2) RA2006	Modified Jacob & Hochheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method IS 5182 (Part-10):1999

feature during determination: Nil

Remarks: (All the values of PM-10, PM-13, SO₂ NOx & CO presented in row no 1-8 are Time Weighted Average.)

· Infrastructure Enginering

· Water Resource Management

siontek Consultancy Services Pvt. I

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Surface & Sub-Surface Investigation
- Quality Centrol & Project Management
- Reacomble Energy
- Agricultural Development · Information Technology
- Mine Planning & Design
- ◆ Mineral/Sub-Soil Exploration

Mineral Lab

· Environmental & Social Study

· Public Health Engineering

· Waste Management Services

Microbiology Lab

Laboratory Services Environment Lub Food Lub

Material Lab Soil Lab

Test Report No: ENVLAB/20/R-9387

Date: 31.03.2021

TEST REPORT

Customer Name & Address :

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada,

SAMPLE DETAILS

Sample Location & Code	S7: Adri	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	1S 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.03.2021, 05.03.2021, 10.03.2021, 12.03.2021, 17.03.2021, 19.03.2021, 24.03.2021, 26.03.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N 19°21.9 Longitude : E 82°56.7 Altitude : 691.90 m	28° '05'
Sampling Date	02.03.2021, 04.03.2021, 09.03.2021, 11.03.2021, 16.03.2021, 18.03.2021, 23.03.2021, 25.03.2021	Test Completed on	96.03.2021 to 30.03.2021

SL No.	Sampling Date	20	Parameters				
		Particulate Matter as PM ₁₀ (µg/m³)	Particulate Matter as PM _{2.5} (µg/m ³)	Sulphur Dioxide as SO ₂ (µg/m³)	Oxides of Nitrogen as NOx (µg/m³)	CO (mg/m³)	
1	02.03.2021	49.0	25.8	7.3	15.2	0.37	
2	04.03.2021	43.0	22.3	8.2	16.3	0.41	
3	09.03.2021	50.0	26.7	6.4	13.7	0.35	
4	1.1.03.2021	42.0	22.6	6.6	14.6	0.38	
5	16.03.2021	47.0	24.2	7.1	12.8	0.43	
6	18.03.2021	43.0	22.0	5.6	11.3	0.39	
7	23.03.2021	49.0	26.4	6.2	14.5	0.41	
8	25.03.2021	45.0	24.5	6.7	13.2	0.44	
Mo	nthly Average	46.0	24.3	6.8	14.0	0.40	
CFCB, New Delhi AAQ Standard		100	60	80	80	4	
Testing Method		Gravimetric IS 5182: Part 23	Gravimetric EPA CFR-40 (pt 50) Appendix-1	Improved West & Geske Method IS 5182 (Part-2) RA2006	Modified Jacob & Hochheiser Metbod IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method IS 5182 (Part-10):1999	

Any unusual feature during determination: Nil

Remarks: (All the values of PM-16, PM-25, SO2, NOx & CO presented in row no 1-8 are Time Weighted Average.)

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

· Infrastructure Enginering

- Water Resource Management
- · Environmental & Social Study
- Surface & Sub-Surface Investigation
- Quality Control & Project Management
- · Renewable Energy
- Agricultural Development
- · Information Technology
- · Public Health Engineering
- Mine Planning & Design
- Mineral/Sub-Soil Exploration

Microbiology Lab Wiste Management Services

Laboratory Services Food Lab

Material Lab Sell Lab

Minoral Lab

Test Report No: ENVLAB/20/R-9388

Date: 31.03.2021

TEST REPORT

Customer Name & Address :

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada,

SAMPLE DETAILS

Sample Location & Code	S8: Chandragiri	Sampled by	VCSPL'S Representative
Sample Description	Ambient Air	Sampling Procedure	IS 5182.
Sample Source	Baphlimali Mines, UAIL	Sample Received on	03.03.2021, 05.03.2021, 10.03.2021, 12.03.2021, 17.03.2021, 19.03.2021, 24.03.2021, 26.03.2021
Sample Condition	Gaseous Sample Solution Refrigerated	Latitude : N 19°23.107' Longitude : E 82°59.221' Altitude : 656.54 m	
Sampling Date	02.03.2021, 04.03.2021, 09.03.2021, 11.03.2021, 16.03.2021, 18.03.2021, 23.03.2021, 25.03.2021	Test Completed on	06.03.2021 to 30.03.2021

		Parameters				
SI. No. Sampling Date		Particulate Matter as PM ₁₉ (µg/m³)	Particulate Matter as PM _{2.5} (µg/m³)	Sulphur Dioxide as SO ₂ (µg/m³)	Oxides of Nitrogen as NOx (µg/m²)	CO (mg/m³)
1	02.03.2021	51.0	26.4	5.8	13.2	0.44
2	04.03.2021	44.0	23.1	6.4	15.0	0.38
3	09.03.2021	47.0	24.8	8.1	17.6	0.36
4	11.03.2021	42.0	21.6	6.7	14.4	0.29
5	16.03.2021	45.0	23.7	7.3	16.2	0.34
6	18.03.2021	40.0	20.5	5.5	13.7	0.37
7	23.03.2021	47.0	25.0	6.3	14.8	0.41
8	25.03.2021	52.0	27.3	6.7	15.3	0.36
Mo	onthly Average	46.0	24.1	6.6	15.0	0.37
	PCB, New Delhi AAQ Standard	100	60	80	80	4
Testing Method		Gravimetric IS 5182: Part 23	Gravimetrie EPA CFR-40 (pt-50) Appendix-1	Improved West & Geake Method IS 5182 (Part-2) RA2006	Modified Jacob & Hochheiser Method IS 5182 (Part-6) RA2006	Non Dispersive Infrared Method IS 5182 (Part-10):1999

Any unusual feature during determination: Nil

Remarks: (All the values of PM-16, PM-25, SO2, NOx & CO presented in row no 1-8 are Time Weighted Average.)

ANNEXURE: 6

Stream Flow rate monitoring report

(An Enviro Engineering Consulting Cell) (ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

Test Report No: ENVLAB/20/R-5214

Date: 06.11.2020

TEST REPORT

Customer Name & Address

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Location & Code	*Stream flow	Sampled by	VCSPL'S Representative
Sample Name		Sampling Procedure	NA .
Sample Source	Baphimali Mines, UAIL	Sample Received on	NA.

SL. No	Dute of Sampling	Stream Location	GPS Co-ordinate	Stream Flow (m ⁵ /hr)	Stream flow (Cusec)
1	07.10.2020	Paikupakhala Nala	Latitude: N19°20.056° Longitude: E82°59.776° Attitude: 823.26 m.	1,320	12.95
2	07.10.2020	Near Dandabada Nala	Latitude: N19°22.940° Longitude: E82°57.515° Altitude: 698.30 m.	9,990	98.00
3	97.19.2020	Chandragiri Nala	Latitude: N19°23.078' Longitude: E83°0.248' Altitude: 660.50 m.	35,100	344.32
4	07.19.2020	Mishripada Nala	Latitude: N19°22.829° Longitude: E82°59,268° Altitude: 637.95 m.	2,436	23.90

*This parameter not in our NABL Scope

*** End Report***

Remarks:

- 1. The Test result is relevant only to the item tested.
- 2. This report shall not be reproduced in full or part without written approval of Visiontek consultancy services.(P) Ltd.
- 3. The laboratory is not responsible for the authenticity of photocopied test expert.
- 4. The test item will not be retained for more than 15 days from the date of issue of test upon except in case as required by applicable regulations.
- 5. The laboratory's responsibility under this report is limited to; proven willful negligence.

(An Enviro Engineering Consulting Cell) (ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

NABL ACCREDITED Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

Test Report No: ENVLAB/20/R-6651

Date: 07.12,2020

TEST REPORT

Customer Name & Address

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Location & Code	*Stream flow	Sampled by	VCSPL'S Representative
Sample Name		Sampling Procedure	NA
Sample Source	Baphlimali Mines, UAII.	Sample Received on	NA

SL. No	Date of Sampling	Stream Location	GPS Co-ordinate	Stream Flow (m ³ /hr)	Stream flow (Cusec)
1	25.11.2020	Paikupakhala Nala	Latitude: N19°20.056° Longitude: E82°59.776° Altitude: 823.26 m.	1,080	10.59
2	25.11.2020	Near Dandabada Nala	Latitude: N19°22,940' Longitude: E82°57,515' Altitude: 698,30 m.	6,090	59,74
3	25.11.2020	Chandragiri Nala	Latitude: N19°23.078' Longitude: E83°0.248' Altitude: 660.50 m.	24,180	237.20
4	25,11,2020	Mishripada Nala	Latitude: N19°22.829' Longitude: E82°59.268' Altitude: 637.95 m.	900	8.83

"This parameter not in our NABL Scope

e** End Report***

- 1. The Test result is relevant only to the item tested.
- 2, This report shall not be reproduced in full or part without written approval of Visiontek ennsultancy services (P) Ltd
- 3. The laboratory is not emponsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the chite of issue of test report except in case as required by applicable regulations.
- The laboratory's responsibility under this report is limited to, proven willful negligence.

(An Enviro Engineering Consulting Cell)

Date: 05.01.2021

ISO 9001: 2015 ISO 14001:2615 ISO 45001:2018 (OB&S) ISO/IEC 17025:2005

Test Report No: ENVLAB/20/R-6862

TEST REPORT

Customer Name & Address

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLEDETAILS

Sample Location & Code	Stream flow	Sampled by	VCSPL'S Representative
Sample Name	Surface Water	Sampling Procedure	NA
Sample Source	Baphlimali Mines, UAIL	Sample Received on	NA

SL. No	Date of Sampling	Stream Location	GPS Co-ordinate	Stream Flow (m ² /hr)	Stream flow (Cusec)
1	14.12.2020	Paikupakhala Nala	Latitude: N19°20.056° Longitude: E82°59.776° Altitude: 823.26 m.	624	6.12
2	14.12.2020	Near Dandabada Nala	Latitude: N19°22.940° Longitude: E82°57.515° Altitude: 698.30 m.	5,040	49,44
3	14.12.2020	Chandragiri Nala	Latitude: N19°23.078° Longitude: E83°0.248° Altitude: 660.50 m.	14,700	144.20
4	14.12.2020	Mishripada Nala	Latitude: N19°22.829° Longitude: E82°59.268° Altitude: 637.95 m.	960	9.42

*** End Report***

Remarks:

- The Test result is relevant only to the item tested.
- 2. This report shall not be reproduced in full or part without written approval of Visionick consultancy services. (P) Ltd.
- 3. The laboratory is not responsible for the authenticity of photocopied test report,
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.
- 5. The laboratory's responsibility under this report is limited to; proven willful negligence.

Water Resource Management

6 Environmental & Social Study

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for : ISO 9001;2015, ISO 14001;2015, ISO 45001;2018 (OH&S), ISO/IEC 17025;2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Surface & Suh-Surface Investigation
- Quality Control & Project Management
- Renewable Energy
- Agricultural Development
- · Information Technology
- · Public Health Engineering
- Mine Planning & Design
- Mineral/Sub-Soil Exploration Waste Management Services

Environment Lab Food Lab Manurist Lub Soil Lab Minoral Lab

Laboratory Services

Microbiology Lab

Test Report No: ENVLAB/20/R-8123

Date: 05.02,2021

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd. Tikiri, Rayagada, Odisha

Sample Location & Code	Stream flow	Sampled by	VCSPL'S Representative
Sample Name	Surface Water	Sampling Procedure	NA
Sample Source	Baphlimali Mines, UAIL	Sample Received on	NA

SL. No	Date of Sampling	Stream Location	GPS Cs-ordinate	Stream Flow (m ³ /hr)	Stream flow (Cusec)
1	25.01.2021	Paikupakhala Nala	Latitude: N19°20.056° Longitude: E82°59.776° Altitude: 823.26 m.	73.2	0.72
2	25.01.2021	Near Dandabada Nala	Latitude: N19°22.940° Longitude: E82°57.515° Altitude: 698.30 m.	1035.0	10.15
3	25.01.2021	Chandragiri Nala	Latitude: N19°23.078° Longitude: E83°0.248' Altitude: 660.50 m.	3600.0	35.31
4	25.01.2021	Mishripada Nala	Latitude: N19°22.829° Longitude: E82°59.268° Altitude: 637.95 m.	378.0	3.71

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Surface & Sul-Surface Investigation @Agricultural Development

@ Public Health Engineering

· Mine Planning & Design Mineral Sub-Soil Exploration

· Infrastructure Enginering e Water Resource Management

· Environmental & Social Study

Quality Control & Project Management

· Renewable Energy

Information Technology

· Waste Management Services

Mineral Lab & Microbiology Lab

Naterial Lab Neil Lab

Laboratory Services Environment Lab Food Lab

Test Report No: ENVLAB/20/R-8716

Date: 04.03.2021

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	Stream flow	Sampled by	VCSPL'S Representative
Sample Name	Surface Water	Sampling Procedure	NA
Sample Source	Baphlimali Mines, UAIL	Sample Received on	NA.

SL. No	Date of Sampling	Stream Location	GPS Co-ordinate	Stream Flow (m ³ /hr)	Stream flow (Cusec)
1	18.02.2021	Paikupakhala Nala	Latitude: N19°20.056° Longitude: E82°59.776° Altitude: 823.26 m.	43.2	0.423
2	18.02.2021	Near Dandabada Nala	Latitude: N19°22.940' Longitude: E82°57.515' Altitude: 698.30 m.	324.0	3.18
3	18,02,2021	Chandragiri Nala	Latitude: N19°23.078' Longitude: F83°0.248' Altitude: 660.50 m.	2880.0	28.25
4	18.02.2021	Mishripada Nala	Latitude: N19°22.829' Longitude: E82°59.268' Altitude: 637.95 m.	216.0	2.12

Water Resource Management

· Environmental & Social Study

isiontek Consultancy Services Pvt. Ltd.
(Committed For Better Environment)
(Laboratory Services)

· Agricultural Development

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation.

· Quality Control & Project Management

 Information Technology Public Health Engineering · Renewable Energy

Mine Planning & Design

 Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Feed Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Test Report No: ENVLAB/20/R-9397

Date: 31.03.2021

TEST REPORT

Customer Name & Address

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	Stream flow	Sampled by	VCSPL'S Representativ	
Sample Name	Surface Water	Sampling Procedure	NA	
Sample Source	Baphlimali Mines, UAIL	Sample Received on	NA	

SL. No	Date of Sampling	Stream Location	GPS Co-ordinate	Stream Flow (m ⁵ /hr)	Stream flow (Cusec)
1	25.03.2021	Paikupakhala Nata	Latitude: N19°20.056' Longitude: E82°59.776' Altitude: 823.26 m.	960.0	9.42
2	25.03,2021	Near Dandabada Nala	Latitude: N19°22.940' Longitude: E82°57.515' Altitude: 698.30 m.	4200.0	41.20
3	25.03.2621	Chandragiri Nala	Latitude: N19°23,078' Longitude: E83°0,248' Altitude: 660,50 m.	10800.0	105.95
4	25.03.2021	Mishripada Nala	Latitude: N19°22.829° Longitude: E82°59.268° Altitude: 637.95 m.	6600.0	64.75

ANNEXURE: 7

Surface Water Quality Analysis Result

Siontek Consultancy Services Pvt. Ltd. (An Enviro Engineering Consulting Cell) (ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

NABL-ACCREDITED Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

Test Report No: Envlab/20/R-5212

Date: 06.11.2020

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	SWI: Sana River (Up Stream) SW2: Sana River (Down Stream)	Sampled by	VCSPL'S Representative
Sample description	Surface Water	Sampling Procedure	IS 1060
Sample Source	Baphlimali Mines, UAIL	Sample Received on	10.10.2020
Sample Condition	Scaled Plastic & Sterilized Glass Bottle	Latitude: N19"17.015" Longitude: E83"0.879" Altitude: 707.14 m.	Latitude: N19°16.602' Longitude: E82°59.812' Altitude: 725.73 m.
Sampling Date	09.10.2020	Test Completed on	16.10.2020

Sl. No	Parameters	Units	Standards as per IS 2296-Class C	Test methods	SW-1	SW-2
1	*Color	Hazen, max	300	APHA 2120 B	10.0	20.0
2	*Odour		Agreeable	APHA 2150 B	Agreeable	Agreeable
3	pH value	1742	6.5-8.5	APHA 4500 H'B	6.81	7.78
4	Suspended Solids(as SS)	mg/l, max		APHA 2540 D	44.0	71.0
5	Total dissolved solids(as TDS)	mg/l, max	1500	APHA 2540 C	186.0	279.0
6	*Temperature	"c	-	-	26.0	26.0
7	Conductivity	µs/cm		APHA 2510 C	304.0	461.0
8	Ammonical Nitrogen (as NH4-N)	mg/l, max		APHA4500 NH ₂ B	1.62	2.92
9	Total Kjeldahl Nitrogen (as N)	mg/l, max	-	APHA4500N _{GRS} B	2.17	3.76
10	Oil & Grease	mg/l, max	0.1	APHA 5220 B	ND	ND
11	*Free Ammonia (as NH ₃)	mg/l, max		-	ND	ND
12	*Total Residual Chlorine (as RFC)	mg/l, min		APHA 4500 CLB	ND	ND
13	Iron (as Fe)	mg/l, nux	50	APHA 3500 Fe B	1,42	3.19
14	Copper (as Cu)	mg/l, max	1.5	APHA 3111CuB	< 0.05	< 0.05
15	*Fluoride (as F)	mg/l, mex	1.5	APHA 4500 FTD	0.49	1.74
16	*Hexavalent Chromium (as Cr*6)	mg/l, max	8.05	APHA 3500 Cr B	<0.05	<0.05
17	°Cyanide (as CN)	mg/l, mux	0.05	APHA 4500 CN E	< 0.01	< 0.01
18	Dissolved Oxygen (as DO)	mg/l, min	4	APHA 4500 O C	6.7	5.6
19	*Sulphide (as S)	mg/l, max		APHA 4500 S ² - F	< 0.005	< 0.005
20	*Nitrate (as NO ₃)	mg/l, max	50	APHA 4500NO3-B	2.23	3.79
21	*Phenolic Compound (as C ₆ H ₅ OH)	mg/l, max	-	APHA 5530 C	<0.001	< 0.001
22	*Selenium (as S)	mg/l, max	0.05	APHA 3500 Se C	< 0.01	< 0.01
23	Manganese (as Mn)	mg/l, mux	-	APHA 311) B	<0.1	< 0.1
24	*Bio-assay Test	mg/l, max	90% Survival of fish after 96 hrs in 100% effluent	IS 6582	91.0	90.0
25	Zinc (as Zn)	mg/l, max	15	APHA 3111 B	0.34	0.69
26	Cadmium	mg/l, mux	0.01	APHA 3111 B	<0.01	<0.01
27	Chemical Oxygen Denund (as COD)	mg/l, max		APHA 5220 B	11.0 -	52.0
28	Lead (as Pb)	mg/l, max	0,1	APHA 3111 B	< 0.1	< 0.1

isiontek Consultancy Services Pvt. Ltd. (An Enviro Engineering Consulting Cell)

(ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

NABL ACCREDITED

Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

Anv	unusual feature observed during deter	emination			N	11
34	*Dissolved Phosphate (as PO ₄)	mg/l, max	-	APHA 4500 P D	0.54	1.89
33	Biochemical Oxygen Demand (as, BOD at 27°C For 3 days)	mg/l, max	3	IS3025(P-44)1593 RA 2003	2,6	2.3
32	Total Chromium (as TCr)	mg/l, max	-	APHA 3111 B	< 0.1	< 0.1
31	*Arsenic (as As)	mg/l, max	0.2	APHA 3500 As B	< 0.005	< 0.005
30	Nickel (as Ni)	mg/l, max	-	APHA 3111 B	< 0.1	<0.1
29	Mercury (as Hg)	mg/l, max	-	APHA 3112 B	< 0.004	< 0.004

^{*}This parameter not in our NABL Scope

*** End Report***

Remerker

- 1. The Test result is relevant only to the item tested.
- 2, This report shall not be reproduced in full or part without written approval of Visiontek consultancy services.(P) Ltd
- 3. The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.
- 5. The laboratory's responsibility under this report is limited to; proven willful negligence.

isiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

(ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

NABL ACCREDITED Certificate No.: TC-7944

Formut No.: VCSPL/FMT/055

Date: 06.11.2020

Test Report No: Envlab/20/R-5213

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	SW3: Kandahindha(Up Stream) SW4: Kandahindha(Down Stream)	Sampled by	VCSPL'S Representative	
Sample description	Surface Water	Sampling Procedure	IS 1060	
Sample Source	Baphlimali Mines, UAII.	Sample Received on	10,10,2020	
Sample Condition	Sealed Plastic & Sterilized Glass Bottle	Latitude: N19"22.014" Longitude:E83"84.658" Altitude: 769.01 m.	Latitude: N19°23.078° Longitude: E83°0.248° Altitude: 660.50 m.	
Sampling Date	09.10.2020	Test Completed on	16.10.2020	

SI. No	Parameters	Units	Standards as per IS 2296-Class C	Test methods	SW-3	SW-4
1	"Color	Hazen, max	300	APHA 2120 B	10.0	15.8
2	*Odour		Agreeable	APHA 2150 B	Agreeable	Agreeable
3	pH value		6.5-8.5	APHA 4500 H'B	7.07	7.69
4	Suspended Solids(as SS)	mg/l, max		APHA 2540 D	40.0	67.0
5	Total dissolved solids(as TDS)	mg/l, max	1500	APHA 2540 C	202.0	296.0
6	*Temperature	"c	-	-	25.0	26.0
7	Conductivity	µs/cm	-	APHA 2510 C	329.0	472.0
8	Ammonical Nitrogen (as NH4-N)	mg/l, max		APHA4500 NHJB	2.26	4.74
9	Total Kjeldahl Nitrogen (as N)	mg/l, max	-	APHA4500N _{ma} B	3.37	5.09
10	Oil & Grease	mg/l, max	0.1	APHA 5220 B	ND	ND
11	*Free Ammonia (as NH ₃)	mg/l, max		-	ND	ND
12	*Total Residual Chlorine (as RFC)	mg/l, min		APHA 4500 CLB	ND	ND
13	Iron (as Fe)	mg/l, max	50	APHA 3500 Fe B	1.80	3.12
14	Copper (as Cu)	mg/l, max	1.5	APHA 3111Cu B	< 0.05	< 0.05
15	*Fluoride (as F)	mg/l, max	1.5	APHA 4500 FD	0.66	0.79
16	⁹ Hexavalent Chromium (as Cr ⁺⁶)	mg/l, max	0.05	APHA 3500 CYB	< 0.05	< 0.05
17	*Cyanide (as CN)	mg/l, max	0.05	APHA 4500 CN E	< 0.01	< 0.01
18	Dissolved Oxygen (as DO)	mg/l, min	4	APHA 4500 O C	6.3	5.8
19	*Sulphide (as S)	mg/l, max	-	APHA 4500 S2 F	< 0.005	< 0.005
20	*Nitrate (as NO ₃)	mg/l, max	50	APHA 4500NC3-B	2.47	4.26
21	*Phenolic Compound (as C ₆ H ₅ OH)	mg/l, max	-	APHA 5530 C	< 0.001	< 0.001
22	*Selenium (as S)	mg/l, max	0.05	APHA 3500 Se C	< 0.01	< 0.01
23	Manganese (as Mn)	mg/l, max	-	APHA 3111 B	< 0.1	<0.1
24	*Bio-assay Test	mg/l, max	90% Survival of fish after 96 hrs in 100% effluent	IS 6582	93.0	90.0
25	Zinc (as Zn)	mg/l, max	15	APHA 3111 B	0.57	0.81
26	Cadmium	mg/l, max	0.01	APHA 3111 B	<0.01	< 0.01
27	Chemical Oxygen Demand (as COD)	mg/l, max	-	APHA 5220 B	18.0 -	44.0
28	Lead (as Pb)	mg/l, max	0.1	APHA 3111 B	<0.1	<0.1

siontek Consultancy Services Pvt. Ltd. (An Enviro Engineering Consulting Cell)

(ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

NABL ACCREDITED

Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

Any unusual feature observed during determination				Nil		
34	*Dissolved Phosphate (as PO ₄)	mg/l, max	-	APHA 4500 P D	0.31	1.83
33	Biochemical Oxygen Demand (as BOD at 27°C For 3 days)	mg/l, max	3	IS3025(P-44)1993 RA 2003	1.9	2.7
32	Total Chromium (as TCr)	mg/l, max	22	APHA 3111 B	<0.1	<0.1
31	*Arsenic (as As)	mg/l, max	0.2	APHA 3500 As B	< 0.005	< 0.005
30	Nickel (as Ni)	mg/l, max	**	APRA 3111 B	<0.1	<0.1
29	Mercury (as Hg)	mg/l, max	_	APHA 3112 B	< 0.004	< 0.004

^{*}This parameter not in our NABL Scope

*** End Report***

Remarks:

- 1. The Test result is relevant only to the item tested.
- 2, This report shall not be reproduced in full or part without written approval of Visionek consultancy services.(P) Ltd
- 3. The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.
- 5. The laboratory's responsibility under this report is limited to; proven willful negligence.

(An Enviro Engineering Consulting Cell)
(ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

Date: 07.12.2020

Test Report No: Envlab/20/R-6640

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Location & Code	SW1: Sana River (Up Stream) SW2: Sana River (Down Stream)	Sampled by	VCSPL'S Representative	
Sample description	Surface Water	Sampling Procedure	IS 1060	
Sample Source	Baphlimali Mines, UAIL	Sample Received on	26,11,2020	
Sample Condition	Sealed Plastic & Sterilized Glass Bottle	Latitude: N19°17.015' Longitude: E83°0.879' Altitude: 707.14 m.	Latitude: N19°16.602' Longitude: E82°59.812' Altitude: 725.73 m.	
Sampling Date	25.11.2020	Test Completed on	03,12,2020	

SL No	Parameters	Units	Standards as per IS 2296-Class C	Test methods	SW-1	SW-2
1	*Color	Hazen, max	300	APHA 2120 B	10.0	15.0
2	*Odour	**	Agrecable	APHA 2150 B	Agreeable	Agreeable
3	pH value	-	6.5-8.5	APHA 4500 H*B	7.24	7.78
4	Suspended Solids(as SS)	mg/l, max	-	APHA 2540 D	38.0	53.0
5	Total dissolved solids(as TDS)	mg/l, max	1500	APHA 2540 C	167.0	253.0
6	*Temperature	°c	-	-	25.0	25.0
7	Conductivity	µs/cm	-	APHA 2510 C	289.0	441.0
8	Ammonical Nitrogen (as NH -N)	mg/l, max		APHA4500 NH ₂ B	1.38	3.17
9	Total Kieldahl Nitrogen (as N)	mg/l, max		APHA4500NondB	2.40	3.93
10	Oil & Grease	mg/l, max	0.1	APHA 5220 B	ND	ND
11	*Free Ammonia (as NH ₃)	mg/l, max	-	-	ND	ND
12	*Total Residual Chiorine (as RFC)	mg/l, min		APHA 4500 C1 B	ND	ND
13	Iron (as Fe)	mg/l, max	50	APHA 3500 Fe B	1.64	3,96
14	Copper (as Cu)	mg/l, max	1.5	APHA 3111Cu B	< 0.05	< 0.05
15	*Fluoride (as F)	mg/l, max	1.5	APHA 4500 FD	0.57	1.52
16	*Hexavalent Chromium (as Cr*6)	mg/l, max	0.05	APHA 3500 Cr B	<0.05	< 0.05
17	*Cyanide (as CN)	mg/l, max	0.05	APHA 4500 CN E	< 0.01	< 0.01
18	Dissolved Oxygen (as DO)	mg/l, min	4	APHA 4500 O C	6.5	5,9
19	*Sulphide (as S)	mg/l, max		APEIA 4500 S ² * F	<0.005	<0.005
20	*Nitrate (as NO ₃)	mg/l, max	50	APRA 4500NO3-B	2,38	4.15
21	*Phenolic Compound (as C6H6OH)	mg/l, max	-	APHA 5530 C	<0.001	<0.001
22	*Selenium (as S)	mg/l, max	0.05	APHA 3500 Se C	< 0.01	< 0.01
23	Manganese (as Mn)	mg/l, max	-	APHA 3111 B	<0.1	<0.1
24	*Bio-assay Test	mg/l, max	90% Survival of fish after 96 hrs in 100% effluent	TS 6382	93.0	90.0
25	Zinc (as Zn)	mg/l, max	15	APHA 3111 B	0,28	0.83
26	Cadmium	mg/l, max	0.01	APHA 3111B	<0.01	< 0.01
27	Chemical Oxygen Demand (as COD)	mg/l, max	**	APHA 5220 B	14.0	65.0
28	Lead (as Pb)	mg/l, max	0.1	APHA 3111 B	STEK (90.1

Committed For Rotter Environment

(An Enviro Engineering Consulting Cell)
(ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

NABL ACCREDITED

Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

Nil

9	Mercury (as Hg)	mg/l, max	-	APHA 3112 B	<0.004	< 0.004
0	Nickel (as Ni)	mg/l, max	4	APBA 3111 B	<0.1	<0.1
1	*Arsenic (as As)	mg/l, max	0.2	APHA 3500 Ax B	< 0.005	< 0.005
2	Total Chromium (as TCr)	mg/l, max	**	APBA 3111 B	<0.1	<0.1
3	Biochemical Oxygen Demand (as BOD at 27 ⁶ C For 3 days)	mg/l, max	3	183025(P-44)1993 RA 2003	2.0	1.6
4	*Dissolved Phosphate (as PO ₄)	mg/l, max	22	APEA 4500 P D	0.49	1.70

*This parameter not in our NABL Scope

Any unusual feature observed during determination

*** End Report***

Remarks

- 1. The Test result is relevant only to the item tested
- 2. This report sitali not be reproduced in full or part without written approval of Visientek consultancy services.(F) Ltd.
- 3. The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.
- 3. The laboratory's responsibility under this report is limited to, proven willful negligence.

(An Enviro Engineering Consulting Cell) (ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944

Format No.: VCSPL/FMT/055

Test Report No: Envlab/20/R-6641

Date: 07,12,2020

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

Sample Location & Code	SW3: Kandahindha(Up Stream) SW4: Kandahindha(Down Stream)	Sampled by	VCSPL'S Representative
Sample description	Surface Water	Sampling Procedure	IS 1060
Sample Source	Baphlimali Mines, UAIL	Sample Received on	26.11.2020
Sample Condition	Sealed Plastic & Sterilized Glass Bottle	Latitude: N19°22.014' Longitude:E83°04.658' Altitude: 769.01 m.	Latitude: N19°23.078' Longitude: E83°0.248' Altitude: 660.50 m.
Sampling Date	25.11.2020	Test Completed on	03.12.2020

SL No	Parameters	Units	Standards as per IS 2296-Class C	Test methods	SW-3	SW-4
1	*Color	Hazen, max	300	APHA 2120 B	10.0	15.0
2	*Odour		Agreeable	APHA 2150 B	Agreeable	Agreeable
3	pH value	**	6,5-8,5	APHA 4500 H'B	7.15	7.54
4	Suspended Solids(as SS)	mg/l, max		APSIA 2540 D	32.0	72.0
5	Total dissolved solids(as TDS)	mg/l, max	1500	APHA 2540 C	229.0	283.0
6	*Temperature	°c	_	-	25.0	25.0
7	Conductivity	μs/cm	_	APHA 2510 C	344.0	461.0
8	Ammonical Nitrogen (as NH ₄ -N)	mg/l, max		АРНА4500 NH ₆ B	2.63	4.19
9	Total Kjeldahl Nitrogen (as N)	mg/l, max		APHA4500NossB	3.14	5.25
10	Oil & Grease	mg/L, max	0.1	APHA 5220 B	ND	ND
11	*Free Ammonia (as NH3)	mg/l, max	-	+	ND	ND
12	*Total Residual Chlorine (as RFC)	mg/l, min	-	APHA 4500 CLB	ND	ND
13	Iron (as Fe)	mg/l, max	50	APHA 3500 Fe B	1.59	3,77
14	Copper (as Cu)	mg/l, max	1.5	APHA STIIC6 B	<0.05	<0.05
15	"Fluoride (as F)	mg/l, max	1,5	APHA 4500 FD	0.51	0.95
16	*Hexavalent Chromium (as Cr+6)	mg/l, max	0.05	APHA 3500 Cr B	< 0.05	< 0.05
17	"Cyanide (as CN)	mg/l, max	0.05	APILA 4500 CN II	<0.01	<0.01
18	Dissolved Oxygen (as DO)	mg/l, min	4	APHA 4500 OC	6.6	5,9
19	*Sulphide (as S)	mg/l, max		APHA 4500 8 ³ F	< 0.005	< 0.005
20	*Nitrate (as NO ₅)	mg/l, max	50	APHA 4500NO3-B	2.84	4.60
21	*Phenolic Compound (as C ₆ H ₅ OH)	mg/l, max		APHA 5530 C	< 0.001	< 0.001
22	*Selenium (as S)	mg/l, max	0,05	APHA 3500 Se C	< 0.01	< 0.01
23	Manganese (as Mn)	mg/l, max	-	APHA 3111 B	<0.1	<0.1
24	*Bio-assay Test	mg/l, max	90% Survival of fish after 96 hrs in 100% effluent	TS 8582	94.0	92.0
25	Zinc (as Zn)	mg/l, max	15	APHA 3111 B	0.46	0.77
26	Cadmium	mg/L, max	0,01	APHA 3111 B	<0.01	<0.01
27	Chemical Oxygen Demand (as COD)	mg/l, max	-	APHA 5220 B	14.0	49.0
28	Lead (as Pb)	mg/l, max	0.1	APHA 3111 B	50.4 ATE	00:001

(An Enviro Engineering Consulting Cell)
(ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

NABL ACCREDITED

Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

Any unusual feature observed during determination						iii
34	*Dissolved Phosphate (as PO ₄)	mg/l, max	-	APRA 4500 P D	0,38	1.56
33	Biochemical Oxygen Demand (as BOD at 27 ⁸ C For 3 days)	mg/l, max	3	(83025(P-44)1993 RA 2003	2.4	2.8
32	Total Chromium (as TCr)	mg/l, max	77	VEHV 3111 B	<0.1	<0.1
31	*Arsenic (as As)	mg/l, max	0.2	APHA 3500 As B	< 0.005	< 0.005
30	Nickel (as Ni)	mg/l, max	=	APHA 3111 B	<0,1	<0.1
29	Mercury (as Hg)	mg/l, max	2	APIIA 3112 B	<0.004	<0.004

^{*}This parameter not in our NABL Scope

*** End Report***

Remarks:

- 1. The Test result is relevant only to the item tested
- 2, This report shall not be reproduced in full or part without written approval of Visioniek consultancy services.(P) Ltd.
- 3. The laboratory is not responsible for the authenticity of photocopted test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.
- 5. The laboratory's responsibility under this report is limited to, proven willful negligence.

(An Enviro Engineering Consulting Cell)

Date: 05.01.2021

1SO 9801: 2015 1SO 14011:2015 1SO 45001:2013 (OH&S) 1SO/IEC 17025:2005

Test Report No: Enviab/20/R-6860

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Location & Code	SW1: Sana River (Up Stream) SW2: Sana River (Down Stream)	Sampled by	VCSPL'S Representative
Sample description	Surface Water	Sampling Procedure	APHA 1060
Sample Source	Baphlimali Mines, UAIL	Sample Received on	15.12.2020
Sample Condition	Sealed Plastic & Sterilized Glass Bottle	Latitude: N19°17.015' Longitude: E83°0.879' Altitude: 707.14 m.	Latitude: N19°16.602° Longitude: E82°59.812° Altitude: 725.73 m.
Sampling Date	14.12.2020	Test Completed on	21.12.2020

SL No	Parameters	Units	Standards as per IS 2296-Class C	Test methods	SW-1	SW-2
1	Color	Hazen, max	300	APHA 2120 B	10.0	15.0
2	Odour		Agreeable	APHA 2150 B	Agreeable	Agreeable
3	pH value	**	6.5-8.5	APHA 4500 H'B	7.47	7.64
4	Suspended Solids(as SS)	mg/l, max	-	APIEA 2540 D	66.0	80.0
5	Total dissolved solids(as TDS)	mg/l, max	1500	APHA 2540 C	180.0	239.0
6	Temperature	0°C	-	-	25.0	25.0
7	Conductivity	µs/cm	-	APHA 2510 C	324.0	377.0
8	Ammonical Nitrogen (as NH4-N)	mg/l, max	-	APHA4500 NHJB	1.65	3.64
9	Total Kjeldahl Nitrogen (as N)	mg/l, max	-	APHA4500N ₀₈₀ B	2.49	2.85
10	Oil & Grease	mg/l, max	0.1	APHA 5220 B	ND	ND
11	Free Ammonia (as NH ₃)	mg/l, max	_	-	ND	ND
12	Total Residual Chlorine (as RFC)	mg/l, min	-	APHA 4500 CLB	ND	ND
13	Iron (as Fe)	mg/l, max	50	APHA 3500 Fe B	1.79	3.18
14	Copper (as Cu)	mg/l, max	1.5	APHA 3111Cu B	< 0.05	<0.05
15	Fluoride (as F)	mg/l, max	1.5	APHA 4500 FD	0.74	1.27
16	Hexavalent Chromium (as Cr ⁺⁰)	mg/l, max	0.05	APHA 3500 Cr B	< 0.05	< 0.05
17	Cyanide (as CN)	mg/l, max	0.05	APHA 4500 CN E	<0.01	< 0.01
18	Dissolved Oxygen (as DO)	mg/l, min	4	APHA 4500 O C	6.3	6,1
19	Sulphide (as S)	mg/l, max	-	APHA 4500 S ² - F	< 0.005	< 0.005
20	Nitrate (as NO ₃)	mg/l, max	50	APHA 4500NO3-B	2.92	3.39
21	Phenolic Compound (as C ₆ H ₅ OH)	mg/l, max	-	APHA 5530 C	< 0.001	< 0.001
22	Selenium (as S)	mg/l, max	0.05	APHA 3500 Se C	<0.01	< 0.01
23	Manganese (as Mn)	mg/l, max	-	APHA 3111 B	<0.1	<9.1
24	Bio-assay Test	mg/l, max	90% Survival of fish after 96 hrs in 100% effluent	IS 6582	94.0	91.0
25	Zine (as Zn)	mg/l, max	15	APHA 3111 B	0.31	0.69
26	Cadmium	mg/l, max	0.01	APHA 3111 B	< 0.01	< 0.01
27	Chemical Oxygen Demand (as COD)	mg/l, max	-	APHA 5220 B	11.0	65.0
28	Lead (as Pb)	mg/l, max	0.1	APHA 3111 B	Wiley s	<0.1

UO15: 10et V-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel : 06 N 355 E-mail : visiontek@vespl.org, visiontekin@gmail.com, visiontekin@yahoo.co.in, Visit us at: www.vespl.org

150 9001: 2015

ISO 45001:2018 (OE&S) ISU/IEC 17025:2005

(An Enviro Engineering Consulting Cell)

29	Mercury (as Hg)	mg/l, max	-	APHA 3112 B	< 0.004	< 0.004
30	Nickel (as Ni)	mg/l, max	-	APHA 3111 B	<0.1	<0.1
31	Arsenic (as As)	mg/l, max	0.2	APHA 3500 As B	< 0.005	< 0.005
32	Total Chromium (as Cr)	mg/l, max		APHA 3111 B	<0.1	< 0.1
33	Biochemical Oxygen Demand (as BOD at 27°C For 3 days)	mg/l, max	3	IS3025(P-44)1993 RA 2003	2.4	2.8
34	Dissolved Phosphate (as PO ₄)	mg/l, max	-	APHA 4500 P D	0.64	1.49

*** End Report***

Remarks:

TERMS AND CONDITION:-

1. The Test result is relevant only to the item tested.

Any unusual feature observed during determination

- 2. This report shall not be reproduced in full or part without written approval of Visiontek consultancy services. (P) Ltd.
- 3. The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.
- 5. The laboratory's responsibility under this report is limited to, proven willful negligence.

