

28.11.2022

To, The Addl. Principal Chief Conservator of Forest (Central), Ministry of Env., Forest and Climate Change, Regional Office (WCZ) Ground Floor, East Wing, New Secretariat Building, Civil Line, Nagpur-440001 (MS)

Sub: - Status of compliance of EC condition (Half yearly status of compliance report) in respect of Kudag Bauxite Mine (Lease area- 377.116 Ha.) of M/s Hindalco Industries Limited of Chhattisgarh state for the period from April-2022 to Sept. -2022.

Ref No: - Environment Clearance Letter No-J-11015/354/2007-IA. II (M) dated July 27, 2007

Dear Sir,

We do herewith submit half yearly status of EC compliance report in respect of Kudag Bauxite Mine, Lease area -377.116 Ha, of M/s Hindalco Industries Limited P.O- Kusmi, Dist.- Balrampur- Ramanujganj, Chhattisgarh state, PINr the period from April- 2022 to September -2022. The lease details is as below: -

497224 for the period nonnapin =	D I tim Congrity	Lease Period		
Lease area	Production Capacity	24 12 1006 to 23 12 2046		
377.116 Ha.	60000 Tonnes	(50 years)		

We are also sending you the soft copy of the report to your good on E mail - moef.ddn@gmail.com for your ready reference. We trust that the measures taken towards environment safeguard comply with the stipulated environmental conditions.

We assure that we comply all the conditions laid down in the consent letter and also abide to follow all the Rules and Regulations.

Thanking you,

Yours's faithfully

For, Hindalco Industries Limited

(Vijay Chauhan)

Agent of Mines Samn Mines Division

Agent of Mines

Agent of Mines Hindalco Industries Lto E-Mail – chauhan.vijaykumar@adityabirla.com

Encl:-

Half yearly status of compliance of Environment condition as annexure-1. 1

- Environment Status Report from April- 2022 to Sept. -2022, enclosed as annexure-II. 2.
- Renewal copy of Consent to Operate from CECB enclosed as annexure -III. 3. Production report from April- 2022 to Sept. -2022 enclosed as annexure-IV.
- 4 Status report of mined out, reclaimed and afforested land as annexure-V.
- 6. Actual expenditure incurred in protection of environment from April- 2022 to Sept. -2022 as annexure-VI.
- 7. Ground Water NOC enclosed at Annexure VII.
- 8. Soft copy of documents by CD.
- C.C.- The Regional Officer, CECB, Ambikapur

HINDALCO INDUSTRIES LIMITED Samri Mines Division, Baba Chowk, At & Post - Kusmi, PIN : 497 224, Distt - Balrampur-Ramanuigani (CG) INDIA REGISTERED OFFICE Ahura Centre, 1st Floor, B-Wing Mahakali Caves Road, Andheri (East), Mumbai 400 093, INDIA,

Website : www.hindalco.com E-mail : hindalco@adityabirla.com, corporate Identity No. L27020MH1958PLC011238 EC Compliance for Kudag Bauxite Mine (Mine Lease Area of 377.116 Ha), Village - Kudag, Bata, Rajendrapur, Tehsil - Kusmi, District – Balrampur-Ramanujganj, State – Chhattisgarh

M/s. Hindalco Industries Limited Compliance Period: April 2022 to September 2022

EC COMPLIANCE REPORT (April 2022 to September 2022)

of

Kudag Bauxite Mine

(Mine Lease Area of 377.116 Ha) Capacity -0.6 LTPA

Located at

Village - Kudag, Bata, Rajendrapur, Tehsil - Kusmi, District – Balrampur-Ramanujganj, State - Chhattisgarh

M/s. Hindalco Industries Limited (Samri Mines Division) Balrampur-Ramanujganj District (C.G.)

26.11.2022

Status of Compliance from April 2022 to September 2022 of Environmental Condition laid down by MOEF

Kudag Bauxite Mine

The status of compliance of the conditions with reference to environment clearance letter no. J-11015/354/2007 - IA.(IIM) dated 27.07.2007 of Ministry of Environment & Forest, New Delhi, for Kudag Bauxite Mine is as under:-

COMPLIANCE STATUS

S.N.	Conditions	Action			
А.	Specific Conditions				
i.	Environmental clearance is subject to obtaining clearance under the Wildlife (Protection) Act, 1972 from the competent authority.	The Wild life Management plan has been approved by competent Authority. (Annexure –A)			
ii.	Environmental clearance is subject to final order of the Hon'ble Supreme Court of India in the matter of Goa Foundation Vs. Union of India in Writ petition (Civil) No. 460 of 2004 as may be applicable to this project.	Noted.			
iii.	Conservation plan for schedule I fauna (if found in the study area) shall be prepared in consultation with Wildlife Department. The company shall provide authenticated list of flora & fauna separately for core and buffer zone indicating schedule of species.	The Conservation plan for schedule I fauna have been prepared. The authenticated list of flora and fauna for core and buffer zone is enclosed for perusal please. <i>(Annexure –B).</i>			
iv.	The mining operations shall be restricted to above ground water table and it shall not intersect ground water table. Prior approval of the Ministry and CGWA should be obtained for mining if any below water table.	The mining operation is restricted to well above ground water table. As per our current mining operation, ultimate depth of working is about 15 meters below. Piezometer has been installed at strategic location in the lease area to monitor the Ground water level, the average depth of which is 30-35m. The ground water table is below the depth of our mining operation Hence there is no intersection of groundwater level during course of mining operation. We undertake that no mining operation is being and will be carried out below the water table.			
v.	Top soil, if any shall be stacked properly with proper slope with adequate safeguards and shall not be used reclamation and rehabilitation of mined out area.	Top soil generated during mining operation is being concurrently spread on backfilled area to restore its original forms immediately. However, if required it will be stacked properly with proper slope			

S.N.	Conditions	Action		
		and adequate safeguards.		
vi.	Over burden shall be stacked at earmarked dump site (s) only and shall not be kept active for long period. The maximum height of the dump shall not exceed 30m, each stage shall preferably be of 10m and over all slope of the dump shall not exceed 28 ⁰ . The mine pit area shall be reclaimed by back filling the OB in a phased manner. The OB dumps shall be scientifically vegetated with suitable native species to prevent erosion and surface run off. Monitoring and management of rehabilitated areas shall continue until the vegetation becomes self-sustaining. Compliance status shall be submitted to the Ministry of Environment & Forests on six monthly basis.	As such there is no any active OB dump at present. As per approved Mining Plan, OB generated during mine operation is being utilized for concurrently back filling of the mined out area for reclamation purpose. Small old inactive OB dump has been stabilized by vegetation with suitable native species to prevent erosion and surface run off. Photo attached as Annexure-C.		
vii.	Garland drains shall be constructed to arrest silt and sediment flows from soil and mineral dump. The water so collected shall be utilized for watering the mine area, roads, greens belt development etc. The drains shall be regularly desilted particularly after monsoon and maintained properly. Garland drain (size, gradient and length) shall be constructed for both mine pit and for waste dump and sump capacity shall be designed keeping 50% safety margin over and above peak sudden rainfall (based on 50 years data) and maximum discharge in the area adjoining the mine site. Sump capacity shall also provide adequate retention period to allow proper settling of silt material. Sedimentation pits shall be constructed at the corners of the garlands drains and desilted at regular intervals.	Old inactive OB dump has been stabilized by vegetation. Garland drain is provided to arrest silt and sediments flows from above mentioned OB dump. At present there is no any active OB dump. Entire waste generated during mining operation is being simultaneously backfilled in the mined out pit. Garland drains & Parapet wall of appropriate size, gradient and length have been made around the active mining pits coupled with arrester to arrest silt from run-off and drains are being maintained. The drains are regularly desilted before the monsoon. The Water so collected is being used for green belt development and in sprinkling of the Haul Road. Sump of adequate capacity is also developed. Photographs attached as Annexure -D.		
viii.	The project proponent shall ensure that no natural water course shall be obstructed due to mining operation.	We undertake that no natural water course is obstructed during mining operation.		
ix.	Blasting operations shall be carried out only during the day time. Controlled blasting shall be practiced. The drills should be operated with drill extractors. The mitigative measures for control of ground vibrations and arrest fly rocks shall be implemented.	Controlled blasting is being practiced in the mine only in day time. Wet drilling Machines are being used during drilling operations. Nonel & effective blast design are used to control blast vibration and fly rocks.		