(An Enviro Engineering Consulting Cell)

Date: 05.01.2021

ISO 9001: 2015 ISO 14001; 2015 ISO 45001:2018 (OHAS) ISO/IEC 17025:2005

Test Report No: Enviab/20/R-6861

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Location & Code	SW3: Kandahindha(Up Stream) SW4: Kandahindha(Down Stream)	Sampled by	VCSPL'S Representative
Sample description	Surface Water	Sampling Procedure	APHA 1060
Sample Source	Baphlimali Mines, UAIL	Sample Received on	15.12.2020
Sample Condition	Sealed Plastic & Sterilized Glass Bottle	Latitude: N19°22.014' Longitude: E83°04.658' Altitude: 769.01 m.	Latitude: N19°23.078' Longitude: E83°0.248' Altitude: 660.50 m.
Sampling Date	14.12.2020	Test Completed on	21.12.2020

SI. No	Parameters	Units	Standards as per IS 2296-Class C	Test methods	SW-3	SW-4
1	Color	Hazen, max	300	APHA 2120 B	10.0	15.0
2	Odour	1227	Agreeable	APHA 2150 B	Agreeable	Agreeable
3	pH value		6.5-8.5	APHA 4500 H*B	7.23	7.69
4	Suspended Solids(as SS)	mg/l, max	-	APHA 2540 D	44.0	95.0
5	Total dissolved solids(as TDS)	mg/l, max	1500	APHA 2540 C	263.0	346.0
6	Temperature	⁰ c	-	-	25.0	25.0
7	Conductivity	μs/cm	22	APHA 2510 C	390.0	522.0
8	Ammonical Nitrogen (as NH ₄ -N)	mg/l, max	-	APHA4500 NH ₃ B	2.78	4.36
9	Total Kjeldahl Nitrogen (as N)	mg/l, max	100	APHA4500N _{DHO} B	3.55	4.90
10	Oil & Grease	mg/l, max	0.1	APHA 5220 B	ND	ND
11	Free Ammonia (as NH ₃)	mg/l, max			ND	ND
12	Total Residual Chlorine (as RFC)	mg/l, min	-	APHA 4500 CLB	ND	ND
13	Iron (as Fe)	mg/l, max	50	APHA 3500 Ft B	1.42	3.16
14	Copper (as Cu)	mg/l, max	1.5	APHA 3111Cn B	< 0.05	< 0.05
15	Fluoride (as F)	mg/l, max	1.5	APHA 4500 FD	0.78	1.03
16	Hexavalent Chromium (as Cr46)	mg/l, max	0.05	APHA 3500 Cr B	< 0.05	< 0.05
17	Cyanide (as CN)	mg/l, max	0.05	APHA 4500 CN E	< 0.01	<0.01
18	Dissolved Oxygen (as DO)	mg/l, min	4	APHA 4500 O C	6.4	5.7
19	Sulphide (as S)	mg/l, max		APHA 4500 S ²⁻ F	< 0.005	< 0.005
20	Nitrate (as NO ₃)	mg/l, max	50	APHA 4500NO3-B	3.12	4.84
21	Phenolic Compound (as C ₆ H ₅ OH) -	mg/l, max		APHA 5530 C	< 0.001	< 0.001
22	Selenium (as S)	mg/l, max	0.05	APHA 3500 Se C	< 0.01	<0.01
23	Manganese (as Mn)	mg/l, max		APHA 3111 B	< 0.1	<0.1
24	Bio-assay Test	mg/l, max	90% Survival of fish after 96 hrs in 100% effluent	IS 6582	93.0	90.0
25	Zinc (as Zn)	mg/l, max	15	APHA 3111 B	0.39	0.85
26	Cadmium	mg/l, max	0.01	APHA 3111 B	< 0.01	< 0.01
27	Chemical Oxygen Demand (as COD)	mg/l, max	_	APHA 5220 B	17.0	62.0
28	Lead (rePh)	mg/l, max	0.1	APHA 3111 B	<0.1 its	0.1

-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 0674. 1172 geil : visiontek@vespl.org, visiontekin@gmail.com, visiontekin@yahoo.co.in, Visit us at: www.vespl.@

Committed For Better Farmouncus

(An Enviro Engineering Consulting Cell)

150 9001: 2015 ISO 14001;2015 ISO 45001;2018 (OH&S) ISO/IEC 17025;2005

Any unusual feature observed during determination					N	il
34	Dissolved Phosphate (as PO ₄)	mg/l, max	(4))	APHA 4500 P D	0.52	1,77
33	Biochemical Oxygen Demand (as BOD at 27°C For 3 days)	mg/l, max	3.0	IS3025(P-44)1993 RA 2003	2,5	2.8
32	Total Chromium (as Cr)	mg/l, max		APHA 3111 B	<0.1	<0.1
31	Arsenic (as As)	mg/l, max	0.2	APHA 3500 As B	<0.005	< 0.005
30	Nickel (as Ni)	mg/l, max		APHA 3111 B	<0.1	<0.1
29	Mercury (as Hg)	mg/l, max	- TV	APHA 3112 B	<0.004	< 0.004

*** End Report***

Remarks:

- 1. The Test result is relevant only to the item tested.
- 2. This report shall not be reproduced in full or part without written approval of Visiontek consultancy services.(P) Ltd.
- The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.
- 5. The laboratory's responsibility under this report is limited to; proven willful negligence.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

· Agricultural Development Quality Centrel & Project Management Information Technology

 Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Date: 05.02.2021

Laboratory Services Environment Lab Food Lab Material Lab Soit Lab Mineral Lab

 Infrastructure Enginering · Water Resource Management Environmental & Social Study

· Renewable Energy

Public Health Engineering

& Microbiology Lab

Test Report No: Enviab/20/R-8119

TEST REPORT

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha Customer Name & Address SAMPLE DETAILS

Sample Location & Code	SW1: Sana River (Up Stream) SW2: Sana River (Down Stream)	Sampled by	VCSPL'S Representative
Sample Description	Surface Water	Sampling Procedure	APHA 1060
Sample Source	Baphlimali Mines, UAIL	Sample Received on	27.01.2021
Sample Condition	Scaled Plastic & Sterilized Glass Bottle	Latitude : N 19°17.015' Longitude : E 83°0.879'' Altitude : 707.14 m.	Latitude : N 19°16.692° Longitude : E 82°59.812° Altitude : 725.73 m.
Sampling Date	25.01.2021	Test Completed on	02.02.2021

SL No	Parameters	Units	Standards as per IS 2296-Class C	Test methods	SW-I	SW-2
1	Color	Hazen, max	300	APHA 2120 B	10	20
2	Odour	**	Agreeable	APHA 2150 B	Agrecable	Agreeable
3	pH value	++	6.5-8.5	APHA 4500 H°B	7.28	7.53
4	Suspended Solids	mg/l, max		APHA 2540 D	57.0	74.0
5	Total dissolved solids	mg/l, max	1500	APHA 2540 C	169.0	223.0
6	Temperature	°c			24.3	24.6
7	Conductivity	µs/cm		APHA 2510 C	281.0	345.0
8	Ammonical Nitrogen (as NH _C N)	mg/l, max		APHA4500 NH-B	1,42	3.2
9	Total Kjeldahl Nitrogen (as N)	mg/L max		APHA4500N _{ORG} B	2,2	3.76
148	Oil & Grease	mg/l, max	0.1	APITA 5220 B	ND	ND -
11	Free Ammonia (as NH ₃)	mg/l, max	***		ND	ND
12	Total Residual Chlorine (as RFC)	mg/l, min	-	APEIA 4500 CLB	ND	ND
13	Iron (as Fe)	mg/l, max	50	APHA 3500 Fe B	1.63	2.87
14	Copper (as Cu)	mg/l, max	1.5	APHA 3111Cu B	<0.02	< 0.02
15	Fluoride (as F)	mg/l, max	1.5	APHA 4590 F.D	80.0	1.11
16	Hexavalent Chromium (as Cr*6)	mg/L max	0.05	APHA 3300 Cr B	<0.01	-0.Br
17	Cyanide (as CN)	mg/L max	0.05	APHA 4500 CN E	<0.01	-0.01
18	Dissolved Oxygen (as DO)	mg/l, min	4	APHA 4500 O'C	6.5	6.2
19	Sulphide (as S)	mg/l, max	-	APHA 4500 S2 F	< 0.05	< 0.05
20	Nitrate (as NO ₃)	mg/l, max	50	APHA4500NO ₂ B	2.74	3.1
21	Phenolic Compound (as C ₀ H ₅ OH)	mg/l, max	-	APHA 5530 C	<0.05	< 0.05
22	Selenium (as S)	mg/L max	0.05	APHA 3500 Se C	<0.001	< 0.003
23	Manganese (as Mn)	mg/L max		APHA 3111 B	<0.05	< 0.05
24	Bio-assay Test	mg/l, max	90% survival of fish after 96 hrs in 100% effluent	IS 6582	93%	89%
25	Zinc (as Zn)	mg/l, max	15	APHA 3111 B	0.35	0.62
26	Cadmium	mg/l, max	0.01	APHA 3111 B	<0.01	<0.01
27	Chemical Oxygen Demand (as COD)	mg I, max	-	APHA 3111 B	14.0	56.0
28	Lead (as Pb)	mg 1, max	0.1	APHA 3112 B	<0.01	< 0.01
29	Mercury (as Hg)	mg/l, max		APHA 3111 8	< 0.002	-0.002
30	Nickel (as Ni)	mg/l, max	**	APHA 3500As B	<0.1	< 0.1
31	Arsenic (ns As)	mg/l, max	0.2	APHA3111B	< 0.004	< 0.004
32	Total Chromium (as TCr)	mg/l, max		183025(P44)1993	<0.05	-0.05
3.3	Biochemical Oxygen Demand (as BOD at 27°C For 3 days)	mg/l, max	3.0	APHA 4500 P.D.	2.2	2.4
34	Dissolved Phosphate (as PO ₄)	mg/l, max		APHA 3111 B	0.57	1.33
ny u	manufacture observed during determin	ation		The second secon	NA CONTRACTOR	1.33

Plot No. M-22 & 23 Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India-E-mail: visiontek@vcspl.org, visiontekin@gmail.com Visit us at: www.vcspl.org

Tc 30674-3511721

· Infrastructure Enginering

Water Resource Management

· Environmental & Social Study

Visiontek Consultancy Services Pvt. Ltd. (Committed For Better Environment) (Laboratory Services)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

Quality Control & Project Management

· Renewable Energy Public Health Engineering

Agricultural Development

· Information Technology

Mine Planning & Design

 Mineral/Sub-Soil Exploration Waste Management Services

Environment Lab Food Lab Material Lab Soil Lab Mineral Lab Microbiology Lab

Test Report No: Envlab/20/R-8120

Date: 05.02.2021

TEST REPORT

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha Customer Name & Address SAMPLE DETAILS

Sample Location & Code	SW3: Kandahindha(Up Stream) SW4: Kandahindha(Down Stream	Sampled by	VCSPL'S Representative	
Sample Description	Surface Water	Sampling Procedure	APHA 1060	
Sample Source	Baphlimali Mines, UAIL	Sample Received on	27.01.2021	
Sample Condition	Scaled Plastic & Sterilized Glass Bottle	Latitude : N 19°22,014' Longitude :E 83°04.658' Altitude : 769.01 m	Latitude : N 19"23.078" Longitude : E 83"0.248" Altitude : 660.50 m	
Sampling Date	25.01.2021	Test Completed on	02.02.2021	

SL No	Parameters	Units	Standards as per IS 2296-Class C	Test methods	SW-3	SW-4
1	Color	Hazen, max	300	APHA-2120 B	10	15
2	Odour		Agreeable	APHA 2150 B	Agreeable	Agrecable
3	pH value	**	6.5-8.5	APHA 4500 H'B	7.3	7.56
4	Suspended Solids	mg/l, max	-	APHA 2540 D	41.0	83.0
5	Total dissolved solids	mg/l, max	1500	APHA 2540 C	245.0	308.0
6	Temperature	°c		-	23.8	24.2
7	Conductivity .	µs/cm	-	APHA 2510 C	378.0	489.0
8	Ammonical Nitrogen (as NH ₄ -N)	mg/l, max	-	APHA4500 NILB	2.34	4.0
9	Total Kjeldahl Nitrogen (as N)	mg/L max		APHA4500NonoB	3.28	4.8
10	Oil & Grease	mg/l, max	0.1	APHA 5220 B	ND	ND
11	Free Ammonia (as NH ₃)	mg/L max		-	ND	ND
12	Fotal Residual Chlorine (as RFC)	mg/l, min	44	APHA 4500 CLB	ND	ND
13	Iron (as Fe)	mg/l, max	50	APHA 3500 Fe B	1.34	2.93
14	Copper (as Cu)	mg/l, max	1.5	APHA 3111Cu B	<0.02	<0.02
15	Fluoride (as F)	mg/l, max	1.5	APHA 4500 FD	0.7	0.94
16	Hexavalent Chromium (as Cr*6)	mg/l, max	0.05	APEA 3500 Cr B	<0.01	<0.01
17	Cyanide (as CN)	mg/L max	0.05	APHA 4500 CN-E	<0.01	<0.01
18	Dissolved Oxygen (as DO)	mg/l, min	4	APHA 4500 O C	6.7	. 5.9
19	Sulphide (as S)	mg/l, max		APHA 4500 S2* F	<0.05	< 0.05
20	Nitrate (as NO ₃)	mg/l, max	50	APHA4500NO ₃ B	2.86	4.52
21	Phenolic Compound (as CoH3OH)	mg/l, max		APHA 5530 C	<0.05	<0.05
22	Selenium (as S)	mg/l, max	0.05	APHA 3500 Se C	<0.001	-0.001
23	Manganese (as Mn)	mg/l, max	-	APHA 3111 B	-0.05	<0.05
24	Bio-assay Test	mg/l, max	90% survival of fish after 96 hrs in 100% effluent	IS 6582	95%	88%
25	Zinc (as Zn)	mg/l, max	15	APHA JIH B	0.37	0.78
26	Cadmium	mg/l, max	0.01	APRA3111 B	<:0.01	<0.01
27	Chemical Oxygen Demand (as COD)	mg/l, max	**	APHA 3111 B	16.0	60.0
28	Lead (as Pb)	mg/l, max	0.1	APHA 3112 B	< 0.01	<0.01
29	Mercury (as Hg)	mg/l, max		APHA 3111 B	< 0.002	-0.002
30	Nickel (as Ni)	mg/l, max	-	APHA 3500As B	<0.1	1.0>
31	Arsenic (as As)	mg/l, max	0.2	APHA 3111 B	< 0.004	<0.004
32	Total Chromium (as TCr)	mg/L max		IS3025(P44)1993	<0.05	< 0.05
33	Biochemical Oxygen Demand (as BOD at 27°C For 3 days)	mg/l, max	3.0	APHA 4500 F D	2.1	2.6
34	Dissolved Phosphate (as PO ₄)	mg/l, max		APHA 3111 B	0.59	* 1.54
ny #	nusual feature observed during determin	ation			Nil	1.04

Plot No.- M-22 & 23, Chandard Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024; India 10 fel.: 1974-3511721 E-mail: visiontek@vcspl.org, visiontekin@gmail.com

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

Quality Control & Project Management

· Information Technology

 Agricultural Development Public Health Engineering. Mine Planning & Design

Mineral/Sub-Soil Exploration

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab

· Infrastructure Enginering * Water Resource Management

Environmental & Social Study

· Renewable Energy

Waste Management Services

Date: 04.03.2021

Microbiology Lab

Test Report No: Envlab/20/R-8706

TEST REPORT

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha Customer Name & Address

SAMPLE DETAILS

Sample Location & Code	SW1: Sana River (Up Stream) SW2: Sana River (Down Stream)	Sampled by	VCSPL'S Representative	
Sample Description	Surface Water	Sampling Procedure	APHA 1060	
Sample Source	Baphlimali Mines, UAIL	Sample Received on	17.02.2021	
Sample Condition	Sealed Plastic & Sterilized Glass Bottle	Latitude : N 19°17.015' Longitude : E 83°0.879'' Altitude : 707.14 m.	Latitude : N 19°16.602' Longitude : E 82°59.812' Altitude : 725.73 m.	
Sampling Date	16.02,2021	Test Completed on	23.02.2021	

SL No	Parameters	Units	Standards as per IS 2296-Class C	Test methods	SW-1	SW-2
1	Color	Hazen, max	300	APHA 2120 B	5	10
2	Odour	320	Agreeable	APHA 2150 B	Agreeable	Agreeable
3	pH value		6.5-8.5	APHA 4500 H*B	7.36	7.57
4	Suspended Solids	mg/l, max	-	APHA 2540 D	76.0	87.0
5	Total dissolved solids	mg/l, max	1500	APHA 2540 C	182.0	239.0
6	Temperature	°c			24.8	25.1
7	Conductivity	μs/cm	-	APHA 2510 C	295.0	376.0
8	Ammonical Nitrogen (as NH _e -N)	mg/l, max		APHA4500 NH ₂ B	1.76	2.8
9	Total Kjeldahl Nitrogen (as N)	mg/l, max	-	APHA4500NoscB	2.92	3.54
10	Oil & Grease	mg/l, max	0.1	APHA 5220 B	ND	ND
11	Free Ammonia (as NH ₃)	mg/l, max	**	44	ND	ND
12	Total Residual Chlorine (as RFC)	mg/l, min	-	APHA 4500 CI B	ND	ND
13	Iron (as Fe)	mg/l, max	50	APHA 3500 Fe B	1.46	2.94
14	Copper (as Cu)	mg/l, max	1.5	APHA 3111Cu B	<0.02	<0.02
15	Fluoride (as F)	mg/l, max	1.5	APHA 4500 F/D	0.57	1.2
16	Hexavalent Chromium (as Cr*6)	mg/l, max	0.05	APHA 3500 Cr B	< 0.01	< 0.01
17	Cyanide (as CN)	mg/l, max	0.05	APHA 4500 CN E	< 0.01	< 0.01
18	Dissolved Oxygen (as DO)	mg/l, min	4	APHA 4500 O C	6.2	5.9
19	Sulphide (as S)	mg/l, max		APHA 4500 S ² -F	< 0.05	<0.05
20	Nitrate (as NO ₃)	mg/l, max	50	APHA4500NO ₅ B	2.5	3.36
21	Phenolic Compound (as C ₆ H ₅ OH)	mg/l, max	-	APHA 5530 C	< 0.05	< 0.05
22	Selenium (as S)	mg/l, max	0.05	APHA 3500 Se C	<0.001	< 0.001
23	Manganese (as Mn)	mg/l, max		APHA 3111 B	<0.05	<0.05
24	Bio-assay Test	mg/l, max	90% survival of fish after 96 hrs in 100% effluent	IS 6582	92%	90%
25	Zinc (as Zn)	mg/l, max	15	APHA 3111 B	0.39	0.57
26	Cadmium	mg/l, max	0.01	APHA 3111 B	< 0.01	<0.01
27	Chemical Oxygen Demand (as COD)	mg/l, max	-	APHA 3111 B	18.0	52.0
28	Lead (as Pb)	mg/l, max	0.1	APHA 3112 B	< 0.01	< 0.01
29	Mercury (as Hg)	mg/l, max		APHA 3111 B	<0.002	< 0.002
30	Nickel (as Ni)	mg/l, max		APHA 3500As B	<0.1	<0.1
31	Arsenic (as As)	mg/l, max	0.2	APHA 3111 B	<0.004	< 0.004
32	Total Chromium (as TCr)	mg/l, max	-	IS3025(P44)1993	< 0.05	< 0.05
33	Biochemical Oxygen Demand (as BOD at 27°C For 3 days)	mg/l, max	3,0	APHA 4500 P D	2.0	2.5
34	Dissolved Phosphate (as PO ₄)	mg/l, max		APHA 3111 B	0.63	1.4
iny u	nusual feature observed during determin	ation			Nil	1.4

Plot No

Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-752424, India E-mail: visiontek@vcspl.org, visiontekin@gmail.com

Visit us at: www.vcspl.org

Set.: 0674-3511721

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

*Agricultural Development Quality Control & Project Management · Information Technology

Mine Planning & Design

Soil Lab Mineral Lab

Laboratory Services

Environment Lab Food Lah

Material Lab

· Infrastructure Enginering · Water Resource Management

· Environmental & Social Study

· Renewable Energy

· Public Health Engineering

Mineral/Sub-Soil Exploration

Microbiology Lab Weste Management Services

Test Report No: Envlab/20/R-8707

Date: 04.03.2021

TEST REPORT

Customer Name & Address : Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha SAMPLE DETAILS

Sample Location & Code	SW3: Kandahindha(Up Stream) SW4: Kandahindha(Down Stream	Sampled by	VCSPL'S Representative
Sample Description	Surface Water	Sampling Procedure	APHA 1060
Sample Source	Baphlimali Mines, UAIL	Sample Received on	17.02.20201
Sample Condition	Sealed Plastic & Sterilized Glass Bottle	Latitude : N 19°22.014' Longitude :E 83°04.658' Altitude : 769.01 m	Latitude : N 19°23.078' Longitude : E 83°0.248' Altitude : 660.50 m
Sampling Date	16.02.2021	Test Completed on	23.02.2021

SI. No	Parameters	Units	Standards as per IS 2296-Class C	Test methods	SW-3	SW-4
1	Color	Hazen, max	300	APHA 2120 B	10	20
2	Odour		Agreeable	APHA 2150 B	Agreeable	Agreeable
3	pH value	**	6.5-8.5	APHA 4500 H°B	7.41	7.6
4	Suspended Solids	mg/l, max	**	APHA 2540 D	52.0	79.0
5	Total dissolved solids	mg/l, max	1500	APHA 2540 C	221.0	286.0
6	Temperature	°c		-	24.5	24.7
7	Conductivity	μs/cm	-	APHA 2510 C	360.0	463.0
8	Ammonical Nitrogen (as NH ₄ -N)	mg/l, max	94	APHA4500 NH ₃ B	2.5	4.2
9	Total Kjeldahl Nitrogen (as N)	mg/l, max		APHA4500NongB	3.1	5.0
10	Oil & Grease	mg/l, max	0.1	APHA 5220 B	ND	ND
11	Free Ammonia (as NH ₃)	mg/L max		100	ND	ND
12	Total Residual Chlorine (as RFC)	mg/l, min	-	APHA 4500 CLB	ND	ND
13	Iron (as Fe)	mg/l, max	50	APHA 3500 Fe B	1.12	2.65
14	Copper (as Cu)	mg/l, max	1.5	APHA 3111Cu B	<0.02	<0.02
15	Fluoride (as F)	mg/l, max	1.5	APHA 4500 FD	0.64	0.88
16	Hexavalent Chromium (as Cr+6)	mg/l, max	0.05	APHA 3500 Cr B	<0.01	< 0.01
17	Cyanide (as CN)	mg/l, max	0.05	APHA 4500 CN E	<0.01	<0.01
18	Dissolved Oxygen (as DO)	mg/l, min	4	APHA 4500 O C	6.6	6.3
19	Sulphide (as S)	mg/l, max		APHA 4500 S2- F	< 0.05	< 0.05
20	Nitrate (as NO ₃)	mg/l, max	50	APHA4500NO ₃ B	2.61	4.28
21	Phenolic Compound (as C ₆ H ₅ OH)	mg/l, max		APHA 5530 C	<0.05	<0.05
22	Selenium (as S)	mg/l, max	0.05	APHA 3500 Se C	< 0.001	< 0.001
23	Manganese (as Mn)	mg/l, max	-	APHA 3111 B	<0.05	<0.05
24	Bio-assay Test	mg/l, max	90% survival of fish after 96 hrs in 100% effluent	IS 6582	93%	87%
25	Zinc (as Zn)	mg/l, max	15	APHA 3111 B	0.34	0.66
26	Cadmium	mg/l, max	0.01	APHA 3111 B	< 0.01	< 0.01
27	Chemical Oxygen Demand (as COD)	mg/l, max		APHA 3111 B	12.0	48.0
28	Lead (as Pb)	mg/l, max	0.1	APHA 3112 B	< 0.01	< 0.01
29	Mercury (as Hg)	mg/l, max		APHA 3111 B	< 0.002	< 0.002
30	Nickel (as Ni)	mg/l, max	**	APHA 3500As B	<0.1	< 0.1
31	Arsenic (as As)	mg/l, max	0.2	APHA 3111 B	<0.004	< 0.004
32	Total Chromium (as TCr)	mg/l, max		IS3025(P44)1993	< 0.05	<0.05
33	Biochemical Oxygen Demand (as BOD at 27°C For 3 days)	mg/l, max	3.0	APHA 4500 P D	- 1.9	2.3
34	Dissolved Phosphate (as PO4)	mg/l, max	-	APHA 3111 B	0.52	1.36
inv i	musual salure observed during determin	gtion		Control of the Contro	O.SZ Nill	1.30

26 Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha 151024, India 7cl.: 0674-3511721 Plot No. 30 E-mail: visiontek@vcspl.org, visiontekin@gmail.com

· Water Resource Management

· Environmental & Social Study

siontek Consultancy Services Pvt. Ltd

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

Quality Centrol & Project Management

· Renewable Energy

Agricultural Development

Olaformation Technology @Public Health Engineering Mine Planning & Design

 Mineral/Sub-Soil Exploration Waste Management Services

Soil Lab Mineral Lah A Microbiology Lab

Environment Lab Food Lab

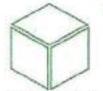
Material Lab

Test Report No: Envlab/20/R-9393

Date: 31.03.2021

TEST REPORT

Customer Name & Address


Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Location & Code	SW1: Sana River (Up Stream) SW2: Sana River (Down Stream)	Sampled by	VCSPL'S Representative
Sample Description	Surface Water	Sampling Procedure	APHA 1060
Sample Source	Baphlimali Mines, UAIL	Sample Received on	11.03.2021
Sample Condition	Sealed Plastic & Sterilized Glass Bottle	Latitude : N 19°17.015° Longitude : E 83°0.879° Altitude : 707.14 m.	Latitude : N 19°16,602° Longitude : E 82°59,812° Altitude : 725,73 m.
Sampling Date	10.03.2021	Test Completed on	18.03.2021

SI. No	Parameters	Units	Standards as per IS 2296-Class C	Test methods	SW-1	SW-2
1	Color	Hazen, max	300	APHA 2120 B	10	15
2	Odour	**	Agrecable	APHA 2150 B	Agreeable	Agreeable
3	pH value		6.5-8.5	APHA 4500 H*B	7.22	7.41
4	Suspended Solids	mg/l, max	-	APHA 2540 D	68.0	94.0
5	Total dissolved solids	mg/l, max	1500	APHA 2540 C	173.0	251.0
6	Temperature	°c	-	-	25.3	25.5
7	Conductivity	µs/cm		APHA 2510 C	286.0	403.0
8	Ammonical Nitrogen (as NH ₄ -N)	mg/l, max	**	APHA4500 NH,B	1.54	3.1
9	Total Kjeldahl Nitrogen (as N)	mg/l, max	-	APHA4500NosoB	2.6	4.3
10	Oil & Grease	mg/l, max	0.1	APHA 5220 B	ND	ND
11	Free Ammonia (as NH ₃)	mg/l, max		-	ND	ND
12	Total Residual Chlorine (as RFC)	mg/L min	/ / 40	APHA 4500 CLB	ND	ND
13	Iron (as Fe)	mg/l, max	50	APHA 3500 Fe B	1.52	3.15
14	Copper (as Cu)	mg/l, max	1.5	APHA 3111Cu B	<0.02	<0.02
15	Fluoride (as F)	mg/L max	1.5	APHA 4500 FD	0.60	1.04
16	Hexavalent Chromium (as Cr +6)	mg/l, max	0.05	APHA 3500 Cr B	<0.01	<0.01
17	Cyanide (as CN)	mg/l, max	0.05	APHA 4500 CN E	<0.01	< 0.01
18	Dissolved Oxygen (as DO)	mg/l, min	4	APHA 4500 O C	6.0	5.7
19	Sulphide (as S)	mg/l, max		APHA 4500 S2 F	<0.05	<0.05
20	Nitrate (as NO ₃)	mg/l, max	50	APHA4500NO ₁ B	2.63	3.04
21	Phenolic Compound (as C ₆ H ₅ OH)	mg/l, max	**	APHA 5530 C	<0.05	<0.05
22	Selenium (as S)	mg/l, max	0.05	APHA 3500 Se C	<0.001	<0.001
23	Manganese (as Mn)	mg/l, max		APHA 3111 B	<0.05	< 0.05
24	Bio-assay Test	mg/l, max	90% survival of fish after 96 hrs in 100% effluent	IS 6582	94%	91%
25	Zinc (as Zn)	mg/l, max	15	APHA 3111 B	0.32	0.53
26	Cadmium	mg/l, max	0.01	APHA 3111 B	< 0.01	< 0.01
27	Chemical Oxygen Demand (as COD)	mg/l, max	-	APHA 3111 B	16.0	48.0
28	Lead (as Pb)	mg/l, max	0.1	APHA 3112 B	<0.01	< 0.01
29	Mercury (as Hg)	mg/l, max		APPIA 3111 B	< 0.002	<0.002
30	Nickel (as Ni)	mg/l, max		APHA 3500As B	<0.1	<0.1
31	Arsenic (as As)	mg/l, max	0.2	APHA 3111 B	< 0.004	<0.004
32	Total Chromium (as TCr)	mg/l, max		IS3025(P44)1993	< 0.05	<0.05
33	Biochemical Oxygen Demand (as BOD at 27°C For 3 days)	mg/l, max	3.0	APHA 4500 P D	2.1	2,4
34	Dissolved Phosphate (as PO ₄)	mg/l, max	-	APHA 3111 B	0.66	1.32
Lny u	per da feature observed during determin				0.00	1.04

ndaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-7510243 0674-3511721 Plot No. Mez E-mail: visiontek@vcspl.org, visiontekin@gmail.com

· Infrastructure Enginering

e Water Resource Management

· Environmental & Social Study

isiontek Consultancy Services Pvt. Ltd.
(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sab-Surface Investigation

Quality Control & Project Management

• Itenewable Energy

O Agricultural Development · Information Technology

· Public Health Engineering

· Mine Planning & Design Mineral/Sub-Sull Exploration

Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Self Lab Mineral Lab Microbiology Lab

Test Report No: Envlab/20/R-9394

Date: 31.03.2021

TEST REPORT

Customer Name & Address : Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha SAMPLE DETAILS

Sample Location & Code	SW3: Kandahindha(Up Stream) SW4: Kandahindha(Down Stream	Sampled by	VCSPL'S Representative	
Sample Description	Surface Water	Sampling Procedure	APHA 1060	
Sample Source	Baphlimali Mines, UAIL	Sample Received on	11.03.2021	
Sample Condition	Sealed Plastic & Sterilized Glass Bottle	Latitude : N 19°22.014' Longitude :E 83°04.658' Altitude : 769.01 m	Latitude : N 19°23.078' Longitude : E 83°0.248' Altitude : 660,50 m	
Sampling Date	10.03.2021	Test Completed on	18.03.2021	

SI, No	Parameters	Units	Standards as per 1S 2296-Class C	Test methods	SW-3	SW-4
1	Color	Hazen, max	300	APHA 2120 B	5	15
2	Odour	-	Agrecable	APHA 2150 B	Agreeable	Agreeable
3	pH value		6.5-8.5	APHA 4500 H'B	7.35	7.54
4	Suspended Solids	mg/l, max	-	APHA 2540 D	57.0	85.0
5	Total dissolved solids	mg/l, max	1500	APHA 2546 C	236.0	314.0
6	Temperature	°c			24.7	25.1
7	Conductivity	µs/cm		APHA 2510 C	392.0	497.0
8	Ammonical Nitrogen (as NH ₄ -N)	mg/l, max	-	APHA4500 NH ₂ B	2.7	4.5
9	Total Kjeldahl Nitrogen (as N)	mg/l, max	-	APHA4500NoncB	3.4	5.3
10	Oil & Grease	mg/l, max	0.1	APHA 5220 B	ND	ND
11	Free Ammonia (as NH ₃)	mg/l, max	-	**	ND	ND
12	Tetal Residual Chlorine (as RFC)	mg/l, min		APHA 4500 CI B	ND	ND
13	Iron (as Fe)	mg/l, max	50	APHA 3500 Fe B	1.27	2.86
14	Copper (as Cu)	mg/l, max	1.5	APHA 3111Cu B	<0.02	<0.02
15	Fluoride (as F)	mg/l, max	1.5	APHA 4500 FD	0.68	
16	Hexavalent Chromium (as Cr+6)	mg/l, max	0.05	APHA 3500 CrB	<0.01	0.92
17	Cyanide (as CN)	mg/l, max	0.05	APHA 4500 CN E	<0.01	<0.01
18	Dissolved Oxygen (as DO)	mg/l, min	4	APHA 4500 O C	6.3	<0.01
19	Sulphide (as S)	mg/l, max	-	APHA 4500 S ² F	<0.05	< 0.05
20	Nitrate (as NO ₃)	mg/l, max	50	APHA4500NO ₃ B	2.94	3.55
21	Phenolic Compound (as C ₆ H ₅ OH)	mg/l, max	-	APHA 5530 C	<0.05	<0.05
22	Scienium (as S)	mg/l, max	0.05	APHA 3500 Se C	<0.001	<0.001
23	Manganese (as Mn)	mg/l, max	-	APHA 3111 B	< 0.05	<0.05
24	Bio-assay Test	mg/l, max	90% survival of fish after 96 hrs in 100% effluent	15 6582	95%	88%
25	Zinc (as Zn)	mg/l, max	15	APHA 3111 B	0.30	0.61
26	Cadmium	mg/l, max	0.01	APHA 3111 B	<0.01	< 0.01
27	Chemical Oxygen Demand (as COD)	mg/l, max	-	APHA 3111 B	10.0	40.0
28	Lead (as Pb)	mg/l, max	0.1	APHA 3112 B	< 0.01	< 0.01
29	Mercury (as Hg)	mg/l, max	-	APHA 3111 B	< 0.002	<0.002
30	Nickel (as Ni)	mg/l, max	-	APHA 3500As B	<0.1	<0.1
31	Arsenic (as As)	mg/l, max	0.2	APHA 3111 B	<0.004	< 0.004
32	Total Chromium (as TCr)	mg/l, max	**	IS3025(P44)1993	< 0.05	< 0.004
33	Biochemical Oxygen Demand (as BOD at 27°C For 3 days)	mg/l, max	3.0	APHA 4500 P D	2.0	2.2
34	Dissolved Phosphate (as PO ₄)	mg/l, max		ABELA 2111 D	6.40	
(eq. 1)	onsered feature observed during determin	I saight mark		APHA 3111 B	0.48	1.2

Plot No.- Mc Maka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024 Judia E-mall: visiontek@vcspl.org, visiontekin@gmail.com

ANNEXURE: 8

Ground Water Quality Analysis Report

(An Enviro Engineering Consulting Cell)
(ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944 Formst No.: VCSPL/FMT/055

Date: 07.12.2020

Test Report No: Envlab/20/R-6642

TEST REPORT

Customer Name & Address

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada,

Sample Location & Code	GW1: Paikupakhal GW2: Andirakanch	Sampled by	VCSPL'S Representative
Sample description	Ground Water	Sampling Procedure	1S 1060
Sample Source	Baphlimali Mines, UAIL	Sample Received on	26.11.2020
Sample Condition	Sealed Plastic & Sterilized Glass Bottle	Latitude: N19°20.197° Longitude: E82°59.589° Altitude: 874.17 m.	Latitude: N19°19.079' Longitude: E83°00.738' Altitude: 739.45 m.
Sampling Date	25.11.2020	Test Completed on	02.12.2020

SI. No	Parameters	Unit	Requirement Desirable limit (IS:10500:2012)	Test methods	GW-1	GW-2
Organ	oleptic & Physical Parameters					
1	*Color	Hazen, max	5	APHA 2120 B,C	<1.0	<1.0
2	*Odor	-	Agreeable	APHA 2120 B	Agreeable	Agreeable
3	pH value		6.5-8.5	APHA 4500 H°B	7.85	7.43
4	Turbidity	NTU ,max	1.0	APHA 2130 B	0.62	0.49
5	Total Dissolved Solids (as TDS)	mg/I	500	APHA 2540 C	337.0	303.0
6	*Temperature	°C	-		27.0	26.0
7	Conductivity	µS/cm	-	APHA 2510 C	510.0	478.0
Gener	al Parameters Concerning Substances	Undesirable in	Excessive Amounts	Union managed	- L - 1000 MA - 11	
8	Calcium (as Ca)	mg/l, max	75	APHA 3500Ca B	49.6	43.2
9	Chloride (as Cl)	mg/l, max	250	APHA 4500Cl B	40.3	35.9
10	Copper (as Cu)	mg/l, max	0.05	APHA 3111B,C	<0.05	< 0.05
11	*Fluoride (as F)	mg/l, max	1.0	APHA 4500FC	0.61	0.46
12	*Free residual Chlorine	mg/l, min	0.2	APHA 4500CLB	0.3	0.3
13	Iron (as Fe)	mg/l, max	0.3	APHA 3500Fe B	0.24	0.18
14	Magnesium (as Mg)	mg/l, max	30	APHA 3500Mg,B	10.7	7.8
15	Manganese (as Mn)	mg/l, max	0.1	APHA 3500Mn B	<0.05	< 8.05
16	*Mineral oil	mg/l, max	0.5	APHA 5220 B	< 0.02	< 0.02
17	Acidity	mg/l, max		APHA 2310 B	<1.0	<1.0
18	*Phenolic compounds (as C ₆ H ₅ OH)	mg/l, max	0.001	APHA 5530 B,C	< 0.001	<0.001
19	*Selenium (as Se)	mg/l, max	9.01	APHA 3114B	< 0.005	< 0.005
20	*Sulphate (as SO ₄₎	mg/l, max	200	APHA 4500SO, 2 B	18.5	14.1
21	Total Alkalinity	mg/l, max	200	APHA 2320 B	152.0	116.0
22	Total Hardness	mg/l, max	200	APHA 2340 C	168.0	140.0
23	Zinc(as Zn) .	mg/l, max	5.0	APHA 3111B,C	0.23	0.29
Paran	neters Concerning Toxic Substances					
24	Cadmium (as Cd)	mg/l, max	0.003	APHA 3111B,C	<0.003	<0.003
25	*Cyanide (as Cn)	mg/l, max	0.05	APHA 4500CN C,D	< 0.01	<0.01
26	Lead (ns Pb)	mg/l, max	0.01	APHA 3111B,C	< 0.005	< 0.005
27	Mercury (as Hg)	mg/l, max	0.001	APHA 3500 Hg	< 0.0005	< 0.0005
28	*Total arsenic	mg/i, max	0.01	APHA 3114B	< 0.001	< 0.001
29	*Pesticide	mg/l, max	0.0005	APHA 6630 B	< 0.0001	< 0.0001

(An Enviro Engineering Consulting Cell)
(ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944 Format No.: VCSPL/FMT/0:

30	*Total Coli forms	MPN/100ml	Shall not be detected in any 100 ml sample	APHA 9221 B	<1.1	<1.1
invun	usual feature observed durin	g determination			Nil	

*This Parameter not in our NABL Scope.