S.N.	Conditions	Action		
x.	Plantation shall be raised in an area of 44.69 ha including green belt of adequate width by planting native species around the ML area, roads; OB dump sites etc. in consultation with the local DFO/Agriculture Department. The density of the trees shall be around 2500 plants per ha. Selection of plant species shall be as per CPCB guidelines. Herbs and shrubs shall also form a part of afforestation programme besides tree plantation.	April to Sept 2022 total 2.024 ha have been afforested and cumulative 58.293 Ha. have been afforested till date. The plantation in reclaimed area has been carried out as per plan. The density is being maintained about 2500 plant per hectare with the species like Amla, Kashia Samia, mango, babul, pears & guava etc. Moreover, Ragi (Maduwa) agriculture farming has been done on over reclaimed area. Social forestry is also being encouraged among the local villagers. Apart from that local food grain Ragi (Maduwa) & Tau has been planted over the reclaimed area. Year wise plantation is enclosed as Annexure-E .		
xi.	The project authority shall implement suitable conservation measures to augment ground water resources in the area in consultation with the Regional Director, Central Ground Water Board.	The ground water table does not intersect our mining operation because of shallow depth of mining. Piezometer has been installed at strategic location in our lease area for monitoring the ground water level, the average depth of which is 30-35m. However, Rain water harvesting structure (Ponds and Wells) has been constructed as conservation measures in mined out area for the conservation/augmentation of ground water resources. Photograph of recharge well and other rainwater harvesting structure/Pond is enclosed as Annexure –F.		
xii.	Regular water sprinkling shall be carried in critical areas prone to air pollution and having high levels of SPM and RSPM such as haul road, loading, unloading and transfer points and other vulnerable areas. It should be ensured that the ambient air quality parameters conform to the norms prescribed by the CPCB in this regard.	Regular water spraying with 12 KL portable water tanker in the mine lease hold area is being carried out regularly to control air pollution. The ambient air quality is within the stipulated norms.		
xiii.	Regular monitoring of ground water level and quality shall be carried out by establishing a network of existing wells and constructing new piezometers during the mining operation. The monitoring shall be carried out four times in a year-pre-monsoon (April-May), monsoon (August), post-monsoon (November) and winter (January) and the data thus collected may be sent regularly to MOEF, Central Ground Water Authority and Regional Director Central Ground Water Board.	The depth of our mining operation varies from 15-20mts. Piezometer has been installed at strategic location in our lease area for monitoring the ground water level, the average depth of which is 30- 35m The ground water table is below the depth of our mining operation Hence there is no intersection of groundwater level during course of mining operation. Regular monitoring of ground water		

S.N.	Conditions	Action		
		quality is being carried out. The analysis reports are being submitted to Regional Office, CECB, Ambikapur and Raipur. Regular monitoring of ground water level is being carried out and is found below level of mining operation. The ground water Quality report is attached in Annexure – II (along with Environment Report).		
xiv.	Rainwater harvesting measures on long term basis shall be planned and implemented in consultation with Regional Director, CGWB.	Rain water harvesting ponds has been made at lease hold area.		
xv.	Prior permission from the competent authority shall be obtained for drawl of ground water, if any.	Ground water NOC has been obtained from the competent authority for domestic/drinking purpose.		
xvi.	Existing ecological status of the project area shall be conserved and protected. The project proponent should take all possible precautionary measures during mining operation for conservation and protection of endangered fauna.	 All efforts are being taken to conserve and protect existing ecological status of the project area. Important measures we are taking for conservation of flora and fauna are as follows. a) Company have been provided solar LED torch and florescent jacket to Staff of forest department ,Ambikapur for patrolling and monitoring the movement of wildlife ,encroachment, cutting ,poaching ,fire etc. 		
		b) Veterinary camp is being conducted for immunization of cattle with the help of block veterinary staff.		
		c) Awareness programme related to wildlife conservation is being conducted.		
		d) Eco-development activities like poultry, piggery, bee keeping etc. are being organized.		
		e) Controlled blasting is being carried out so as reduce vibration and noise. Such operation is being carried out in day time only and its use is minimized.		
		f) Plantation is regular activity.		

S.N.	Conditions	Action		
xvii.	Vehicular emissions shall be kept under control and regularly monitored. Measures shall be taken for maintenance of vehicles used in mining operations and in transportation of mineral. The vehicles shall be covered with a tarpaulin and shall not be overloaded.	Regular and periodic maintenance of HEMM is being carried out for control of vehicular emission in mines area. The bauxite ore are transported in trucks with tarpaulin cover upto EUP/Railway siding. Vehicle used for transportation are having valid permit. No overloading of ores for transportation is allowed to prevent spillage of material.		
xviii.	A comprehensive report on the details of land oustees, their socio-economic profile and action plan for their rehabilitation including formation of self- help groups who can facilitate promotion of economic opportunity for local indigenous people shall be submitted for record.	A copy of report has been submitted to ministry. As a part of CSR activities, company has formed SHG group to facilitate promotion of economic opportunity to local indigenous people. As of date we have 12 No. of SHGs With 120 beneficiaries who are directly engaged in Income generation activities. Detailed latest CSR report is enclosed as Annexure G.		
xix.	The company shall implement occupational health and safety measures for the workers and engage a qualified doctor who is trained in occupational health surveillance.	Company has provided to all workers with personal protective equipment and training are also being imparted to them for safety & health in our Group vocational training center. One doctor having MBBS qualification has been appointed for facilitation of OHS. All employees working in the mine have been under gone through medical test as per Mines ACT-1952.		
XX.	A Final Mine Closure Plan, along with details of Corpus Fund, shall be submitted to the Ministry of Environment & Forests 5 years in advance of final mine closure for approval.	We accept the condition. A progressive mine closure plan approved by IBM is in place. IBM is competent authority to approve the final mine closure plan. Based on the present resource estimate, and peak rated production capacity, the tentative balance life of mine is around 27 years. However, after completion of further detailed exploration programme and geological investigation, the balance life of mine is subject to change with respect to EC Capacity and cut –off grade of mineral at that particular time. Final mine closure mine plan along with details of corpus fund will be submitted within prescribed timelines in accordance with law to		

S.N.	Conditions	Action			
		competent authority.			
В.	General Conditions				
i.	No change in mining technology and scope of working shall be made without prior approval of the Ministry of Environment & Forests.	Noted.			
ii.	No change in the calendar plan including excavation, quantum of mineral bauxite ore shall be made.	Calendar plan (IBM Approved Mining Plan/scheme) prepared for the mine is being followed.			
iii.	Conservation measures for protection of flora and fauna in the core and buffer zone shall be drawn up in consultation with the local forest and wildlife department.	The suggestions of local forest department are being implemented for conservation of flora and fauna in and around lease hold area. Important measure being implemented for conservation of flora and fauna are as follows.			
		a) Company have been provided solar LED torch and florescent Jackets to Staff of forest department, Ambikapur for patrolling and monitoring the movement of wildlife ,encroachment, cutting ,poaching ,fire etc.			
		b) Veterinary camp is being conducted for immunization of cattle with the help of block veterinary staff.			
		c) Awareness programme related to wildlife conservation is being conducted.			
		d) Eco-development activities like poultry, piggery, bee keeping etc. are being organized.			
		e) Controlled blasting is being carried out so as reduce vibration and noise. Such operation is being carried out in day time only and its use is minimized.			
		f) Plantation is regular activity.			
iv.	Four ambient air quality-monitoring stations shall be established in the core zone as well as in the buffer zone for RPM, SPM, SO ₂ , Nox, monitoring. Location of the stations should be decided based on	Ambient Air quality monitoring is being carried out as per guideline and is being followed.			
	the meteorological data, topographical features and environmentally and ecologically sensitive targets and frequency of monitoring should be undertaken in consultation with the State Pollution Control	For this, We have already appointed Anacon Laboratories Pvt. Ltd. NABL accredited by MoEF/NABET for conducting regular environmental			