*** End Report***

Remarks

- I. The Test result is relevant only to the item tested.
- 2. This report shall not be reproduced in full or part without written approval of Visioetek consultancy services (P) Ltd.
- 3. The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.
- 5. The laboratory's responsibility under this report is limited to; proven willful negligeness

(An Enviro Engineering Consulting Cell)
(ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944 Format No.: VCSPL/FMT/085

Date: 07.12.2020

Test Report No: Envlab/20/R-6643

TEST REPORT

Customer Name & Address

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada,

SAMPLE DETAILS

Sample Location & Code	GW3: Mallignon GW4: Kendumundi	Sampled by	VCSPL'S Representative
Sample description	Ground Water	Sampling Procedure	IS 1060
Sample Source	Baphlimali Mines, UAIL	Sample Received on	26.11.2020
Sample Condition	Sealed Plastic & Sterilized Glass Bottle	Latitude: N19°21,359° Longitude: E82°59,889° Altitude: 699,82 m.	NA
Sampling Date	25.11.2020	Test Completed on	02.12.2020

SL No	Parameters	Unit	Requirement Desirable limit (IS:10500:2012)	Test methods	GW-3	GW-4
Organ	oleptic & Physical Parameters		I Moralina and an annual for			
1	*Color	Hazen, max	5	APHA 2120 B,C	<1.0	<1.0
2	*Odor		Agreeable	APHA 2120 B	Agreeable	Agreeable
3	pH value	Section 1975	6.5-8.5	APHA 4500 H B	7.29	7.21
4	Turbidity	NTU max	1.0	APHA 2130 B	0.53	0.39
5	Total Dissolved Solids (as TDS)	mg/l	500	APHA 2540 C	185.0	263.0
6	*Temperature	°C	-		26.0	26.0
7	Conductivity	µS/cm	-	APHA 2510 C	311.0	452.0
Gener	al Parameters Concerning Substances l	Indesirable in	Excessive Amounts	Nucario management		
8	Calcium (as Ca)	mg/l, max	75	APHA 3500Ca B	46.4	35.2
9	Chloride (as Cl)	mg/l, max	250	APHA 4500Cl B	32.9	27.7
10	Copper (as Cu)	mg/l, max	0.05	APHA 3111B,C	<0.05	<0.05
11	*Fluoride (as F)	mg/l, max	1.0	APHA 4500F°C	0.23	0.38
12	*Free residual Chlorine	mg/l, min	0,2	APHA 4500C1 B	0.3	0.3
13	Iron (as Fe)	mg/l, max	0.3	APHA 3500Fe B	0.19	0.26
14	Magnesium (as Mg)	mg/l, max	30	APHA 3500Mg,B	13.6	16.5
15	Manganese (as Mn)	mg/l. max	0.1	APHA 3500Mn B	<0.05	<0.05
16	*Mineral oil	mg/l, max	0.5	APHA 5220 B	< 0.02	< 0.02
17	Acidity	mg/l, max	-	APHA 2310 B	<1.0	<1.0
18	*Phenolic compounds (as C _c H _c OH)	mg/l, max	0.001	APHA 5530 B,C	<0.001	< 0.001
19	*Selenium (as Se)	mg/l, max	0.01	APHA 3114B	<0.605	< 0.005
20	*Sulphate (as SO _a	mg/l, max	200	APHA 4500SO ₄ 2 B	12.9	14.2
21	Total Alkalinity	mg/l, max	200	APHA 2320 B	136.0	132.0
22	Total Hardness	mg/l, max	200	APHA 2340 C	172.0	156.0
23	Zinc(as Zn)	mg/l, max	5.0	APHA 3111B,C	0.12	0.33
Paran	neters Concerning Toxic Substances					
24	Cadmium (as Cd)	mg/l, max	0.003	APHA 3111B,C	< 0.003	< 0.003
25	*Cyanide (as Cn)	mg/l, max	0.05	APHA 4500CN°C,D	<0.01	< 0.01
26	Lead (as Pb)	mg/l, max	8.01	APHA 3111B,C	< 0.005	< 0.005
27	Mercury (as Hg)	mg/l, max	0.001	APHA 3500 Hg	< 0.0005	< 0.0005
28	*Total arsenic	mg/l, max	0.01	APHA 3114B	< 0.001	< 0.001
29	*Pesticide	mg/l, max	0.0005	APHA 6630 B	< 0.0001	< 0.0001

(An Enviro Engineering Consulting Cell)
(ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

NABIL ACCREDITED

Certificate No.: TC-7944

Format No.: VCSPL/FMT/R

30 "Total C	oli forms	MPN/100ml	Shall not be detected in any 100 ml sample	APHA 9221 B	<1.1	<1.1
-------------	-----------	-----------	--	-------------	------	------

*This Parameter not in our NABL Scope.

*** End Report***

Remarks

- 1. The Test result in relevant only to the num tested.
- 2. This report shall not be reproduced in full or part without written approval of Visionick consultancy services. (P) I to
- 3. The laboratory is not responsible for the authenticity of photocopied test seport.
- 4. The test item will not be saturated for more than 15 days from the date of issue of test report except in case as required by applicable regulations.
- 5. The laboratory's responsibility under this report is limited to: proven willful negligence.

Water Resource Management

· Environmental & Social Study

isiontek Consultancy Services Pvt. Lt
(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

Quality Control & Project Management

*Renewable Energy

 Agricultural Development · Public Health Engineering Mine Planning & Design

Mineral/Sub-Soil Exploration

Laboratory Services Environment Lab Food Lab Material Lab Sall Lab Mineral Lab Microbiology Lab

Test Report No: ENVLAB/20/R-8713

Information Technology

Waste Management Services

Date: 04.03.2021

TEST REPORT

Customer Name & Address

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada

SAMPLE DETAILS

Sample Location & Code	GW1: Paikupakhal GW2: Andirakaneh	Sampled by	VCSPL'S Representative
Sample Description	Ground Water	Sampling Procedure	APHA 1060
Sample Source	Buphlimati Mines, UAIL	Sample Received on	17.02.2021
Sample Condition	Scaled Plastic & Sterilized Glass Bottle	Latitude: N19°20,197° Longitude: E82°59,589° Altitude: 874,17 m.	Latitude: N19°19.079° Longitude: E83°00.738° Altitude: 739.45 m.
Sampling Date	16.02.2021	Test Completed on	24.02.2021

SL No	Parameters	Unit	Standard as per IS 10500:2012, Amnd. 2015 & 2018	Test methods	GW-1	GW-2
Organ	oleptic & Physical Paramete	rs				1,530,740
1	Color	Hazen	5	APHA 2120 B,C	<1.0	<1.0
2	Odour		Agreeable	APHA 2120 B	Agreeable	Agreeable
3	pH value		6.5-8.5	APHA 4500 H°B	7.63	7.24
4	Turbidity	NTU, max	1.0	APHA 2130 B	0.8	0.6
5	Total Dissolved Solids	mg/l	500	APHA 2540 C	298.0	
6	Temperature	°C			25.2	317.0
7	Conductivity	µS/cm		APHA 2510 C	-	25.7
Genera	d Parameters Concerning S		rable in Excessive Amounts		476.0	498.0
8	Calcium (as Ca)	mg/l, max	75	APHA 3500Ca B	45.2	44.6
9	Chloride (as CI)	mg/l, max	250	APHA 4500CT B	37.5	38.0
10	Copper (as Cu)	mg/l, max	0.05	APHA 3111B,C	<0.02	
11	Fluoride (as F)	mg/l, max	1.0	APHA 4500FC		-0.02
12	Free residual Chlorine	mg/l, min	0.2	APHA 4500C1B	0.57	0.42
13	Iron (as Fe)	mg/l, max	1.0	APHA 3500Fe B	0.3	0.3
14	Magnesium (as Mg)	mg/l, max	30	APHA 3500Mg.B	0.21	0.19
15	Manganese (as Mn)	mg/l, max	0.1	APHA 3500Mn B	9.5	8.4
16	Mineral oil	mg/L max	0.5	APHA 5220 B	<0.05	< 0.05
17	Acidity	mg/l, max	0.0	APHA 2310 B	< 0.02	< 0.02
18	Phenolic Compounds	mg/l, max	0.001	APHA 5530 B,C	<1.0	<1.0
19	Selenium(as Se)	mg/l, max	0.01	APHA 3114B	<0.05	< 0.05
20	Sulphate (as SO ₄₎	mg/l, max	200	APHA 4500SO ₄ ² B	<0.001	<0.001
21	Total Alkalinity	mg/l, max	200	APHA 2320 B	16.3	15.6
22	Total Hardness	mg/l, max	200	APHA 2340 C	136.0	104.0
23	Zinc(as Zn)	mg/l, max	5.0	APHA 3111B,C	152.0	146.0
Parame	eters Concerning Toxic Subs		5.0	ALLIA MITIBIC	0.25	0.24
24	Cadmium (as Cd)	mg/l, max	0.003	APHA 3111B,C	0.01	20.00
25	Cyanide (as CN)	mg/l, max	0.05	APHA 4500CN C.D	<0.01	< 0.01
26	Lead (as Pb)	mg/l, max	0.01	APHA 3111B,C	<0.01	< 0.01
27	Mercury (as Hg)	mg/l, max	0.001	APHA 3500 Hg	<0.01	<0.01
28	Total arsenic	mg/l, max	0.01	APHA 3114B	<0.002	< 0.002
29	Pesticide	mg/l, max	0.0005	APHA 6630 B	<0.004	< 0.004
and the latest l	RIOLOGICAL QUALITY	ing/it max	0.0003	ACITA 003U IS	<0.0001	<0.0001
30	Total Coli forms	MPN/100ml	Shall not be detected in any 100 ml sample	APHA 9221 B		<1.1

ture observed during determination

Plot No. 22 8

1/20/674-3511721 Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-75102 E-mail: visiontek@vcspl.org, visiontekin@gmail.com

Visit us at: www.vcspl.org

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

· Quality Centrel & Project Management

· Information Technology

Mine Planning & Design

· Mineral/Sub-Sull Exploration

Material Lab Soft Lab Mineral Lab

Laborators Services Environment Lab

Feed Lab

Microbiology Lab

· Infrastructure Enginering · Water Resource Management

· Environmental & Social Study

· Renewable Energy

· Agricultural Development · Public Health Engineering

· Waste Management Services

Date: 04.03.2021

Test Report No: ENVLAB/28/R-8714

TEST REPORT

Customer Name & Address

Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada

SAMPLE DETAILS

Sample Location & Code	GW3: Malligaon GW4: Kendumundi	Sampled by	VCSPL'S Representative
Sample Description	Ground Water	Sampling Procedure	APHA 1060
Sample Source	Baphlimali Mines, UAIL	Sample Received on	17.02.2021
Sample Condition	Sealed Plastic & Sterilized Glass Bottle	Latitude: N19°21.359° Longitude: E82°59.889° Altitude: 699.82 m.	-
Sampling Date	16.02.2021	Test Completed on	24.02.2021

SL No	Parameters	Unit	Standard as per IS 10500:2012, Amnd. 2015 & 2018	Test methods	GW-3	GW-4
Organ	oleptic & Physical Paramete	ers			2774.001	11.500
1	Color	Hazen	5	APHA 2120 B,C	<1.0	<1.0
2	Odour	_	Agreeable	APHA 2120 B	Agreeable	Agreeable
3	pH value	-	6.5-8.5	APHA 4500 H B	7.33	7.42
4	Turbidity	NTU, max	1.0	APHA 2130 B	0.7	0.7
5	Total Dissolved Solids	mg/l	500	APHA 2540 C	169.0	251.0
6	Temperature	°C	-	**	24.8	25.4
7	Conductivity	μS/cm		APHA 2510 C	282.0	408.0
Genery	I Parameters Concerning S	ubstances Undesi	rable in Excessive Amounts	2010020000	202.0	400.0
8	Calcium (as Ca)	mg/l, max	75	APHA 3500Ca B	40.0	38.6
9	Chloride (as CI)	mg/l, max	250	APHA 4500CFB	28.5	31.5
10	Copper (as Cu)	mg/I, max	0.05	APHA 3111B,C	<0.02	<0.02
11	Fluoride (as F)	mg/L, max	1.0	APHA 4500FC	0.19	0.34
12	Free residual Chlorine	mg/l, min	0.2	APHA 4500Cl B	0.3	0.34
13	Iron (as Fe)	mg/l, max	1.0	APHA 3500Fe B	0.15	0.23
14	Magnesium (as Mg)	mg/l, max	30	APHA 3500Mg,B	9.3	-
15	Manganese (as Mn)	mg/l, max	0.1	APHA 3500Mn B	-	11.6
16	Mineral oil	mg/l, max	0.5	APHA 5220 B	<0.05	<0.05
17	Acidity	mg/l, max	11.	APHA 2310 B	<0.02	<0.02
18	Phenolic Compounds	mg/l, max	0.001	APHA 5530 B,C	<0.05	<0.05
19	Selenium(as Se)	mg/l, max	0.01	APHA 3114B	<0.001	<0.001
20	Sulphate (as SO ₄₎	mg/l, max	200	APHA 4500SO ₄ 2-B	11.8	13.4
21	Total Alkalinity	mg/l, max	200	APHA 2320 B	126.0	138.0
22	Total Hardness	mg/l, max	200	APHA 2340 C	138.0	2 5000000
23	Zinc(as Zn)	mg/l, mnx	5.0	APHA 3111B,C	0.18	144.0
	eters Concerning Toxic Sub-	stances			0.18	0.29
24	Cadmium (as Cd)	mg/l, max	0.003	APHA 3111B,C	<0.01	< 0.01
25	Cyanide (as CN)	mg/l, max	0.05	APHA 4500CN C,I		<0.01
26	Lead (as Pb)	mg/l, max	0.01	APHA 3111B,C	<0.01	<0.01
27	Mercury (as Hg)	mg/l, max	0.001	APHA 3500 Hg	<0.002	<0.002
28	Total arsenic	mg/l, max	0.01	APHA 3114B	<0.004	- 1000000000000000000000000000000000000
29	Pesticide	mg/l, max	0.0005	APHA 6630 B	<0.0001	<0.004
BACTI	RIOLOGICAL QUALITY		awaya 13 see sail		100001	-030001
30	Total Coli forms	MPN/100ml	Shall not be detected in any 100 ml sample	APHA 9221 B	Consu	<1.1

ANNEXURE: 9

Ground Water Level Monitoring Report

(An Enviro Engineering Consulting Cell) (ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944

Format No.: VCSPL/FMT/055

Test Report No: ENVLAB/20/R-6644

Date: 07.12.2020

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Location & Code	-	Sampled by	VCSPL'S Representative
Sample Name	*Ground Water Level	Sampling Procedure	NA
Sample Source	Baphlimali Mines, UAIL	Sample Received on	NA

SL. No	Date of Sampling	Name of the Location	Water Level (meter)	GPS Coordinate
í	25.11.2020	Paikupakhai (Buffer Zone)	2.74	Latitude: N19°20,197' Longitude: E82°59,589' Altitude: 874,17 m.
2	25.11.2020	Andirakanch (Buffer Zone)	3.05	Latitude: N19°19.079' Longitude: E83°00.738' Altitude: 739.45 m.
3	25.11,2020	Malligaon (Buffer Zone)	2.44	Latitude: N19°21.359° Longitude: E82°59.889° Altitude: 699.82 m.
4	25.11.2020	Kendumundi (Buffer Zone)	3.05	NA
5	25.11.2020	Near Dump Yard (Core Zone)	>104	NA
6	. 25.11.2020	Near Check Post (Core Zone)	>104	NA

Note: Monitoring of ground water level and quality not done in the mining lease area due to non availibility of ground water.

*This parameter not in our NABL Scope

*** End Report***

Remarks:

- 1. The Test result is relevant only to the item tested.
- 2, This report shall not be reproduced in full or part without written approval of Visiontek consultancy services.(P) Ltd
- 3. The laboratory is not responsible for the authenticity of photocopied test report.
- The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.
- 5. The laboratory's responsibility under this report is limited to; proven willful negligence.

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

Quality Control & Project Management

· Agricultural Development · Information Technology

 Mine Planning & Design · Mineral/Sub-Soil Exploration

Laboratory Service Environment Lab Food Lab Material Lab Soil Lab Mineral Lab

· Infrastructure Enginering · Water Resource Management

· Environmental & Social Study

Renewable Energy

· Public Health Engineering

Waste Management Services

Microbiology Lab

Test Report No: ENVLAB/20/R-8717

Date: 04.03.2021

TEST REPORT

Customer Name & Address

: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Location & Code	44	Sampled by	VCSPL'S Representative
Sample Name	Ground Water Level	Sampling Procedure	NA
Sample Source	Baphlimali Mines, UAIL	Sample Received on	NA

SL. No	Date of Sampling	Name of the Location	Water Level (meter)	GPS Coordinate
1	18.02.2021	Paikupakhal (Buffer Zone)	3,75	Latitude: N19°20.197' Longitude: E82°59.589' Altitude: 874.17 m.
2	18.02.2021	Andirakanch (Buffer Zone)	3.87	Latitude: N19°19.079° Longitude: E83°00.738° Altitude: 739.45 m.
3	18.02.2021	Malligaon (Buffer Zone)	3.14	Latitude: N19°21.359° Longitude: E82°59.889° Altitude: 699.82 m.
4	18.02.2021	Kendumundi (Buffer Zone)	4.03	NA
5	. 18.02.2021	Near Dump Yard (Core Zone)	>104	NA
6	18.02.2021	Near Check Post (Core Zone)	>104	NA

Note: Monitoring of ground water level and quality not done in the mining lease area due to non availability of ground water.

Surface Water Withdrawal Agreement

उड़ीसा ORISSA

B 355792

'FORM 'K'

[See rule 23-A (2) (e) & rule 26]

AGREEMENT FOR SUPPLY OF WATER FOR THE PURPOSE OF INDUSTRIAL/COMMERCIAL USE

THIS AGREEMENT is made on the #.2. day of Descard wo thousand Eighteen (2018)
BETWEEN Shri. Narisetty Nagesh son of Prakasiah Narisetty by profession Chief Executive
Officer (CEO), permanent resident of C2,Do-68-2, Leela Manor, Balajinagar, Siripuram Junction,
Siripuram, Vishakhapatnam, Andhra Pradesh, PIN- 530003, presently residing at "A" type building,
Oshapada Residential Campus, M/s. Utkal Alumina International Ltd, Ps. Doraguda, DistRayagada, Pin-765015, the authorized representative of M/s Utkal Alumina International
Limited, having its plant at Doraguda (Hereigafter called the 'Applicant') of the First part.

AND

Shri B. Sankarnarayan, son of Late B. Kashinath, resident of village Gada Govindpur P.S. K. Nuagaon, District Ganjam, Qdisha by profession Executive Engineer, Harabhangi Irrigation Division, Adava, Dist-Gajapati, Qdisha (hereinafter referred to as the 'Sureties') of the second part: AND the Governor of Orissa which expression unless repugnant to the context, shall include is successors and assigns (hereinafter called 'the Government') of the third part;

MAGESH

Page 1 of 11

ANNEXURE: 11

Consent to Operate

CONSENT ORDER BAPHLIMALI BAUXITE MINES OF UTKAL ALUMINA INT. LTD.

Page 1 of 12

BY REGD. POST WITH AD

STATE POLLUTION CONTROL BOARD, ODISHA

A/118, Nilakantha Nagar, Unit-VIII, Bhubaneswar-751012 Phone-2561909, Fax: 2562822, 2560955

CONSENT ORDER

No. 3489

/ IND-I-CON- 5450

Dt. 19.03.2020

CONSENT ORDER NO. 2765

Sub: Consent for discharge of sewage and trade effluent under section 25/26 of Water (PCP) Act, 1974 and for existing / new operation of the plant under section 21 of Air (PCP) Act, 1981.

Ref: Your online application No. 2354845 Dated 20.12.2018 and Letter No. UAIL-Mines/BMM/2019 dated 15.11.2019 & Online reply dated 14.1.2020

Consent to operate is hereby granted under section 25/26 of Water (Prevention & Control of Pollution) Act, 1974 and under section 21 of Air (Prevention & Control of Pollution) Act, 1981 and rules framed thereunder to

Name of the Industry: BAPHLIMALI BAUXITE MINES OF M/S. UTKAL ALUMINA INTERNATIONAL LTD.

Name of the Occupier & Designation: SRI SURYAKANTA MISHRA, DIRECTOR.

Address: VILL: PAIKKUPAKHAL, PO: MAIKANCH, DIST: RAYAGADA

This consent order is valid for the period up to 31.03.2022 from the date of issue of this order.

This consent order supersedes the earlier consent orders issued vide letter No. 2608 dated 14.03.2019.

Details of Products Manufactured

SI. No	Product	Quantity
01.	Bauxite	5.3 MTPA

This consent order is valid for the specified outlets, discharge quantity and quality, specified chimney/stack, emission quantity and quality of emissions as specified below. This consent is granted subject to the general and special conditions stipulated therein.

A. Discharge permitted through the following outlet subject to the standard

Outl et No.		Point of discharge KL/hr		Pre-scribed Standard				
	outlet		Нq	TSS (mg/l)	Oil & Grease (mg/l)	BOD (mg/l)	COD (mg/l)	
01.	Mine drainage water/ surface runoffs/ other wastewater	On land/inl and surface water body	60	5.5- 9.0	100	10	-	

B. Emission permitted through the following stack subject to the prescribed standard

Chimney Stack No.	Description of Stack	Stack height (m)	Quantity of emission	Prescribed Standard		
				PM (mg/Nm³)	SO ₂	NO _x
					_	

C. Disposal of solid waste permitted in the following manner

SI. No.	Type of Solid waste	Quantity generated (TPD)	Quantity to be reused on site(TPD)	Quantity to be reused off site(TPD)	Quantity disposed off (TPD)	Description of disposal site.
01	Top soil & over burden	As per approved mining plan	1==	11==		As per approved mining plan

ODISHA

CONSENT ORDER BAPHLIMALI BAUXITE MINES OF UTKAL ALUMINA INT. LTD.

D. GENERAL CONDITIONS FOR ALL UNITS

- The consent is given by the Board in consideration of the particulars given in the application. Any change or alternation or deviation made in actual practice from the particulars furnished in the application will also be the ground liable for review/variation/revocation of the consent order under section 27 of the Act of Water (Prevention & Control of Pollution) Act, 1974 and section 21 of Air (Prevention & Control of Pollution) Act, 1981 and to make such variations as deemed fit for the purpose of the Acts.
- 2. The industry would immediately submit revised application for consent to operate to this Board in the event of any change in the quantity and quality of raw material / and products / manufacturing process or quantity /quality of the effluent rate of emission / air pollution control equipment / system etc.
- The applicant shall not change or alter either the quality or quantity or the rate of discharge or temperature or the route of discharge without the
 previous written permission of the Board.
- 4. The application shall comply with and carry out the directives/orders issued by the Board in this consent order and at all subsequent times without any negligence on his part. In case of non-compliance of any order/directives issued at any time and/or violation of the terms and conditions of this consent order, the applicant shall be liable for legal action as per the provisions of the Law/Act.
- 5. The applicant shall make an application for grant of fresh consent at least 90 days before the date of expiry of this consent order
- The issuance of this consent does not convey any property right in either real or personal property or any exclusive privileges nor does it authorize any injury to private property or any invasion of personal rights, nor any infringement of Central, State laws or regulation.
- 7 This consent does not authorize or approve the construction of any physical structure or facilities or the undertaking of any work in any natural water course.
- 8 The applicant shall display this consent granted to him in a prominent place for perusal of the public and inspecting officers of this Board.
- 9 An inspection book shall be opened and made available to Board's Officers during the visit to the factory.
- 10. The applicant shall furnish to the visiting officer of the Board any information regarding the construction, installation or operation of the plant or of effluent treatment system / air pollution control system / stack monitoring system any other particulars as may be pertinent to preventing and controlling pollution of Water / Air.
- Meters must be affixed at the entrance of the water supply connection so that such meters are easily accessible for inspection and maintenance and for other purposes of the Act provided that the place where it is affixed shall in no case be at a point before which water has been taped by the consumer for utilization for any purposes whatsoever.
- 12 Separate meters with necessary pipe-line for assessing the quantity of water used for each of the purposes mentioned below.
 - Industrial cooling, spraying in mine pits or boiler feed,
 - b) Domestic purpose
 - c) Process
- 13 The applicant shall display suitable caution board at the lace where the effluent is entering into any water-body or any other place to be indicated by the Board, indicating therein that the area into which the effluents are being discharged is not fit for the domestic use/bathing.
- Storm water shall not be allowed to mix with the trade and/or domestic effluent on the upstream of the terminal manholes where the flow measuring devices will be installed.
- 15. The applicant shall maintain good house-keeping both within the factory and the premises. All pipes, valves, sewers and drains shall be leak-proof. Floor washing shall be admitted into the effluent collection system only and shall not be allowed to find their way in storm drains or open areas.
- The applicant shall at all times maintain in good working order and operate as efficiently as possible all treatment or control facilities or systems install or used by him to achieve with the term(s) and conditions of the consent.
- Care should be taken to keep the anaerobic lagoons, if any, biologically active and not utilized as mere stagnation ponds. The anaerobic lagoons should be fed with the required nutrients for effective digestion. Lagoons should be constructed with sides and bottom made impervious.
- 18. The utilization of treated effluent on factory's own land, if any, should be completed and there should be no possibility of the effluent gaining access into any drainage channel or other water courses either directly or by overflow.
- 19 The effluent disposal on land, if any, should be done without creating any nulsance to the surroundings or inundation of the lands at any time
- 20. If at any time the disposal of treated effluent on land becomes incomplete or unsatisfactory or create any problem or becomes a matter of dispute, the industry must adopt alternate satisfactory treatment and disposal measures.
- 21. The sludge from treatment units shall be dried in sludge drying beds and the drained figuid shall be taken to equalization tank.
- 22. The effluent treatment units and disposal measures shall become operative at the time of commencement of production
- The applicant shall provide port holes for sampling the emissions and access platform for carrying out stack sampling and provide electrical outlet points and other arrangements for chimneys/stacks and other sources of emissions so as to collect samples of emission by the Board or the applicant at any time in accordance with the provision of the Act or Rules made therein.
- 24. The applicant shall provide all facilities and render required assistance to the Board staff for collection of samples / stack monitoring / inspection.
- 25. The applicant shall not change or alter either the quality or quantity or rate of emission or install, replace or alter the air pollution control equipment or change the raw material or manufacturing process resulting in any change in quality and/or quantity of emissions, without the previous written permission of the Board
- No control equipments or chimney shall be altered or replaced or as the case may be erected or re-erected except with the previous approval of the Board.

CONSENT ORDER BAPHLIMALI BAUXITE MINES OF UTKAL ALUMINA INT. LTD.

Page 4 of 12

- 27. The liquid effluent arising out of the operation of the air pollution control equipment shall is treated in the manner and to ion of standards prescribed by the Board in accordance with the provisions of Water (Prevention and Control of Pollution) Act, 1974 (as amended).
- 28. The stack monitoring system employed by the applicant shall be opened for inspection to this Board at any time.
- 29. There shall not be any fugitive or episodal discharge from the premises.
- 30 In case of such episodal discharge/emissions the industry shall take immediate action to bring down the emission within the limits prescribed by the Board in conditions/stop the operation of the plant. Report of such accidental discharge /emission shall be brought to the notice of the Board within 24 hours of occurrence.
- 31 The applicant shall keep the premises of the industrial plant and air pollution control equipments clean and make all hoods, pipes, valves, stacks/chimneys leak proof. The air pollution control equipments, location, inspection chambers, sampling port holes shall be made easily accessible at all times.
- Any upset condition in any of the plant/plants of the factory which is likely to result in increased effluent discharge/emission of air pollutants and / or result in violation of the standards mentioned above shall be reported to the Headquarters and Regional Office of the Board by fax / speed post within 24 hours of its occurrence.
- 33 The industry has to ensure that minimum three varieties of trees are planted at the density of not less than 1000 trees per acre. The trees may be planted along boundaries of the industries or industrial premises. This plantation is stipulated over and above the bulk plantation of trees in that area.
- 34 The solid waste such as sweeping, wastage packages, empty containers residues, sludge including that from air pollution control equipments collected within the premises of the industrial plants shall be disposed off scientifically to the satisfaction of the Board, so as no to cause fugitive emission, dust problems through leaching etc., of any kind.
- 35 All solid wastes arising in the premises shall be properly classified and disposed off to the satisfaction of the Board by
 - Land fill in case of inert material, care being taken to ensure that the material does not give rise to leachate which may percolate into ground water or carried away with storm run-off.
 - Controlled incineration, wherever possible in case of combustible organic material.
 - Composting, in case of bio-degradable material.
- 36. Any toxic material shall be detoxicated if possible, otherwise be sealed in steel drums and buried in protected areas after obtaining approval of this Board in writing. The detoxication or sealing and burying shall be carried out in the presence of Board's authorized persons only. Letter of authorization shall be obtained for handling and disposal of hazardous wastes.
- 37 If due to any technological improvement or otherwise this Board is of opinion that all or any of the conditions referred to above requires variation (including the change of any control equipment either in whole or in part) this Board shall after giving the applicant an opportunity of being heard, vary all or any of such condition and thereupon the applicant shall be bound to comply with the conditions so varied.
- 38 The applicant, his/heirs/legal representatives or assignees shall have no claim whatsoever to the condition or renewal of this consent after the expiry period of this consent.
- 39 The Board reserves the right to review, impose additional conditions or condition, revoke change or after the terms and conditions of this consent.
- 40 Notwithstanding anything contained in this conditional letter of consent, the Board heathy reserves to it the right and power under section 27(2) of the Water (Prevention & Control of Pollution) Act, 1974 to review any and/or all the conditions imposed herein above and to make such variations as deemed fit for the purpose of the Act by the Board.
- 41. The conditions imposed as above shall continue to be in force until revoked under section 27(2) of the Water (Prevention & Control of Pollution) Act, 1974 and section 21 A of Air (Prevention & Control of Pollution) Act, 1981
- 42. In case the consent fee is revised upward during this period, the industry shall pay the differential fees to the Board (for the remaining years) to keep the consent order in force. If they fail to pay the amount within the period stipulated by the Board the consent order will be revoked without prior notice.
- 43 The Board reserves the right to revoke/refuse consent to operate at any time during period for which consent is granted in case any violation is observed and to modify/ stipulate additional conditions as deemed appropriate.

GENERAL CONDITIONS FOR UNITS WITH INVESTMENT OF MORE THAN Rs 50 CRORES, AND 17 CATEGORIES OF HIGHLY POLLUTING INDUSTRIES (RED A).

- 1 The applicant shall analyse the emissions every month for the parameters indicated in TABLE. B & C as mentioned in this order and shall furnish the report thereof to the Board by the 10th of the succeeding month.
- The applicant shall provide and maintain at his own cost three ambient air quality monitoring stations for monitoring Suspended Particulate Matter. Sulphor Dioxide, Oxides of Nitrogen, Hydro-Carbon, Carbon-Monixide and monitor the same once in a day/week/fortnight/month. The data collected shall be maintained in a register and a monthly extract be furnished to the Board.
- The applicant shall provide and maintain at his own cost a meteorological station to collect the data on wind velocity, direction, temperature, humidity, rainfall, etc. and the daily reading shall be recorded and the extract sent to the Board once in a month.
- The applicant shall forward the following information to the Member Secretary, State Pollution Control Board, Odisha, Bhubaneswar regularly.
 - a. Report of analysis of stack monitoring, ambient air quality monitoring meteorological data as required every month.
 - Progress on planting of trees quarterly.
- The applicant shall install mechanical composite sampling equipment and continuous flow measuring / recording devices on the effluent drains of trade as well as domestic effluent. A record of daily discharge shall be maintained.

Page 5 of 12

- 6 The following information shall be forwarded to the Member Secretary on or before 10th of every month.
 - Performance / progress of the treatment plant.
 - Monthly statement of daily discharge of domestic and/or trade effluent.

Non-compliance with effluent limitations

- a) If for any reason the applicant does not comply with or is unable to comply with any effluent limitations specified in this consent, the applicant shall immediately notify the consent issuing authority by telephone and provide the consent issuing authority with the following information in writing within 5 days of such notification.
 - Causes of non-compliance
 - i) A description of the non-compliance discharge including its impact on the receiving waters
 - Anticipated time of continuance of non-compliance if expected to continue or if such condition has been corrected the duration or period of non-compliance.
 - iii) Steps taken by the applicant to reduce and eliminate the non-complying discharge and
 - iv) Steps to be taken by the applicant too prevent the condition of non-compliance
- b) The applicant shall take all reasonable steps to minimize any adverse impact to natural waters resulting from non-compliance with any effluent limitation specified in this consent including such accelerated or additional monitoring as necessary to determine the nature and impact of the non-complying discharge.
- c) Nothing in this consent shall be construed to relieve the applicant from civil or criminal penalties for non-compliance whether or not such non-compliance is due to factors beyond his control, such as break-down, electric failure, accident or natural disaster.
- 8. The applicant shall at his own cost get the effluent samples collected both before and after treatment and get them analysed at an approval laboratory every month for the parameters indicated in Part-D and shall submit in duplicate the report thereof to the Board.
- The addition of various treatment chemicals should be done only with mechanical dosers and proper equipment for regulation of correct dosages determined daily and for proper uniform feeding. Crude practices such as dumping of chemicals in drains or sumps or trickling of acids or alkalies arbitrarily and utilizing poles for stirring etc. should not be resorted to.
- 10. In the disposal of treated effluent on land for irrigation, the industry shall keep in view of the need for,

Rotation of crops

Change of point of application of effluent on land

A portion of land kept fallow.

- 11. The adoption of these would avoid soil becoming sick or slate, the industry may ensure this in consultation with the Agriculture Department.
- 12. It is the sole responsibility of the industry to ensure that there are no complaints at any time from the royats in the surrounding areas as a result of discharge of sewage or trade effluent if any.
- 13 Proper housekeeping shall be maintained by a dedicated team.
- The industry must constitute a team of responsible and technically qualified personnel who will ensure continuous operation of all pollution control devices round the clock (including night hours) and should be in a position to explain the status of operation of the pollution control measures to the inspecting officers of the Board at any point of time. The name of these persons with their contact telephone numbers shall be intimated to the concerned. Regional Officer and Head Office of the Board and in case of any change in the team it shall be intimated to the Board immediately.

Page 6 of 12

E. SPECIAL CONDITIONS:

- Mining operation is subject to availability of all other statutory clearances.
- This consent order is subject to availability of approved mining scheme from IBM, Govt. of India.
- Drills shall either be operated with dust extractors or equipped with water injection system to minimize dust generation in the work environment.
- Controlled blasting shall be practiced to minimize generation of dust and fly rocks.
 No blasting shall be carried out after the sunset.
- Regular water sprinkling shall be carried out at different sources of generation of fugitive dust. Water sprinkling shall be carried out on haul roads at desired interval and should always be in wet condition. Haulage roads shall be devoid of ruts and potholes and shall be maintained to avoid generation of dust during movement of vehicles.
- 6. Mineral handling plant (crusher & screening plant) shall be provided with adequate number of high efficiency dust extraction system or dust suppression system preferably dry fog system. Loading the unloading areas including all the transfer points shall also have efficient dust suppression arrangements. These shall be maintained and operated.
- 7. Fog canons shall be deployed at load & unloading areas to suppress fugitive dust.
- Fixed type water sprinklers shall be provided at ore stockpile areas and alongside entire haul roads.
- Transportation of the ore from the mine pit to the Refinery unit shall be done through closed conveyer system instead of transportation through roads.
- 10. Three continuous real time Ambient Air Quality Monitoring Stations shall be established in core zone & buffer zone with data transfer facility to SPCB server and location of these stations shall be decided based on the metrological data, topographical features and environmentally and ecologically sensitive targets in consultation with the Regional Officer, State Pollution Control Board.
- The CAAQMS shall be properly maintained and calibrated from time to time to ensure that spurious data are not transmitted to the SPCB server.
- Ambient air quality of the mine shall meet the standards prescribed for industrial area.
- 13. The Mine drainage water if any shall be adequately treated before disposal to outside environment. The discharge quality shall meet the prescribed standard as stated in Part-A of the consent order. No untreated wastewater generated from the mine shall be discharged to outside under any circumstances.
- 14. Check dams and check weirs shall be constructed at appropriate places of the mine lease area to prevent direct flow of runoff to nearby water bodies. The surface run off

CONSENT ORDER BAPHLIMALI BAUXITE MINES OF UTKAL ALUMINA INT. LTD.

water from the existing runoff management system shall meet the prescribed standards as stated in of Part A of the consent order.