S.N.	Conditions	Action
	Board.	monitoring. Analysis Report (from April to Sept 2022) is enclosed as Annexure-II.
v.	Data on ambient air quality (RPM, SPM, SO ₂ , NOx) should be regularly submitted to the Ministry including its Regional office located at Bhopal and the State Pollution Control Board / Central Pollution Control Board once in six months.	Data of ambient air quality (RPM, SPM, SO2, and NOx) are being submitted to CECB and are being submitted to other regulatory authorities as per guidelines. Data of ambient air quality (RPM, SPM, SO2 and NOx) from April to Sept 2022) is enclosed as Annexure-II.
vi.	Fugitive dust emission from all the sources shall be controlled regularly. Water spraying arrangements on haul roads, loading and unloading and at transfer points shall be provided and properly maintained.	Fugitive dust emission from generating sources is being controlled. The dust extractor, wet drilling, regular water spraying with 12 KL portable water tanker in the mine lease hold area is being carried out regularly. Rainwater collected into the mine pit is being utilized for dust suppression purpose. Black top road has been constructed up to pit head to reduce dust problem. Photo attached as Annexure- H.
vii.	Measures shall be taken for control of noise levels below 85dBA in the work environment. Workers engaged in operations of HEMM, etc. shall be provided with ear plugs / muffs.	The noise level in working area is being maintained below the prescribed limit. As protective measures, Workers engaged in operations of HEMM, etc. is being provided with ear plugs / muffs. The proper maintenance of HEMM is being carried out to control noise emission.
viii.	Industrial waste water (workshop and waste water from the mine) should be properly collected, treated so as to conform to the standards prescribed under GSR 422 (E) dated 19 th May, 1993 and 31 st December, 1993 or as amended from time to time. Oil and grease trap shall be installed before discharge of workshop effluents.	For the waste water generated from workshop, oil and grease separation pits are provided further no waste water is generated from our mining operation,.
ix.	Personal working in dusty areas shall wear protective respiratory devices and they shall also be provided with adequate training and information on safety and health aspects.	Company has provided adequate personal protective equipment to all workers and it is also ensured that they use the same. Regular awareness, training are also being imparted to them for safety & health in our Group vocational training center- Samri. All employees undergo Lung Function Tests during the Periodical Medical Examination. Periodical Medical Examination of employees and contractor workers are organized regularly to observe

S.N.	Conditions	Action		
		any contractions due to exposure to dust and other occupational hazards.		
x.	Occupational health surveillance program of the workers shall be undertaken periodically to observe any contractions due to exposure to dust and take corrective measures, if needed.	Periodical and Initial medical examination of all workers are being carried out as per provision of Mines Act.		
xi.	A separate environmental management cell with suitable qualified personnel shall be set-up under the control of a Senior Executive, who will report directly to the Head of the Organization.	Environment cell is already in place at Samri Mines Division headed by Head (Mines) and comprises of suitable qualified persons. Constitution of Environment Management cell is enclosed in Annexure-I.		
xii.	The project authorities shall inform to the Regional Office located at Bhopal regarding of financial closures and final approval of the project by the concerned authorities and the date of start of land development work.	Financial closure plan not applicable as it is an operational mines.		
xiii.	The funds earmarked for environmental protection measures shall be kept in separate account and should not be diverted for other purpose. Year wise expenditure shall be reported to the Ministry and its Regional Office located at Bhopal.	Adequate fund provision is already earmarked for environmental protection measures and will not be diverted to other purpose. The year wise expenditure is being submitted to concern authorities as per guidelines		
xiv.	The project authorities shall inform to the Regional Office located at Bhopal regarding date of financial closures and final approval of the project by the concerned authorities and the date of start of land development.	Our Lease is valid upto 2046 and Financial closure plan will be submitted within stipulated time.		
xv.	The Regional Office of this Ministry located at Bhopal shall monitor compliance of the stipulated conditions. The project authorities should extend full cooperation to the officer (s) of the Regional Office by furnishing the requisite data/information/ monitoring reports.	All cooperation is being extended to regulatory authorities.		
xvi.	A copy of clearance letter will be marked to concerned Panchayat / local NGO, if any, from whom suggestion / representation has been received while processing the proposal.	We have forwarded the copy of clearance letter to Panchayat in our area. The copy of same has been already submitted to your good office.		
xvii.	State Pollution Control Board should display a copy of the clearance letter at the Regional office, District Industry Centre and Collector's office/Tehsildar's office for 30 days.	The copy has been displayed by CECB in Surguja Collectorate.		

S.N.	Conditions	Action			
xviii.	The project authorities should advertise at least in two local newspapers widely circulated, one of which shall be in the vernacular language of the locality concerned, within 7 days of the issue of the clearance and a copy of the clearance letter is available with the State Pollution Control Board and also at web site of the Ministry of Environment and Forests at <u>http://envfor.nic</u> and a copy of the same shall be forwarded to the Regional Office of this Ministry located Bhopal.	The information regarding environment clearance has been published in two local new papers Hari Bhumi & Ambika Vani. The copy of same has been already submitted to your good office. Copy of News paper clip is enclosed in Annexure I.			
5.	The Ministry or any other competent authority may alter/modify the above conditions or stipulate any further condition in the interest of environment protection.	Noted.			
6.	Failure to comply with any of the conditions mentioned above may result in withdrawal of this clearance and attract action under the provisions of Environment (Protection) Act, 1986.	Noted.			

Hope the above compliance will be found in order.

Yours truly,

(For Hindalco Industries Limited)

(Vijay Chauhan) Agent of Mines

Encl.: As above

ANNEXURE - A

236

न्दायसिर प्रधान मुख्य वंद्र राष्ट्रयता. (कथणणी प्रबंधन एवं जेव तिदिधता. राष्ट्रयाण सह मुख्य वर्त्रयप्राणी अभिरक्षक),छत्तीसगढ

अरण्य भवन, मैडिकल कॉसेंज रोड, रायपुर

注注司 - pecfwl/gesily com

(Ph 0771-2552228, Fax 0771-2552227)

क्रमाक/व प्रा /प्रवध-12/13/2767

रायपुर दिनांक ८ 🗸 /10 /2013

yfð,

संचालक, इन्वायरनमेंट क्लीयरें श सेल भारत सरकार, वन एवं पर्यावरण मंत्रालय, पर्यावरण भवन, सी.जी.ओ. काम्प्लेक्स, लोधी रोड़, नई दिल्ली–111003

विषय :--

छत्तीसगढ़ के बलरामपुर जिले (तत्कालीन सरगुजा जिला) में स्थित सामरी बॉक्साईट माईन्स, कुदाग बॉक्साईट माईन्स एक टाटीझरिया बॉक्साईट माईन्स की क्षमता बढ़ाये हेतु ईन्वायरमेंट क्लीयरेंस।

संदर्भः- 1. पर्यावरण व वन मंत्रालय, भारत सरकार का पत्र क्रमांक J-11015/353/2007-IA.II(M) दिनांक 27 जुलाई 2007.

 पर्यावरण व वन मंत्रालय, मारत संरकार का पत्र क्रमांक J-11015/337/2007-IA.II(M) दिनांक 27 जुलाई 2007.

 पर्यावरेण व वन मंत्रालय, भारत सरकार का पत्र क्रमांक J-11015/337/2007-IA.II(M) दिनांक 9 अगस्त 2007.

कृपया आपके उपरोक्त संदर्भित पत्रों का अवलोकन करने का कष्ट करें। जिसके द्वारा बलरामपुर जिले (पुराने सरगुजा जिले) के सामरी बॉक्साईट खुली खदान (1 LTPA) की क्षमता बढ़ाकर (SETPA) करने, कुदाग बॉक्साईट खदान (0.4 LTPA) की क्षमता बढ़ाकर (0.6 LTPA) करने तथा टाटीझरिया बॉक्साईट खदान (0.5 TPA) की क्षमता बढ़ाकर (4 TPA) करने के परियोजना प्रस्ताव के संबंध में वन्य प्राणी (संरक्षण) अधिनियम,1972 के तहत अनुसूची–1 के वन्यप्राणियों हेतु "वन्य प्राणी संरक्षण व प्रबंधन योजना" तैयार की जाकर इस कार्यालय की सहमति दिये जाने का लेख किया है। 1. विषयांकित परियोजना हेतु खदान के लीज के अनुबंध दिसंबर 1996 एवं जून 1998 में हस्ताक्षरित हुये थे। सामरी क्षेत्र में भारत सरकार पर्यावरण व वन मंत्रालय के आदेश क्रमांक J-11015/353/2007-IA.II/M दिनांक 27 जुलाई, 2007 द्वारा 2146.746 हे. में, कुदाग क्षेत्र में भारत सरकार पर्यावरण व वन ''संत्रलाय आदेश क्रमांक J-11015/354/2007-IA.II/M दिनांक 27 जुलाई 2007 द्वारा 377.116 हे. में, संया टाटीझरिया में भारत सरकार पर्यावरण व वन मंत्रालय के आदेश क्रमांक J-11015/337/2007-IA.II/M दिनांक 9 अगस्त 2007 द्वारा 1218.762 हे. में बॉक्साईट खनन की स्वीकृति प्राप्त कर संस्था द्वारा खनन का कार्य किया जा रहा है।