- Retention wall shall be constructed at the toe of temporary topsoil dump and OB 15 dump. Garland drain shall be constructed around topsoil dumps & over burden dumps terminating at settling pit to prevent runoff of water and flow of sediments directly into nearby water bodies. No untreated surface runoff shall be released to nearby water body. Garland drain and sedimentation pit shall be desilted as and when required and after monsoon.
- Domestic effluents shall be treated in a sewage treatment plant (STP) and or shall 16. be discharged to soak pit via septic tank constructed as BIS specification. The treated wastewater quality of STP shall remain within the following standards and shall be used for plantation:

i. pH 6.5 - 9.0ii. TSS <100 mg/l iii. BOD 30 mg/l <1000 MPN/100 ml.

iv. Fecal Coliform

17. ETP shall be operated at all time for workshop and wastewater generated during mining operation. The quality of the treated wastewater shall conform to the following standard and shall be completely reused for vehicle and floor washing:

> Hg 6.5 -8.5 TSS 50 mg/l 10 mg/l Oil & grease

- Appropriate mitigative measures shall be taken to prevent pollution of the nearby 18. water bodies
- Regular monitoring of water quality of upstream and downstream of surface water 19. bodies existed if any within 5 Km shall be carried out once in every month and record shall be maintained and submitted to the State Pollution Control Board once in every year. Monitoring shall be carried out through MoEF & CC accredited laboratory.
- 20. Regular monitoring of ground water level and quality should be carried out by establishing a network of existing wells. The monitoring should be done four times a year in pre-monsoon (April/May), monsoon (August), post-monsoon (November) and winter (January) seasons. Data thus collected should be submitted to the Board quarterly.
- 21. Top soil and OB shall be stacked properly with adequate measures at earmarked sites. The top soil and OB should be used for reclamation and rehabilitation of the mined out areas.
- 22. The reclamation programme for the mined out area through concurrent backfilling shall be done followed by plantation. Monitoring and management or rehabilitated areas shall continue until the vegetation becomes self-sustaining.

- The mine shall take necessary action for compliance with the air and water quality standards as stipulated in this order.
- 24. Adequate measures shall be taken for control of noise levels in the work environment of the mine area so that noise levels at the boundary line of ML area shall not exceed 75 dB(A) during day time (6 AM to 10 PM) and 70 dB(A) during night time (10 PM to 6 AM).
- 25. IP cameras shall be installed at major dust prone areas of the mine such as mine quarry, mineral stockyards, haul roads, transportation roads, mineral handling plants etc. and they shall be connected SPCB server.
- 26. Plantation of trees shall be undertaken in the colony/ township, over top soil dumps, OB dumps, backfilling area, along the side of haul road and in other areas of the mines not being utilized for mining activities. The mine shall take up avenue plantation and plantation in nearby village areas in consultation with DFO/Horticulture Department. The annual plantation details shall be submitted to the Board by 30th April every year.
- A copy of the annual return (annual return submitted to IBM, Govt. of India/ Directorate of Mines, Govt. of Odisha) shall be submitted to this Board every year.
- 28. The environmental statement report for the financial year ending 31st March shall be submitted to the Board in form -V on or before 30th September every year.

MEMBER SECRETARY
STATE POLLUTION CONTROL BOARD, ODISHA

To,

SRI SURYAKANTA MISHRA, DIRECTOR BAPHLIMALI BAUXITE MINES OF M/S. UTKAL ALUMINA INTERNATIONAL LIMITED, AT: DORAGUDA, PO: KUCHEIPADAR, DIST: RAYAGADA, PIN-765 015

Memo No.	/Dated	_ <i>J</i> .
Copy forwa	arded to:	
i)	Regional Officer, State Pollution Control Board, Rayagada,	
ii)	District Collector, Rayagada,	
iii)	Director of Mines, Govt. of Odisha, Bhubaneswar,	
iv)	Director, Environment -cum-Special Secretary, F & E. Dept	t. Govt. of Odisha, Bhubaneswar.
V)	D.F.O Rayagada,	
vi)	Deputy Director of Mines, Koraput	
vii)	Chief Env. Engineer(C) (Hazardous waste management cell)
viii)	Sr. Env. Scientist(L-II), Central Lab. SPCB, Bhubaneswar	0.0
ix)	Consent Register	
900000	AND THE TOTAL SECTION OF THE PROPERTY OF THE P	

CHIEF ENV. ENGINEER (M)
STATE POLLUTION CONTROL BOARD, ODISHA

Page 9 of 12

GENERAL STANDARDS FOR DISCHARGE OF ENVIRONMENTAL POLLUTANTS

Page 16 of 12

GENERAL STANDARDS FOR DISCHARGE OF ENVIRONMENTAL POLLUTANTS PART –A: EFFLUENTS

SI.No.	Parameters	Standards					
		Inland surface	Public sewers	Land for irrigation	Marine Costal Areas		
		(a)	(b)	(c)	(d)		
1.	Colour & odour	Colourless/Odou rless as far as practible	7- <u>44-114</u> 74	See 6 of Annex-1	See 6 of Annex-1		
2.	Suspended Solids (mg/l)	100	600	200	For process wastewater – 100 b. For cooling water effluent 10% above total suspended matter of influent.		
3.	Particular size of SS	Shall pass 850					
5.	pH value	5.5 to 9.0	5.5 to 9.0	5.5 to 9.0	5.5 to 9.0		
6.	Temperature	Shall not exceed 5°C above the receiving water temperature	******		Shall not exceed 5°C above the receiving water temperature		
7.	Oil & Grease mg/l max.	10	20	10	20		
8.	Total residual chlorine	1.0		*****	1.0		
9.	Ammonical nitrogen (as N) mg/l max.	50	50		50		
10.	Total Kajeldahl nitrogen (as NH ₃) mg/1 max.	100			100		
11.	Free ammonia (as NH ₃) mg/1 max.	5.0			5.0		
12.	Biochemical Oxygen Demand (5 days at (20°C) mg/1 max.	30	350	100	100		
13.	Chemical Oxygen Demand, mg/1 max.	250			250		
14.	Arsenic (as As) mg/1 max.	0.2	0.2	0.2	0.2		
15.	Mercury (as Hg) mg/1 max.	0.01	0.01	******	0.001		
16.	Lead (as pb) mg/1 max.	01.	1.0	*****	2.0		

CONSENT ORDER BAPHLIMALI BAUXITE MINES OF UTKAL ALUMINA INT. LTD.

Page 11 of 12

17.	Cardmium (as Cd) mg/1 max.	2.0	1.0		2.0
18.	Hexavalent Chromium (as Cr + 6) mg/l max.	0.1	2.0		1.0
19.	Total Chromium (as Cr) mg/l max.	2.0	2.0		2.0
20.	Copper (as Cu) mg/l max.	3.0	3.0		3.0
21.	Zinc (as Zn) mg/l max.	5.0	15		15
22.	Selenium (as Sc) mg/l max	0.05	0.05		0.05
23.	Nickel (as Nil) mg/l max.	3.0	3.0		5.0
24.	Cyanide (as CN) mg/l max.	0.2	2.0	0.2	0.02
25.	Fluoride (as F) mg/l max.	2.0	15		15
26.	Dissolved Phosphates (as P) mg/l max.	5.0			********
27.	Sulphide (as S) mg/l max.	2.0		10000000	5.0
28.	Phennolic compounds as (C ₆ H ₅ OH) mg/l max.	1.0	5.0	*******	5.0
29.	Radioactive materials a. Alpha emitter micro curle/ml. b. Beta emitter micro curle/ml.	10 ⁷	10 ⁷	10 ⁸	10 ⁷
30.	Bio-assay test	90% survival of fish after 96 hours in 100% effluent		90% survival of fish after 96 hours in 100% effluent	
31	Manganese (as Mn)	2 mg/l	2 mg/l		2 mg/l
32.	Iron (Fe)	3 mg/l	3 mg/l		3 mg/l
33,	Vanadium (as V)	0.2 mg/l	0.2 mg/l	70 70 100	0.2 mg/l
34.	Nitrate Nitrogen	10 mg/l			20 mg/l

CONSENT ORDER BAPHLIMALI BAUXITE MINES OF UTKAL ALUMINA INT. LTD.

Page 12 of 12

NATIONAL AMBIENT AIR QUALITY STANDARDS

SI.	Pollutants	Time		Concentrate of Ambient Air			
No.	(2)	Weighed Average	Industrial Residential, Rural and other Area	Ecologically Sensitive Area (notified by Central Government)	Methods of Measurement		
(1)	(2)	(3)	(4)	(5)	(6)		
1.	Sulphur Dioxide (SO ₂), μg/m ³	Annual * 24 Hours **	50 80	20 80	-Improved west and Gaeke - Ultraviolet fluorescence		
2.	Nitrogen Dioxide (NO ₂), μg/m ³	Annual * 24 Hours **	40 80	30 80	- Modified Jacob & Hochheiser (Na-Arsenite) - Chemiluminescence		
3.	Particulate Matter (size less than 10μm) or PM ₁₀ μg/m ³	Annual * 24 Hours **	60 100	60 100	-Gravimetric - TOEM - Beta Attenuation		
4.	Particulate Matter (size less than 2.5µm) or PM _{2.5} µg/m ³	Annual * 24 Hours **	40 60	40 60	-Gravimetric - TOEM - Beta Attenuation		
5.	Ozone (O ₃) μg/m ³	8 Hours **	100	100	- UV Photometric - Chemiluminescence - Chemical Method		
6.	Lead (Pb) μg/m³	Annual * 24 Hours **	0.50	0.50	-AAS/ICP method after sampling on EMP 2000 or equivalent filter paper. - ED-XRF using Teflon filter		
7.	Carbon Monoxide (CO) mg/m ³	8 Hours ** 1 Hours **	02	02	- Non Dispersive Infra Red (NDIR)		
8.	Ammonia (NH ₃) μg/m ³	Annual*	100	100	-Chemiluminescence - Indophenol Blue Method		
9.	Benzene (C ₆ H ₆) μg/m ³	Annul *	05	05	-Gas Chromatography based continuous analyzer - Adsorption and Desorption followed by GC analysis		
10.	Benzo (a) Pyrene (BaP)-Particulate phase only, ng/m ³	Annual*	01	01	-Solvent extraction followed by HPLC/GC analysis		
11.	Arsenic (As), ng/m ³	Annual*	06	06	-AAS/ICP method after sampling on EPM 2000 or equivalent filter paper		
12.	Nickel (Ni),ng/m ³	Annual*	20	20	-AAS/ICP method after sampling on EPM 2000 or equivalent filter paper		

^{**} Annual arithmetic mean of minimum I04 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals.

^{** 24} hourly or 08 hourly or 0I hourly monitored values, as applicable, shall be complied with 98% of the time in a year, 2% of the time, they may exceed the limits but not on two consecutive days of monitoring.

SI. No.	Item	Unit	Total	Rate (Rs)	Total (Rs)
	Soil & Moisture Conservation Measures				
1	a) Construction of loose boulder Check dam across the seasonal nels, drainage line and semi perennial nale occurring along the slooply area of the lease.				
	1 mm span	Nos.	60	3600	216000
	2 mtr span	Nos-	40	7113	284520
	3 mtr span	Nos:	26	14920	387920
				(A) Yotal	888440
	b) Contour Bonding	15			300000
	MANUSCHI PRODUCTION OF THE PRO			(B) Total	300000
	Fire Protection Measures				
	Provision for a fine watch tower on North-west side of the lease near the boundary.	15	1		500000
				(C) Total	\$00000
2	Deployment of a fire fighting equad consisting of 5 members with provision of whiche etc. as per approved cost norm of CWLW, Odisha for five fire months (8.3.50 lars per approximate), 3.50 lars at 0 years.	Year	10	350000	3500000
	lists per annum. 3.50 lacs x 10 years. Prevention of fall & entry to mining pits by wild animals.	(D) Total	3500000		
	Prevention of fall & entry to mining pits by wild animals				
3	Construction of balance RR Stone masonary	Km	10	400000	4000000
	Where necessary along the boundary for 10km.			(E) Total	4000000
	Development of Green Belt. Green Belt through following method in safety zone of a length of 22km inside the non-forest land.	7.5 mtr w/c	ith over a		
A	AMR practices with Gap Plantation @ 400 plants per ha	Ha	8.25	38806	320150
	Block Plantation @ 1600 plants per ha	Ha	8.25	286423	2362973
				(F) Total	2683123
5	Cost of one latest Model SUV (SCORPIO-5-10) vehicle to be handed over to the DFO, Rayagada	740.	1	1600000	1600000
-				(G) Total	160000
0	Interventions for regulating impact of mining activities. Interventions for regulating light, water, sir noise pollution, domo stabilisation & waste management will be carried out at the project cost as per the approved environmental management plan.	to implementation at the project cost occording to the approved EMP.			

OFFICE OF THE PRINCIPAL CHIEF CONSERVATOR OF FORESTS (WILDLIFE) & CHIEF WILDLIFE WARDEN, ODISHA

BDA APARTMENT, 5^{TF} FLOOR, PRAKRUTT BHAWAN, NILAKANTHA NAGAR, BBSR-12 Ph. No.8674-2564587, FAX No.9674-2565062 (Website od show#dife.org, E. mail: od show#dife@gmail.com)

> No. 5648 /1WL-SSP-80/2016 Dated Bhubaneswar, the 27 Jun, 2017

To

The Asst. Vice President, Mines, M/s Utkal Alumina International Ltd., J-6, Jayadev Vihar, Bhubaneswar - 751013

Subi

Proposal for diversion of 233.343 ha. of DLC forest land including safety zone of 10.283 ha in village Faik-Rupakhai, Unuturapas and Karanj-Rupakhai under Kasipur Tahsil of Rayagada District within total mining lease area of 1388.74 ha for bauxite mining in their Baphilimali Bauxite Mines in Kalahandi and Rayagada Districts of Odisha by M/s Utkal Alumina International Ltd. - Approval of Site Specific Wildlife Conservation Plan

Sir,

It is to inform you that you have to implement a Site Specific Wildlife Conservation Plan for your Baphilimali Bauxite Mines in Kalahandi and Rayagada Districts to address the impact on wildlife within the surrounding area and the recommendation of State Govt. for implementation of such a plan while forwarding the above diversion proposal to Govt. of India, MoEF&CC vide their letter No.12569/F&E dt 11.07.2016.

 The Site Specific Wildlife Conservation Plan in respect of the above project has been approved by the undersigned with financial forecast of *670.451 lakh (Rupees six crore seventy lakh forty-five thousand one hundred) only for the following activities.

	Grand Total:	7670.451 lakh
C,	For activities to be implemented by DFO, Kalahandi South Division in project impact area	₹309.093 lakh
b.	For activities to be implemented by DFO, Rayagada Division in project impact area	₹226.622 lakh
ō.	For activities to be implemented by the user agency in project area	₹134.736 lakh

ANNEXURE: 14

Submission of Digital processing of Mine lease area

Report

UAIL-MINES/ENV/150/2020

15th September 2020

To

The Addl. Principal Chief Conservator of Forest Ministry of Environment Forests & Climate Changes Govt. of India Eastern Regional office, A/3, Chandrasekharpur Bhubaneswar - 751023

Digital processing of the entire lease area using remote sensing technique for monitoring Sub: land use pattern with respect to our Baphlimali Bauxite Mine of M/s Utkal Alumina International Limited, Rayagada, Odisha with production capacity of 8.5 MTPA.

Environment Clearance No. J-11015/650/2007-IA.II (M) dated 19.02.2009. Ref:

Dear Sir,

As a part of the compliance to the condition no. XXXII of the EC granted with respect to our 8.5 MTPA Baphlimali Bauxite Mine of M/s Utkal Alumina International Ltd. vide Ministry's letter no. J-11015/650/2007-IA.II (M) dated 19.02.2009, we are enclosing herewith the land use report and the land use map of lease area for your kind perusal.

Thanking you,

Yours faithfully,

For Utkal Alumina International Limited

Head- Mines

Baphlimali Bauxite Mine

Encl: As above

Copy to:

- 1. The Member Secretary, State Pollution Control Board, Paribesh Bhawan A/118 Nilakantha Nagar Unit-VIII, Bhubaneswar -751012.
- Regional Office, OSPCB, Rayagada.
- roez.bsr-mef@nic.in, mef.or@nic.in, paribesh1@ospcboard.org,rospcb.rayagada@ospcboard.org

ANNEXURE: 15

Trade wise Noise Monitoring Report

td. 🍄

(An Enviro Engineering Consulting Cell)
(ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

Test Report No.: Envlab/20/R-5216

Date: 06.11.2020

TEST REPORT

Customer Name & Address : Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Code	N1-N7	Sampled By	VCSPL'S Representative
Sample Name	*Noise	Sampling Procedure	IEC 61672-1(2002-05) Class-I.
Sample Source	Noise Level (Core Zone)	Sample Received On	NA
Sample Condition	NA	Test Completed On	NA

SL. No	Sampling Location	Date of Monitoring	Noise level dB (A) Leq, day time (6.00am to 10.00pm)	Noise level dB (A) Leq, night time (10.00pm to 06.00am)
01	Drilling Operation	14.10.2020	67.9	61.9
02	Loader Operation	05.10.2020	72.2	67.2
03	Shovel Operation	07.10.2020	70.5	65.5
04	Dumper Operation	09.10.2020	73.4	64.8
05	Crusher Operation	02.10.2020	69.4	60.3
06	Workshop Area	23.10.2020	70.5	66.4
07	Middle of Quarry	12.10.2020	71.9	63.2
Standard	as per Noise Rule 2000			
	Industrial Area		75	70
	Residential Area		55	45
Any feat	ire observed during determinat	tion		kit

^{*}This Parameter not in our NABL Scope.

*** End Report***

Remarks:

TERMS AND CONDITION:-

- 1. The Test result is relevant only to the item tested.
- 2, This report shall not be reproduced in full or part without written approval of Visiontek consultancy services.(P) Ltd
- 5. The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.

The test dem will not be retained for more than 15 days from the date of issue of test rep
 The laboratory's responsibility under this report is limited to; proven willful negligence.

Authorized Signatory

(An Enviro Engineering Consulting Cell) (ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

> Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

Test Report No.: Envlab/20/R-5217

Date: 06.11.2020

TEST REPORT

Customer Name & Address: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Code	N1-N4	Sampled By	VCSPL'S Representative
Sample Name	*Noise	Sampling Procedure	IEC 61672-1(2002-05) Class-L
Sample Source	Noise Level (Core Zone)	Sample Received On	NA
Sample Condition	NA	Test Completed On	NA

SL. No	Sampling Location	Date of Monitoring	Noise level dB (A) Leq, day time (6.00am to 10.00pm)	Noise level dB (A) Leq, night time (10.00pm to 06.00am)
01	Village Paikupakhal	08.10.2020	51.9	42.7
02	Village Andirakanch	15.10.2020	53.5	42.0
03	Village ADRI	20.10.2020	54.8	43.3
04	Village Chandragiri	27.10.2020	52.7	41.7
Standard	as per Noise Rule 2000			
	Industrial Area		75	70
	Residential Area		55	45
Any feat	are observed during determinat	ion	N	ii

^{*}This Parameter not in our NABL Scope.