2

वर्तमान प्ररताव में उपरीवत कोवले के वाल्य के वाल्य के मांगरी के लिये 10 1916 में मलकर 50 1914 किया जाना, कुदाम के लिय 0 1 1916 के लाग के 1916 1916 किया जाना एवं लानेझरिया के लिय 50,000 TPA से बढाकर 4,00,000 194 किया काना प्रस्तायित है। भारत सरकार पर्यावरण व वन मंत्रालय के द्वारा उपरोवत वृद्धि का प्रधान वरण की स्वीकृति कमश आदेश क्रमांक J-11015/353/2007-IA.II/M दिनांक 27 जुलाई 2007 J 11015/354/2007-IA.II/M दिनांक 27 जुलाई 2007 एव J-11015/337/2007-IA.II/M दिनांक 9 अगरत 2007 द्वारा कुछ शर्ती के साथ दी गई है. जिसमें एक महत्वपूण शर्त यह भी उल्लेखित है कि संबंधित क्षेत्र में बन्य प्राणी (संरक्षण) अधिनियम के शेड्यूल 1 के पाये जाने वाले वन्य प्राणियों के संरक्षण हेतु प्रबंध योजना तैयार की जाकर राज्य के मुख्य वन्य जीव अभिरक्षक के अभिमत सहित प्रस्तुत किया जाये। जिसके पालन में संरक्षा द्वारा एक बेल्य प्राणी संरक्षण योजना तैयार की गयी है।

खनन क्षमता बढ़ाने से संबंधित प्रस्तावित तीनों ही परियोजनाओं के एक दूसरे से 4 कि.मी. की परिधि में रिथत होने एवं सभी के बफर क्षेत्र ओवरलैपिंग होने के कारण सभी के लिये संयुक्त रुप से वन्य प्राणी संरक्षण व प्रबंधन योजना तैयार की जाकर महाप्रबंधक, (खादान), हिन्डालको इन्डस्ट्रिजि के पत्र क्रमांक HIL/SAM/300/2013 दिनाक 2.03.2013 द्वारा प्रस्तुत किया गया है जिसका समग्र रुप से परीक्षण किया गया। प्रस्तावित परियोजनाओं के कोर क्षेत्र से 10 कि.मी. की परिधि में आने वाले ओवरलैपिंग बफर क्षेत्र में वन्य प्राणियों एवं उपलब्ध वनस्पतियों का सर्वे किया जाकर पाये गये स्पेसिज को परियोजना प्रस्ताव में अनेक्स्र–4 के में उल्लेखित किया गया है।

3.

उल्लेखित सूचि में वन्य प्राणी (संरक्षण) अधिनियम के शेड्यूल 1 के वन्य प्राणी नहीं पाये गये हैं। परंतु इस कार्यालय द्वारा वन संरक्षक (वन्य प्राणी), सरगुजा से विगत दस वर्षो में वन्य प्राणियों द्वारा की गई क्षति की जानकारी चाही गयी। वन संरक्षक ने अपने पत्र क्रमांक 749 दिनांक 24.05.2012 से यह जानकारी उपलब्ध कराया है कि उक्त क्षेत्र में हाथियों का वर्ष 2005 में दो बार, वर्ष 2006 में आठ बार. 2007 में एक बार, 2008 में दो बार, 2009 में सात बार आना जाना हुआ है। इसी प्रकार मालुओं के द्वारा वर्ष 2007–08 में आठ, वर्ष 2008–09 में पॉच, वर्ष 2009–10 में छें एवं 2010–11 में 4 जनहानि व जनघायल के प्रकरण तथा वर्ष 2007–08 तथा 2008–09 में तेंदु<u>आ द्वा</u>रा पशु हानि के दो प्रकरण तथा लकड़बग्धे के कारण एक प्रकरण दर्ज किये गये है। इस प्रकार वन्य प्राणी (संरक्षण) अधिनियम के शेड्यूल 1 के उपरोक्त उल्लेखित वन्य प्राणियों के परियोजना क्षेत्र में आने जाने के प्रमाण पीये गये है। प्रस्तावित क्षेत्र से 6 से 7 कि.मी.की दूरी पर झारखंड राज्य में भेड़िया अभ्यारण्य भी स्थापित है। अतः संस्था द्वारा दस वर्षो के लिये वन्य प्राणी संरक्षण व प्रबंध योजना श्री पी. के सेन पूर्व वन्य प्राणी अभिरक्षक, झारखंड से तैयार कराया जाकर प्रस्तुत किया गया है। जिसका समय व विस्तृत अध्ययन

किया गया। प्रबंधन योजना में प्रस्तावित प्रबंधन संघधित मुख्य गतिविधियों का विवरण निम्नानुसार है। योजना में वन्य प्राणियों के लिये जलग्रहण क्षेत्र विकास, रहवास—विकास, पेयजल व्यवस्था, विभाग के क्षेत्रीय अमले के सहयोग से क्षेत्र में पेट्रोलिंग व मॉनिटरिंग, अग्नि सुरक्षा, ईको विकास की गतिविधियों, स्थानीय ग्रामीणों के लिये आजीविका, सृजन, टीकाकरण, जनजागृति कार्यक्रम जैसी गतिविधियों का

237

समावेश करते हुये 04 वर्षों के लिए गरेण उत्तर कर वाफ प्रत्यानित की गयी है। जिसका क्रियान्ययन वन विभाग के द्वारा किया जायेगा। प्रस्तान मं पानर्श्वीच न के का विवरण सिन्नानुसार है –

200

48

Sr.	Works to be done	0.0	st for For	n years (Rs. In Tak	hs)	Remarks
No.		1 st Year	year.	4 rd Year	4" Year	Total	C. POLICE ENDST
1	Plantation including soil and moisture Conservation works as per norms of forest department surrounding the lease hold	5.00	5.00	5.00	5.00	20.00	
2	Silvicultural Operation on degraded forest Land and cut back in rooted waste	2.00	2.00	2.00	2.00	8.00	ар (. Т
3	Habitat Management Eradication of unwanted species in buffer Zone area, Fire Protection work including wages for fire watchman, Creation of Fire line etc. surrounding lease hold and in buffer area.	2.50	2.50	2.50	2.50	10.00	
4	Monitoring - One Staff of forest department to monitor movement of wild life, encroachment, illicit cutting,poaching, fire etc. including Salary of 1 staff	3.00	3.00	3.00	3.00	12.00	
5	Construction of water holes, their maintenance and patrolling (One per Annum)	10.00	10.00	10.00	10.00	40.00	
6	Eco-development activities like poultry, piggery, bee keeping etc.	5.00	5.00	5.00	5.00	20.00	
7	Vocational Training to weaker section, females, old persons and minors of the surrounding villages- in three centre in the buffer Zone of the mining lease @ 50000/- per centre.	3.00	3.00	3.00	3.00	12.00	<u> </u>
3	Veterinary camp for immunization- of Cattle with the help of block veterinary sataff.	-2.00	2.00	2.00	2.00	8.00	
9	Awareness Programme including Signages, distribution of Pamphlets- related to wild life conservation etc.	2.50	_ 2.50	2.50	2.50	10.00	
10	Provision for conservation of Biodiversity among flora and fauna of the area & Preparation of Biodiversity register	20.00	0.00	0.00	0.00	20.00	The amount is to be deposited in the account of Biodiversity Board as this work is to be done by Bio- diversity management committees (BMC's)
	Total	55.00	35.00	35.00	35.00	160.00	in the second

238

ijay/Stena/¶

कर के प्रति भाग की लागत रू 160.00 जाख वर्तनान के कि का के प्रति में भाग है। कर दी जिसक करें में अन्द्रेक्स के हिसाब से बृद्धि होगी। परियोजना के कि मान्वयन क समय जों भी लागत आयंगी कर परियालना महनावनों को बन बिभाग में एकमुश्त जमा करानी होगी। जिससे मृत्य वृद्धि के प्रभाव को समाप्त

किया जा रागना चनां निगाग एकमुश्त जमा की गई राशि से बन्यप्राणी सरक्षण योजना कियान्वित करेगा। 7 अनुमोदित चन्यपाली सरक्षण योजना की एक प्रति संलग्न प्रेषित है। कृपया वन्यप्राणी संरक्षण योजना में प्रावधानित राशि रू. 160.00 लाख एकमुश्त जमा कराने हेतु परियोजना प्रस्तावको को आदेशित करने का कष्ट करें।

संलग्नः--उपरोक्तान्सार।

(रामप्रकाश) २२ [७] प्रधान मुख्य वन संरक्षक (वन्यप्राणी) छत्तीसगढ़, रायपुर रायपुर दिनांक 07/10/2013

पृष्ठां क्रमांक/व.प्रा./प्रबंध–12/13/2968.
 प्रतिलिपि :-

 प्रमुख सचिव, छत्तीसगढ़ शासन, वन विभाग, महानदी मंत्रालय भवन, नया रायपुर की ओर मय योजना की प्रति सहित सूचनार्थ प्रेषित।

 श्री एम. के. नायेंक, जी. एम. माइन्स हिन्डालको ईन्डस्ट्रीज लिमिटेड, सामरी बॉक्साईट माईन्स, पोस्ट-कुसमी, जिला-सरगुजा, छत्तीसगढ़ की ओर मय योजना की प्रति सहित सूचनार्थ प्रेषित।

文

प्रधान मुख्य वन संरक्षक (वन्यप्राणी) टा-/ ४// २ छत्तीसगढ़, रायपुर

239

Minės Samri Mines Division Hindalco Industries Ltd

ANNEXURE-6 DETAILS OF FLORA & FAUNA

TABLE-1 DETAILS OF DOMINANT PLANT SPECIES IN MINE LEASE AREA (CORE ZONE)

Name of the plant Species	the plant Species Local Name		
Butea monosperma	Palas	Fabaceae	
Acacia_Arabica	Babul	Mimosaceae	
Leucens leucophlae	Sabubal	Mimosacaae	
Mangifera indica	Aam	Anacardiaceae	
Citrus temon	Nimbu	Rutaceae	
Emblica officinalis	Amla	Euphorbiaceae	
Ficus hispida	Jungli anjir	Moraceae	
Spondias cythera	Kathjamun	Myrtaceae	
Terminalia catapa	Badam	Combretaceae	
Apluda mutica	Grass	Poaceae	
Chloris dolichosta	Grass	Poaceae	
Dicharithium annulatum	Grass	Poaceae	
Inpurta cylendrica	Grass	• Poaceae	
Themeda quadrivalvis	Grass	Poaceae	
Aristida adscensionsis	Grass	Poaceae	
Lingiostis bilente	Grass	Poaceae	
Liagrostis tenella	Grass	Poaceae	
Sefarta glauca	Grass	Cyperaceae	
Hiysanoliena maxima	Grass	Graminae	
Parthenium hysterophorus	Congress grass	Compositae	
C. 19: 3.1 101.1	-	Caesalpinaceae	
Delointis regula	Kachnar	Caesalpinaceae	
Duibergia Sissoo	Sisoo	Caesalpinaceae	

TABLE-2 FLORA/VEGETATION IN STUDY AREA (BUFFER ZONE)

Sr. No.	Technical Name	Family	Life Form
I. Agricu	Itural Crops		
1	Hordium vulgare	Poaceae	Hemicryptophyte
1	Sorghum vulgare	Poaceae	Hemicryptophyte
đ	Liticum vulgare	Poaceae	Hemicryptophyte
-1	Zea mays	* Poaceae	Hemicryptophyte
1,	Oryza sativa	Poaceae	Hemicryptophyte
6	Pennisetum typhoideum	Poaceae	Hemicryptophyte
I. Comn	nerclal Crops (including Vegeta	ables)	
1	Abelomoschus indicus	Malvaceae	Therophyte
13	Allium œpa	Liliaceae	Geophyte
1	Allium sativum	Liliaceae	Geophyte
1()	Annona squamosa	Annonaceae	Phanerophyte
1 1	Arachis hypogia	Fabaceae	Geophyte
12	Catharanthes pusillus	Compositae	Therophyte
1 3	Cicer arietinum	Fabaceae	Hemicryptophyte
1 -1	Citrus lemon	Ruataceae	Therophyte
15	Colacasia esculenta	Areaceae	Geophyte
1.6	Coreandrum sativum	Umbelliferae	Hemicryptophyte
17	Daucus carota	Umbelliferae	Geophyte
1.14	Lycopersicum esculentus	Solanaceae	Therophyte
1.1	Mangitera indica	Anacardiaceae	Phanerophyte
.10	Memordia charantia	Cucurbitaceae	Therophyte
21	Pisum sativum	Fabaceae	Therophyte
12	Padium guava	Myrtaceae	Phanerophyte
1.1	Solanum tuberosum	Solanaceae	Geophyte
.14	Litchi chinensis	Sapindaceae	Phanerophyte
II. Plant	tations		
25	Bauhinia cormbosa	Caesalpinaceae	Phanerophyte
.16	Acacia nilotica	Mimosaceae	Phanerophyte
	Albizia lebbeck	Mimosaceae	Phanerophyte
.28	Albizia odorattissima	Mimosaceae	Phanerophyte
29	Albizia procera	Mimosaceae	Phanerophyte

A6-1

	30 Azadirachta indica	tame	Family	V	1
-	Bauhinia variegate		Meliaceae	1	Life Form
	32 Bauhinia purpuria		Caesalpinaceae		Phanerophyte
-	Bambusa arundanan	36	Caesalpinaceae		Phanerophyte
3	Butea monosperma	JC	Poaceae		Phanerophyte
- 3	5 Butea frondosa		Caesalpinaceae		Phanerophyte
	6 Eucalyptus sp		Caesalpinaceae		Phanerophyte
. 21	/ Delonix regia		Myrtaceae		Phanerophyte
VI	Leucena leucophioe		Caesalpinaceae		Phanerophyte
20	vatural Vegetation/Forest	Type	Caesalpinaceae		Phanerophyte
40	Abrus precatorius	- Automation	C-L		rhanerophyte
41	Abutilon indicum		rabaceae	1	Thoronto
47	Acacia Arabica		Mim		Phanoroal
43	Acacia auriculiformis		Minosaceae		Phanerophyte
44	Acacia catechu		Mimosaceae	F	Phanerophyte
45	Acasia (Mimosaceae	F	hanerophyte
46	Acacia Ternacea		Mimosaceae	P	haneophyte
47	Acalypha		Mimosaceae	P	hanerochute
48	Acanthas		Funborbie	P	hanerophyte
19	Achycasti	lum	Composite	T	Terophyte
0	Adathoda		Amaranth	TI	lerophyte
1	Adina and Adica		Acanthaceae	171	lerophyte
2	Acolo		Rubiaceae	171	Prophyte
3	Aepro la marmelos		Rufaceae	FI	anerophyte
	Acert		Composite	Ph	anerophyte
	Allanthan Conyzoides		Compositae	Ph	allerophyte
y	Alanaiumes excela		Simarouha	The	Prophyte
	Albizio ed		Alangicas	Pha	Derophyte
	Albizia adoratissima		Caecoloine	Pha	nerophyte
	Alstonia		Caesalpinaceae	Pha	Recordinge
	Altomació		Anominaceae	Pha	Derophyte
	Alveir and Alveir a sessilis		Amarantha	Pha	Recordingte
	Anogeissus	F	abaceae	The	ter huto
	Anonairere		Ombretaria	The	Ophyte
	Argemone a	C	ombretaceae	Phar	lerophyta
_	Azadirachta	p	anevaraciona	Phar	eronhyte
	Barleria origani	M	eliaceae	Phan	erophyte
	Bidens bitasant	A	Canthacese	Phan	erophyte
	Blepharis aspest	C	Ompositae	There	ophyte
	Blepharis mada	A	anthaceao	There	phyte
	Blumea lacera	Ac	anthaceae	Phane	Prophyte
	Boerheavia chines	Co	mpositae	Thero	phyte
	Boerheavia diffuse	Ny	cataginaceae	Thero	phyte
	Bombax ceiba	Ny	ctaginaceae	Thero	phyte
1	Borreria hispida	Bo	mbacaceae	Thero	phyte
1	Borreria stricta	Rut	Diaceae	Phane	rophyte
	Boswellia serrate	Rut	Diaceae	Theron	biyte
	Brassica camprant	Bur	seraceae	Therop	hyte
1	Bridelia retuca	Cru	Ciferae	Phaner	ophyte
	Bridelia superba	Eup	horbiaceao	Therop	hyte
	Caesalpina pulchos	Eup	horbiaceae	Phanen	ophyte
(Calotropis process	Cae	salpinaceae	Phaner	ophyte
10	Canthium diddug	Ascli	piadaceae	Phanero	phyte
0	Capparis aphylin	Rubi	aceae	Phanero	phyte
0	apparis deciduos	Capp	paridaceae	Phanero	phyte
C	arissa carandur	Capp	aridaceae	Theroph	yte
C	arissa spinarium	Apoc	yanaceae	Phanero	phyte
C	asearia graveciona	Apoc	Vanaceae	Phanero	phyte
C.	assia absus	Samy	diaceae	Phaneror	phyte
	assia absus	Caesa	Ipinaceae	Phanerop	phyte
Ca	assia auriculata	Caesa	pinaceae	Phanerop	phyte
Ca	SSIa Occidentalia	Caesa	lpinaceae	Therophy	te
Ca	ssia tora	Caesa	Ipinaceao	Therophy	te
Ce	strum diurous	Caesal	Dinaceae	Therophy	te
	eterse	Dubing	Fuidrede	Phaneron	Dista .
Ce	CLUD DOCKE	i NUDLAC	Ede	the second	IVE