*** End Report***

TERMS AND CONDITION:-

- 1. The Test result is relevant only to the item tested.
- 2. This report shall not be reproduced in full or part without written approval of Visiontek coosultancy services (P) Ltd
- 3. The laboratory is not responsible for the autheoricity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.

5. The laboratory's responsibility under this report is limited to; proven willful negligence.

Authorized Signatory

(An Enviro Engineering Consulting Cell)
(ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

Date: 07.12.2020

Test Report No.: Envlab/20/R-6653

TEST REPORT

Customer Name & Address: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Code	N1-N7	Sampled By	VCSPL'S Representative
Sample Name	*Noise	Sampling Procedure	IEC 61672-1(2002-05) Class-I.
Sample Source	Noise Level (Core Zone)	Sample Received On	NA .
Sample Condition	NA	Test Completed On	NA

SL. No	Sampling Location	Date of Monitoring	Noise level dB (A) Leq, day time (6.00am to 10.00pm)	Noise level dB (A) Leq, night time (10.00pm to 06.00am)
01	Drilling Operation	11.11.2020	73.2	66.5
02	Loader Operation	06.11.2020	69,9	63.3
03	Shovel Operation	13.11.2020	70.4	65.9
04	Dumper Operation	02.11.2020	68,8	64.4
05	Crusher Operation	04.11.2020	72.5	61.8
06	Workshop Area	16.11.2020	73,4	65.3
07	Middle of Quarry	09.11.2020	71.8	62,2
Standard	as per Noise Rule 2000			
	Industrial Area		75	70
	Residential Area		55	45
Any feati	re observed during determinat	tion	N	ii

[&]quot;This Parameter not in our NABL Scope.

*** End Report***

Remarks:

- 1. The Test result is relevant only to the item tested.
- 2. This report shall not be reproduced in full or part without written approval of Visiontek consultancy services.(P) Ltd
- 3. The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.
- 5. The laboratory's responsibility under this report is limited to; proven willful negligence.

(An Enviro Engineering Consulting Cell)
(ISO 9001:2015, ISO 14001:2015 & OHSAS 45001:2018 Certified)

Certificate No.: TC-7944 Format No.: VCSPL/FMT/055

Date: 07.12.2020

Test Report No.: Envlab/20/R-6654

TEST REPORT

Customer Name & Address: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Code	N1-N4	Sampled By	VCSPL'S Representative
Sample Name	*Noise	Sampling Procedure	IEC 61672-1(2002-05) Class-1.
Sample Source	Noise Level (Core Zone)	Sample Received On	NA ·
Sample Condition	NA	Test Completed On	NA.

SL. No	Sampling Location	Date of Monitoring	Noise level dB (A) Leq, day time (6.00am to 10.00pm)	Noise level dB (A) Leq, night time (10.00pm to 06.00am)
01	Village Paikupakhal	05.11.2020	53.6	43.4
02	Village Andirakanch	12.11.2020	54.1	41.4
03	Village ADRI	19.11.2020	52.8	42.9
04	Village Chandragiri	26.11.2020	53.1	40.5
Standard	as per Noise Rule 2000			
	Industrial Area		75	70
	Residential Area		55	45
Any feat	ure observed during determinat	tion	N	ni .

^{*}This Parameter not in our NABL Scope.

*** End Report***

Remarks:

- 1. The Test result is relevant only to the item tested.
- 2, This report shall not be reproduced in full or part without written approval of Visiontek consultancy services.(P) Ltd
- 3. The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in ease as required by applicable regulations.
- The laboratory's responsibility under this report is limited to; proven willful negligence.

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001:2015 ISO 45001:2018 (OH&S) ISO/IEC 17025:2005

Date: 05.01.2021

Test Report No.: Envlab/20/R-6864

TEST REPORT

Customer Name & Address: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Code	N1-N7	Sampled By	VCSPL'S Representative
Sample Name	Noise	Sampling Procedure	IEC 61672-1(2002-05) Class-L
Sample Source	Noise Level (Core Zone)	Sample Received On	NA.
Sample Condition	NA	Test Completed On	NA -

SL. No	Sampling Location	Date of Monitoring	Noise level dB (A) Leq, day time (6.00am to 10.00pm)	Noise level dB (A) Leq, night time (10.00pm to 06.00am)
01	Drilling Operation	11.12.2020	71.9	68.1
02	Loader Operation	04.12.2020	74.3	65.8
03	Shovel Operation	07.12.2020	72.6	64.3
04	Dumper Operation	09.12.2020	71.7	62.3
05	Crusher Operation	02.12.2020	70.3	64.5
06	Workshop Area	14.12.2020	69.5	63.1
07	Middle of Quarry	21.12.2020	72.3	64.7
Standard	as per Noise Rule 2000	- 11		
	Industrial Area		75	70
	Residential Area		55	45
Any feati	are observed during determinat	tion	1	Sil .

*** End Report***

- 1. The Test result is relevant only to the item tested.
- 2, This report shall not be reproduced in full or part without written approval of Visiontek consultancy services.(P) Ltd.
- 3. The laboratory is not responsible for the authenticity of photocopied test report,
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.
- 5. The laboratory's responsibility under this report is limited to; proven willful negligence.

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001:2015 ISO 45001:2018 (OH&S) ISO/IEC 17025:2005

Date: 05.01.2021-

Test Report No.: Envlab/20/R-6865

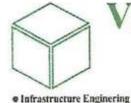
TEST REPORT

Customer Name & Address: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Code	N1-N4	Sampled By	VCSPL'S Representative
Sample Name	Noise	Sampling Procedure	IEC 61672-1(2002-05) Class-I.
Sample Source	Noise Level (Core Zone)	Sample Received On	NA
Sample Condition	NA	Test Completed On	NA

SL. No	Sampling Location	Date of Monitoring	Noise level dB (A) Leq, day time (6.00am to 10.00pm)	Noise level dB (A) Leq, night time (10.00pm to 06.00am)
01	Village Paikupakhal	08.12.2020	54.7	40.9
02	Village Andirakanch	15.12.2020	52.2	43.2
03	Village ADRI	17.12.2020	53.5	44.1
04	Village Chandragiri	21.12.2020	54.4	42.7
Standard	as per Noise Rule 2000			W.
	Industrial Area		75	70
Residential Area		55 45		
Any feati	ire observed during determinat	ion	N	G1


*** End Report***

Remarks:

- 1. The Test result is relevant only to the item tested.
- 2, This report shall not be reproduced in full or part without written approval of Visiontek consultancy services.(P) Ltd
- 3. The laboratory is not responsible for the authenticity of photocopied test report.
- 4. The test item will not be retained for more than 15 days from the date of issue of test report except in case as required by applicable regulations.
- The laboratory's responsibility under this report is limited to; proven willful negligence.

Visiontek Consultancy Services Pvt. Ltd.
(Committed For Better Environment)
(Laboratory Services)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Surface & Sub-Surface Investigation
- Quality Control & Project Management
- Renewable Energy
- Agricultural Development
- Information Technology
- Public Health Engineering
- Mine Planning & Design
- Mineral/Sub-Soil Exploration

Waste Management Services

Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Test Report No.: Envlab/20/R-8124

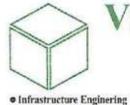
Date: 05.02.2021

TEST REPORT

Customer Name & Address : Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

• Water Resource Management


· Environmental & Social Study

Sample Code	N1 - N7	Sampled By	VCSPL'S Representative
Sample Name	Noise	Sampling Procedure	IEC 61672-1(2002-05) Class-I
Sample Source	Noise Level (Core Zone)	Sample Received On	NA
Sample Condition	NA	Test Completed On	NA

SL. No	Sampling Location	Date of Monitoring	Noise level dB (A) Leq, day time (6.00am to 10.00pm)	Noise level dB (A) Leq, night time (10.00pm to 06.00am)
01	Drilling Operation	12.01.2021	73.4	62.6
02	Loader Operation	22.01.2021	72.8	59.7
03	Shovel Operation	23.01.2021	71.3	60.3
04	Dumper Operation	26.01.2021	73.0	64.1
05	Crusher Operation	12.01.2021	72.5	62.7
06	Workshop Area	28.01.2021	67.7	59.2
07	Middle of Quarry	29.01.2021	70.8	60.4
Standard	as per Noise Rule 2000			
	Industrial Area		75	70
	Residential Area		55	45
kny feature	observed during determination		N	il

· Water Resource Management

Environmental & Social Study

Visiontek Consultancy Services Pvt. Ltd.
(Committed For Better Environment)

(Laboratory Services)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation Agricultural Development

· Quality Control & Project Management

· Renewable Energy

 Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration

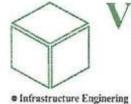
Waste Management Services

Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Test Report No.: Envlab/20/R-8125

Date: 05.02.2021

TEST REPORT


Customer Name & Address : Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha SAMPLE DETAILS

Sample Code	N1 N4	Sampled By	VCSPL'S Representative
Sample Name	Noise	Sampling Procedure	TEC 61672-1(2002-05) Class-1
Sample Source	Noise Level (Buffer Zone)	Sample Received On	NA
Sample Condition	NA	Test Completed On	NA

SL. No	Sampling Location	Date of Monitoring	Noise level dB (A) Leq, day time (6.00am to 10.00pm)	Noise level dB (A) Leq, night time (10.00pm to 06.00am)
01	Village Paikupakhal	13.01.2021	52.6	41.7
02	Village Andirakanch	15.01.2021	51.4	40.5
03	Village ADRI	16.01.2021	53.8	42.5
04	Village Chandragiri	18.01.2021	50.7	38.8
Standard	as per Noise Rule 2000			
Industrial Area		75	70	
Residential Area			55	45
Any feature	observed during determination		N	il

• Water Resource Management

· Environmental & Social Study

isiontek Consultancy Services Pvt. Lt

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Surface & Sub-Surface Investigation
 - · Quality Control & Project Management
 - · Renewable Energy
- Agricultural Development Information Technology

Public Health Engineering

- · Mine Planning & Design
- Mineral/Sub-Soil Exploration

Soil Lab Mineral Lab & Microbiology Lab

Material Lab

Laboratory Services Environment Lab Food Lab

Waste Management Services

Test Report No.: Envlab/20/R-8719

Date: 04.03.2021

TEST REPORT

Customer Name & Address : Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Code	N1 - N7	Sampled By	VCSPL'S Representative
Sample Name	Noise	Sampling Procedure	IEC 61672-1(2002-05) Class-I
Sample Source	Noise Level (Core Zone)	Sample Received On	NA
Sample Condition	NA	Test Completed On	NA

SL. No	Sampling Location	Date of Monitoring	Noise level dB (A) Leq, day time (6.00am to 10.00pm)	Noise level dB (A) Leq, night time (10.00pm to 06.00am)
01	Drilling Operation	10.02.2021	72.4	59.5
02	Loader Operation	08.02.2021	70.7	55.7
03	Shovel Operation	08.02.2021	72.5	58.1
04	Dumper Operation	05.02.2021	71.8	54.6
05	Crusher Operation	01.02.2021	73.4	57.7
06	Workshop Area	22.02.2021	70.0	55.3
07	Middle of Quarry	19.02.2021	71.6	53.5
Standard	as per Noise Rule 2000			
Industrial Area		75	70	
ny feature observed during determination		Nil		

isiontek Consultancy Services Pvt. Ltd.
(Committed For Better Environment)
(Laboratory Services)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

 Agricultural Development OQuality Control & Project Management

o Information Technology

Mine Planning & Design

· Mineral/Sub-Soil Exploration

Environment Lab Food Lab Material Lub Soil Lab Mineral Lab

· Water Resource Management · Environmental & Social Study

Renewable Energy

Public Health Engineering

Waste Management Services

& Microbiology Lab

Test Report No.: Envlab/20/R-8720

Date: 04.03.2021

TEST REPORT

Customer Name & Address: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha


SAMPLE DETAILS

Sample Code	N1 – N4	Sampled By	VCSPL'S Representative
Sample Name	Noise	Sampling Procedure	IEC 61672-1(2002-05) Class-I
Sample Source	Noise Level (Buffer Zone)	Sample Received On	NA
Sample Condition	NA	Test Completed On	NA

SL. No	Sampling Location	Date of Monitoring	Noise level dB (A) Leq, day time (6.00am to 10.00pm)	Noise level dB (A) Leq, night time (10.00pm to 06.00am)	
01	Village Paikupakhal	16.02.2021	49.8	39.6	
02	Village Andirakanch	04.02.2021	50.3	35.7	
03	Village ADRI	25.02.2021	56.1	40.4	
04	4 Village Chandragiri 27.02.2021		51.4	37.2	
tandard	as per Noise Rule 2000			M	
Residential Area		55	45		
ny feature observed during determination		Nil			

• Water Resource Management

■ Environmental & Social Study

isiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by: NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Surface & Sub-Surface Investigation
- Quality Control & Project Management
- Renewable Energy
- Agricultural Development
- Information Technology
- Public Health Engineering
- Mine Planning & Design
- Mineral/Sub-Soil Exploration Waste Management Services

Mineral Lab Microbiology Lab

Laboratory Services Environment Lab Food Lab

Material Lab Soil Lab

Test Report No.: Envlab/20/R-9399

Date: 31.03.2021

TEST REPORT

Customer Name & Address: Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Code	N1 – N7	Sampled By	VCSPL'S Representative
Sample Name	Noise	Sampling Procedure	IEC 61672-1(2002-05) Class-I
Sample Source	Noise Level (Core Zone)	Sample Received On	NA
Sample Condition	NA	Test Completed On	NA

SL. No	Sampling Location	Date of Monitoring	Noise level dB (A) Leq, day time (6.00am to 10.00pm)	Noise level dB (A) Leq, night time (10.00pm to 06.00am)
01	Drilling Operation	03.03.2021	70.6	57.3
02	Loader Operation	10.03.2021	68.8	54.5
03	Shovel Operation	16.03.2021	71.3	56.2
04	Dumper Operation	08.03.2021	69.7	52.8
05	Crusher Operation	01.03.2021	74.0	54.5
06	Workshop Area	17.03.2021	66.8	51.7
07	Middle of Quarry	09.03.2021	70.4	53.6
Standard	as per Noise Rule 2000			
	Industrial Area		75	70
Any feature observed during determination		Nil		

Infrastructure Enginering

• Water Resource Management

· Environmental & Social Study

isiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for: ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

Ouality Control & Project Management

· Renewable Energy

Agricultural Development

 Information Technology @ Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab Microbiology Lab

Test Report No.: Envlab/20/R-9400

Date: 31.03.2021

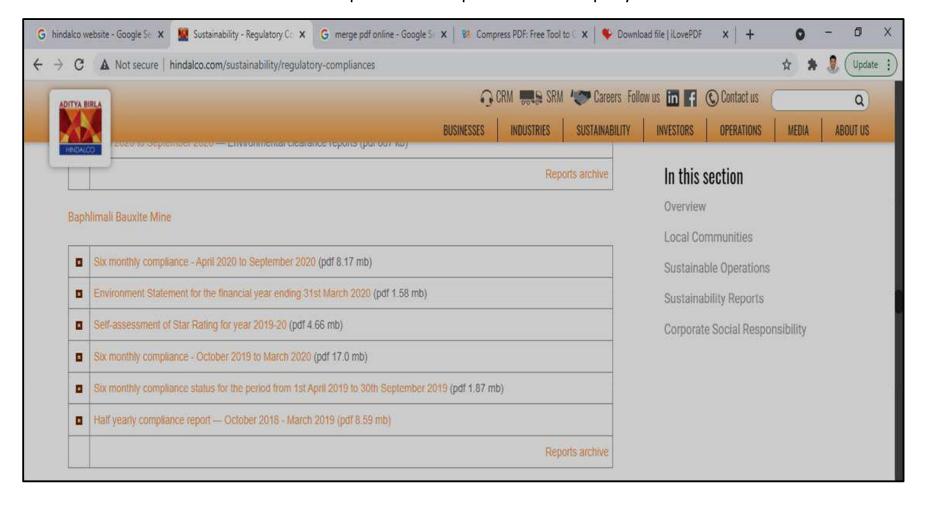
TEST REPORT

Customer Name & Address : Baphlimali Mines, M/s Utkal Alumina International Ltd, Tikiri, Rayagada, Odisha

SAMPLE DETAILS

Sample Code	N1 - N4	Sampled By	VCSPL'S Representative
Sample Name	Noise	Sampling Procedure	IEC 61672-1(2002-05) Class-I
Sample Source	Noise Level (Buffer Zone)	Sample Received On	NA
Sample Condition	NA	Test Completed On	NA

SL. No	Sampling Location	Date of Monitoring	Noise level dB (A) Leq, day time (6.00am to 10.00pm)	Noise level dB (A) Leq, night time (10.00pm to 06.00am)
01	Village Paikupakhal	09.03.2021	48.3	37.5
02	Village Andirakanch	11.03.2021	51.2	36.3
03	Village ADRI	18.03.2021	54.5	39.6
04 Village Chandragiri 25.03.2021		49.7	35.5	
Standard	as per Noise Rule 2000			
Residential Area		55	45	
any feature observed during determination		Nil		

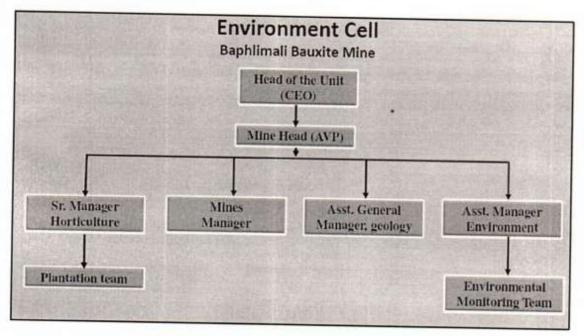


ENVIRONMENTAL EXPENDITURE FOR THE YEAR 2020-21

ENVIRONMENT EXPENDITURE						
	Period 2020-21					
SI. No.	Particulars of Environment Expenditure	Amount (Rs.)				
1	Air Pollution Control Measure	3,10,89,600.00				
2	Plantation & Horticulture	1,02,34,468.00				
3	Environment Monitoring	36,93,529.42				
4	Environment Awareness & Health	2,95,615.00				
5	Statutory Expenses & Study report Preparation	8,99,777.20				
8	Others	23,23,634.99				
	Total	4,85,36,623.8				

Annexure- 17

Screen shot of up-loaded compliances on company website



Date: 29.05.2021

According to the Environment clearance condition & to look after the compliances with respect to environment, an environmental cell at Baphlimali Bauxite Mine of M/s Utkal Alumina International Limited has been constituted.

The name & designations of the Environment Cell members with organization structure is enlisted below.

Thanking You

For Utkal Alumina International Limited

Mukesh Kumar Jha

Head-Baphlimali Bauxite Mine

PHOTOS	

PHOTO 1: Showing Check dam

PHOTO 2: Showing Retaining wall & garland Drain along the Dump Slope

PHOTO 3: Showing Settling Ponds

PHOTO 4: Showing Settling Pond Desilting

PHOTO 5: Showing Plantation in Backfilled area

PHOTO 6: Showing Plantation in Mine Lease

PHOTO 7: Showing Nursery inside Mine Lease

PHOTO 8: Showing 28KL Mobile sprinkler

PHOTO 9: Showing Fixed Sprinklers

PHOTO 10: Showing drilling machine with dust Extractor

PHOTO 11: Showing Fixed sprinklers in stock pile area

PHOTO 12: Showing Covered Long distance Conveyor

PHOTO 13: Showing Dry fog system in Fixed Crushing plant

PHOTO 14: Showing 75 KLD STP