AG-Z

i

		Family	Life Form
Sr. No.	Technical Name	Poaceae	Therophyte
95	Chloris varigata	Vitaceae	Therophyte
96	Cissus quadrangularis	Rutaceae	Phanerophyte
97	Citrus limon	Canparidaceae	Therophyte
98	Cleome gynandra	Rubiaceae	Phanerophyte
99.	Combretum ovalitolium	Rubiaceae	Phanerophyte
100	Cordia myxa	Fabaceae	Therophyte
101	Crotalaria medicagenia	Amaryllidaceae	Therophyte
102	Croton bonplandinum	Cuscutaceae	Epiphyte
103	Cuscuta reflexa	Colonaceae	Therophyte
104	Datura fastulosa	Solanaceoc	Therophyte
105	Datura metal	SoleHacece	Therophyte
106	Desmodium triflorum	Asciepiauaceae	Phanerophyte
107	Diospyros melanoxylon	Lythraceae	Phanerophyte
109	Diospyros Montana	Lythraceae	Therophyte
100	Echinans echinatus	Compositae	Hemicryptophyte
109	Eclinta prostrate	Compositae	Phanerophyte
110	Eclipta prose	Euphorbiaceae	Hemicryptophyte
111	Emplie lajerium	Compositae	Phanarophyte
112	Ennua inferiori	Papillionaceae	Therophyte
113	Trything minuta	Euphorbiaceae	Thereshute
114	Luphorbia genicolate	Euphorbiaceae	Thereabute
115	Euphorbia hirta.	Euphorbiaceae	Therophyte
116	Euphorbia hyperocitolia	Euphorbiaceae	Therophyte
117	Euphorbia neruri	Euphorbiaceae	Therophyte
118	Euphorbia nivula	Euphorbiaceae	Hemicryptophyte
119	Euphorbia piluliflora	Euphorbiaceae	Hemicryptophyte
120	Euphorbia tricauli	Convolvulaceae	Therophyte
1.2.1	Evolvulus alsinoides	Convolvulaceze	Therophyte
122	Evolvulus numalaris	Convolvulacede	Phanerophyte
1 23	Leronia elephantum	Rutaceae	Phanerophyte
1.2.7	Licus henohalensis	Moraceae	Phanerophyte
4 200	Ficus carica	Moraceae	Phanerophyte
123	Cicus alomente	Moraceae	Phanerophyle
126	Lieus bispida	Moraceae	Phanerophyte
127	Ficus monosus	Moraceae	Phanerophyte
128	Ticus rationes	Moraceae	Phanerophyte
129	Ticus reinsiosa	Moraceae	Phanerophyte
130	Ticvus gibbosa	Rubiaceae	phanerophyte
1.31	Gardenia latifolia	Rubiaceae	Phanerophyte
132	Gardenia lucida	Burseraceae	Phanerophyte
133	Garuga pinnata	Compositae	Hemicryptophyte
- 1.34	Glossocardia bosvellia	Publaceae	Phanerophyte
1.35	Ginelina arborea	Amaranthaceae	Therophyte
136	Gomphrena globosa	Maluarcaae	Therophyte
137	Gossypium herbaceum	Malvaceae	Phanerophyte
120	Grewia abutifolia	Tillacede	Phanerophyte
120	Grewla-salivifolia	Timaceae	Phanerophyte
139	Grewia subinagualis	Tiliaceae	Hemicryptophyte
140	Gynandropis gynandra	Capparidaceae	Phanerophyte
141	Holictris isora	Rubiaceae	Hemicryntonhyte
142	Helicurs isora	Rubiaceae	Hamicryptophyte
143	Heliotopian indicent	Rubiaceae	Rhanerophyte
144	Heinropiani Ovalienani	Asclepiadaceae	Plianerophyce
145	Hemidesmus Indicus	Malvaceae	Hemicryptophyte
146	Hibsicus caesus	Asclepiadaceae	Phanerophyte
14	Holarrhena antioycenterica	Asleniadaceae	Phanerophyte
14	8 Holostemma annularia	Acanthaceae	Hemicryptophyte
14	9 Hygrophylla auriculata	Labiataa	Therophyte
15	0 Hyptis suavalens	Labiatae	Hemicryptophyte
15	1 Ichnocarpus frutens	Poaceae	Therophyte
10	2 Impatiens balasamania	Balsaminaceae	Therophyte
15	> Indigofera hirsute	Caesalpinaceae	Therophyte
15	Indigotera limpacea	Caesalpinaceae	Therophyte
15	a Indigorera finctoria	Caesalpinaceae	Hydrophyte
	5 Indigurera uncono	Convolvulaceae	Thomphyte
	6 Tpomea aquatica	Convolvulaceae	Therophyte
	I Ipomea cuccinea	Convolvulaceae	Hemicryptophyte
15	8 Ipomea tuba	Rubiaceae	Phanerophyte

Sr. No.	Technical Name	Family	Life Form
161	Ixora singapuriens	Rubiaceae	Phanerophyte
162	Jasmimum arborens	Oleaceae	Phanerophyte
163	Jatropha gossypifolia	Euphorbiaceae	Therophyte
164	Jussiaea suffraticosa	Onagraceae	Hydrophyte
165	Justia diffusa	Acanthaceae	Therophyte
166	Justicia diffusa	Acanthaceae	Therophyte
167	Lactuca punctata	Compositae	Therophyte
168 .	Lannea coramandalica	Anacardiaceae	Phanerophyte
169	Lannea grandis	Anacardiaceae	Phanerophyte
170	Lannea procumbens	Anacardiaceae	Therophyte
171	Lantana camera	Verbinacaee	Phanerophyte
172	Lawsonia inermis	Lythraceae	Phanerophyte
173	Lepidogathis cristata	Acanthaceae	Therophyte
174	Leptodenia reticulate	Asclepiadaceae	Phanerophyte
175	Leucas aspera	Labiatae	Therophyte
176	Leucas longifolia	Labiatae	Therophyte
177	Leucas longifolia	Labiatae	Therophyte
178	Leucena leucophioe	Caesalpinaceae	Phanerophyte
179	Linderbergia indica	Scrophulariaceae	Therophyte
180	Lindernbergia ciliate	Scrophulariaceae	Therophyte
181	Lophophora tridinatus	Scrophulariaceae	Geophyte
182	Lurfa acutangularia	Cucurbitaceae	Therophyte
183	Lycopersicum esculentus	Solanaceae	Therophyte
184	madnuca latifelia	Sapotaceae	Phanerophyte
185	Maliotus philippinus	Euphorbiaceae	Phanerophyte
100	Manaifera indica	Malvaceae	Inerophyte
187	mangilera indică	Anacarolaceae	Phanerophyte
108	marsella quadrifolia	Malaceae	Phanerophyte
109	Pielle dzeulfechie	menaceae	Phanerophyte
190	Memoralca diocea	Cucurbitaceae	Therophyte
191	merremia emerginata	Convolvulaceae	Therophyte
192	michaella champaca	Annonaceae	Phanerophyte
193	Mingtonia harterisi	Bignoniaceae	Phanerophyte
194	Mitcaguna camilla	Mimosaceae	Therophyte
195	Malluga capulara	Aizaaceae	
190	Malluga bita	Aizoaceae	Therophyte
197	Mariaga alaifara	Alzoaceae	Inerophyte
198	Moninga olerrera	Moringaceae	rnanerophyte
193	Morus alba	Moraceae	Phanerophyte
200	mucuna prufita	Putaceae	hemicryptophyte
201	Murraya exolica	Rutaceae	Phanerophyte
202	Mura paradicien	Mucaceae	Therephyte
203	Numphia an	Magaaliaasaa	Therophyte
204	Ocimum americanum	Labiatao	Hydrophyte Tharashuta
203	Ocimum bacillum	Labiatao	Therephyte
200	Ocimum canum	Labiatas	Therophyte
207	Ocimum candum	Labiata	Therophyte
208	Ocimum Sanctum	Conversion	Therephyte
209	Oldenlandia umbeliat	Convoivuiaceae	Mnerophyte
210	Ordeniandiua corymposia	Rublaceae	therophyte
211	Countin dillion	Papillionaceae	Phanerophyte
212	Opuntia elater	Carataceae	Therophyte
213	Ovalic corpiculata	Cacataceae	Thereshits
214	Depicum milliria	Deaceae	Herophyte
215	Panicum millina	Poaceae	Hemicryptophyte
216	Panicum notatum	Poaceae	Hemicryptophyte
217	Fapaver somniferum	Papaveraceae	Hemicryptophyte
218	Parkinsonia aculata	Mimosaceae	Phanerophyte
219	Parthenium hysteropi orus	Compositae	Therophyte
220	Paspalum strobilanti	Passifloraceae	Hemicryptophyte
221	Passiflora foetida	Passifloraceae	Phanerophyte
222	Pavonia zeylanica	Malvaceae	Phanerophyte
223	Peltophorum ferrusinem	Caesalpinaceae	Phanerophyte
224	Phoenix aculis	Palmae	Phanerophyte
225	Phyllanthes asperulat	Euphorbiaceae	Phanerophyte
226	Phyllanthes emblica	Euphorbiaceae	Phanerophyte

AG-4

AC

Sr. No.	Technical Name	Family	Life Form
227	Phyllanthes nirurii	Euphorbiaceae	Therophyte
228	Phyllanthes reticulates	Euphorbiaceae	Therophyte
229	Physalis minima	Solanaceae	Therophyte
230	Pithocolobium dulce	Mimosaceae	Phaneronhyte
231	Polyalthia longifolia	Annonaceae	Phanerophyte
232	Polygala ererptera	Polygalaceae	Therophyte
233	Pongamia pinnata	Fabaceae	Phanerophyte
234	Portulaca oleracea	Portulaccaceae	Therophyte
235	Psidium guava	Myrtaceae	Phanerophyte
236	Punica granulatum	Puniaceae	Therophyte
237	Randia dumatorum	Rubiaceae	Phaneronbyte
238	Rosa indica	Rosaceae	Therophyte
239	Rosa machata—	Rosaceae	Therophyte
240	Saccharum munja	Poaceae	Hemicryntonhyte
241	Saccharum officinarum	Poaceae	Therophyte
242	Salmalia malabarica	Salmaliaceae	Phanerophyte
243	Sapindus emerginatus	Sapindaceae	Phanerophyte
244	Schleichera trijuga	Combretaceae	Phanerophyte
245	Scherebera sweitenoides	Sapindaceae	Phanerophyte
246	Schleichera oleosa	Sapindaceae	Phanerophyte
247	Sesamum indicum	Pedaliaceae	Hemicryptophyte
248	Shorea robusta	Dipterocarpaceae	Phanerophyte
249	Sida orientalis	Malvaceae	Phanerophyte
250	Sida vernanifolia	Malvaceae *	Hemicryptophyte
251	Salanum nigrum	Solanaceae	Therophyte
252	Solanum xanthocarpum	Solanaceae	Therophyte
253	Sterculia villosa	Tiliaceae	Therophyte
254	Stereospermum chelinoides	Bignoniaceae	Phanasachuta
255	Svavalum cumini	Myrtaceae	Phanerophyte
256	Lamarindus indica	Caecaloinaceae	Phanerophyte
25%	Lecomella undulate	Fignoniaceae	Phanerophyte
24.9	Toctona grandis	Voshioneese	Therophyte
25.9	Technosia purpurio	Verbindceae	Phanreophyte
260	Terminalia hellarica	Combrotaceae	Therophyte
261	Terminalia chehula	Combretaceae	Phanerophyte
26.2	Terminalia tementeea	Combretaceae	Phanerophyte
21. 4	Linospora condifalia	Combretaceae	Phanerophyte
264	Tracus biflosus	Khamhaceae	Therophyte
31.1	Tabulus torrostris	Poaceae	Hemicryptophyte
205	Triday prasumboss	. Zygophyllaceae	Therophyte
266	Triumforto piloso	Compositae	Therophyte
207	Thumierta pilosa	Tiliaceae	
200	Vernonia cinera	Compositae	Therophyte
269	Vicoa indica	Compositae	Phanerophyte
220	Vitex Negundo	Verbinaceae	Phanerophyte
2/1	Vitex negungo	Verbinaceae	Therophyte
2.12	Vitis Vermifera	Vitaceae	Therophyte
273	Vivevera zizanoides	Poaceae	Therophyte
274	Wrightia tomentosa	Apocyanaceae	Phanerophyte
2.75	Xanthium strumariumk	Compositae	Therophyte
276	Yucca gloriosa	Agavaceae	Therophyte
277	Zizyphus jujube	Rhamnaceae	Phanerophyte
278	Zizyphus mauritiana	Rhamanaceae	Phanrophyte
Grassla	inds		
279	Apluda mutica	Poaceae	Hemicryntonhyte
280	Chloris dolichosta	Poaceae	Hemicryptophyte
281	Cyanodactylon sp	Poaceae	Geophyte
282	Dichanthium annulatum	Poaceae	Hemicryptophyte
283	Inpurta cylendrica	Poaceae	Hemicryptophyte
284	Sachharum spontanseum	Poaceae	Hemichyptophyte
285	Themeda quadrivalvis	Poaceae	Hemicryptophyte
286	Aristida adscensionsis	Poaceae	Hemicryprophyte
287	Cenchrus ciliaris	Poaceae	Thorsebut
788	Cenchrus setificera	Poaceae	Therophyte
750	Cymbonogon improvement	ruduede	Therophyte
202 1	Cynapic spictates	Cyperaceae	Hemicrptophyte
200	Cyperus distaus	Cyperaceae	Therophyte
	Cyperus triceps	Cyperaceae	Therophyte

Pr'

A6-5

Sr. No.	Technical Nom		
	Dactylectinium annumiat	Family	
.93	Digetaria bicorris	Poaceae	Life Form
294	Digetaria Casa	eesee	Therophyte
295	Fragrantia bigelaria	Poaceae	Hemicryptophyte
296	Eragrosus Diferia	Poaceae	Hernicryptophyte
197	Inderostis teneila	Poaceae	Therophyte
798	Schemum rucosum	Poaceae	Therophyte
299	Selaria glauca	Cyperaceae	Hemicryptophyte
300	Tulallopsis binata	Graminae	Hemicryptophyte
- M.V	Endangana maxima	Graminae	Hemicryptophyte
		No endangered plant study period and also Survey of India (Red Plants)	Hemicryptophyte species observed during from records of Botanica data of Books of India:

0

TABLE-3 FAUNA AND THEIR CONSERVATION STATUS FROM MINE LEASE AREA (CORE ZONE)

Aves	English Name/ Local Name	Wild Life Protection Act
Ph/acrocorax niger		(1572) Status
Nycticorax nycticorax	Little cormorant	Sch n:
Ardeola gravii gravii	Ment heron	Sch-IV
But ulcus ibis coromandus	radov bird	Sch-le
Eudynamys scolonacea	Cattle egret	Scn-IV
Meores philippinus philippi	Indian koel	Sch-IV
Diponum herabal	Bluetailed bee-eater	Sch-IV
engraiense tehminae	Malabar onlden backed	Sch-IV
Acridotheros trictic	Woodbecker	Sch-IV
Vectarinia minima	Common myna	
Discor domastic	Small sunbird	Sch-IV
Butterflier	Indian house sparrow	Sch-IV
outennes	1	Sch-IV
vpolimnas bolina Lin.	Creating and the	
upioea core Cramer	-Common craw	
eptis hylas Moore	Common or l	-
urema hecabe Lin.	Common sallor	
arantica aglea Stoll.	Common grass yellow	
ammals	Gizssy-tiger	
inambulus palmarum		-
IS sucrofa	Squirrel .	
erpestes edwardii	Wild pig	Sch-IV
lous benchalaas	Common mongoose	Sch-III
strix indica	Wild fox	Sch-IV
and multa	Porcupine	Sch-II
		Sch-IV

TABLE-4 FAUNA AND THEIR CONSERVATION STATUS IN STUDY AREA (BUFFER ZONE)

rechnical Name *	English Name/Local Name	EONE)
Aves		Wild Life Protection Act (1972)
Ardea purpurea manilensis	Little cormorant Eastern purple beron	Sch-IV
Ardeola grayii grayii	Night heron	Sch-IV
Dupetor flavicollis Ardea alba modesta	Black bittern	Sch-IV Sch-IV
lubulcus ibis coremandus	Cattle egret	Sch-IV Sch-IV
aliastur indus indus	Common pariah kite	Sch-IV Sch-IV
anellus indicus indicus linga hypoleucos	Redwattled lapwing	Sch-IV Sch-IV
elochelidon nilotica nilotica	Common sandpiper Gulfbilled tern	Sch-IV Sch-IV
illeven smyrnensis funce	Indian koel	Sch-IV Sch-IV
ops philippings philippings	Bluetailed bee-eater	Sch-IV
		Sch-IV

A6-6

Technical Name	English Name/Local Name	Wild Life Protection Act]
Coracias benghalensis indica	Southern Indian Roller	Sch-IV	-
Dinopium benghalense tehminae	Malabar golden backed Woodpecker	Sch-IV	-
Acridotheres tristis tristis	Common myna	Sch-IV	-
Corvus splendens protegatus	Cevion house crow	Sch-IV	-
Nectarinia minima	Small sunbird	Sch-IV	-
Nectarenia, zeylonica sola	Indian purple rumped suppird	Sch-IV	-
Arachnethera longirostris	Little spinder hunter	Sch TV	-
longirostris	Liebe opinider hunter	SCII-IV	
Passer domesticus indicus	Indian house snarrow	Sch IV	-
Copsychus saularis ceyonensis	Southern magnie-robin	Sch-IV	
Orthotomus sutorius	Tailor bird ouzurata	Sch-IV	-
Pavocristatus	Pearock	Bort IV of Column	-
Amphibians	- Cococit	Part-III or Sch-I	
Rana tionana	Common from	C 1 3	
Buto melanosticus	Toad	Sch-IV	
Reptiles	1060	Sch-IV	
Calotes versicolor	Lipped		
Calatos varsicalar	Lizero	Sch-IV	
Chamaloon realization	Common garden lizard	Sch-IV	
Lycodon ene	Indian chamaeleon	Sch-II	
Round son	WOIT STIAKE	Sch-III	1
Dorga Spp.	Cat snake	Sch-III	
nauguus spp.	Krait	Sch-II	
Naja baja	Indian cobra	Sch-III	
Vijiena spp.	Russels viper	Sch-III	
Phyton sp	Python sp	Sch-I	
Butterflies			
Pachhopta hector Lin.	Crimson rose	-	
Papilio demoleus Lin,	Lime butterfly	-	
Graphnim agamemnon Lin.	Tailed jay	-	
Junoria almana Lin.	Peacock pansy		
Hypolimnas bolina Lín.	Great edoffy		
Euploea core Cramer	Common crow		
Neptis bylas Mcore	Common sailor		
Euroma hecabe Lin.	Common orass vellow		
Catousina sp.	Emigrant		
Mammais	A LONG BOOM	-	
Rattus sp.	Eat .	C.L. IV	
Lepus noricollis	Hare	Sch-IV	
Canis auries	lackal	Sch-IV	
Prestivtis entellus	Labour	Sch-III	
Presbytis obayrai	Monkov	Sch-II	
Funambulus con	Florikey	Sch-I	
Funambulus spp.	Squirrei	Sch-IV	
Fundinuulus paintarum	Squirrei	Sch-IV	
SUS SUCTOIA	Wild pig	Sch-III	
Rattus norvegicuse	Field mouse	Sch-V	
Rattus rattus	House rat	Sch-V	
Rhunolopus spp.	Bat	Sch-V	
Hipposiderus spp.	Bat	Sch-V	
Herpestes edwardii	Common mongoose	Sch-IV	
Bandicota indica	Bandicoot	Sch-V	
Bandicota bengalensis	Bandicoot	Sch-V	
Vulpus benghalensis	Wild fox	Sch-III	
Melsurus ursinus	Bear	Sch-III	
Hystrix indica	Porcupine	Cch.W	
Axis axis .	Spotted deer	Sch III	
Canis lunasnallines	Indian wolf	SCD-III	
Meliyora canensis	Indian Ratel	Part-1 of Sch-1	
Elenhae maximae	Indian Electron	Part-I of Sch-I	
Folie chave	hundle cet	Part-I of Sch-I	
Parodovurus harmashraidhus	Jongie Cat	Part-II of sch-II	
raiodoxurus nermophroiditus	molan Small civet	Part-I of sch-I	
muntiacus muntiacus	Barking deer	Sch-III	
macaca mulata	Monkey	Part-I of Sch-I	

Ĵ

2

AE-7

1

Annexure -C

View of one small old inactive OB dump stabilized by vegetation with suitable native species at Kudag Lease

ht of Mines Samri Mines Division Hindaico Industries Ltd

ANNEXURE - D

Hindalco Industries Limited

Samri, Mines Division

AANNEN WEEXURE - E

Voor	Kudag Bauxite Mines		Samri Bauxite Mines		Tatijharia Bauxite Mines		Total	
Tear	No.of Sapling	Area in hect.	No.of Sapling	Area in hect.	No.of Sapling	Area in hect.	No.of Sapling	Area in hect.
1998-2017	117570	49.980	167211	68.154	78925	32.060	363706	150.194
2017-18	2960	1.220	11681	4.970	8868	3.540	23509	9.730
2018-19	2780	1.110	19730	7.900	19967	7.990	42477	17.000
2019-20	2980	1.200	34360	31.590	32715	18.970	70055	51.760
2020-21	4865	2.405	36160	16.918	28739	12.819	69764	32.142
2021-22	3270	0.354	47307	11.465	21947	5.557	72524	17.376
2022-23 (Upto Sept.)	6020	2.024	39071	10.918	17110	5.628	62201	18.570
Total (Till Date)	140445	58.293	355520	151.915	208271	86.564	704236	296.772

Year wise /Lease wise Details of Afforestation

Agent of Mines Samri Mines Division

Hindalco Industries Ltd

<u>Annexure F</u>

A View of Pond and RWH Structure

A View of Ragi Cultivation

Self Help Grour	(SHGs) Kudaa
Sen rich oroup	12
No. of SHGs	120
No of Beneficiaries	12
No of group linked with bank	Dr. 10.000/
Average Saving / Group – Rs. 10,000 -	RS. 10,000/-
Facility provided to groups	Register, Passbook, Dari, Sewing Machine, Income Generation training and other exposure programme like linkages with bank and training with NRLM
Groups engaged in income generation	12

. SHGs Details (Kudag)									
				No	A/CI	Details		1 145	
SLNo	SHG Name	Village Name	District Name	Of Members	Members Savings in Bank A/C	Bank Loan Received	Economic Activity Name	Year of formation	
1	Nuri Self Help Group	Saraidih	Balrampur	10	12000.00	e ar	Agriculture	10/10/2006	
2	Shabnam Self Help Group	Saraidih	Balrampur	10	14000.00	10 AN - 20	Agriculture	09/052005	
Э	Suhana Self Help Group	Saraidin	Balrampur	10	8000.00		· · · · · · · · · · · · · · · · · · ·	06/102016	
4	Rupa Self Self Help Group	Saraidih	Balrampur	10	14500.00	A Start	Agriculture	9/5/201	
5	Sushila Self Help Group	Banjutoli	Balrampur	10	12500.00		Agriculture	18/02/2014	
6	Chameli Self Help Group	Bata	Balrampur	10	25000.00	Contraction of the	Agriculture	15/11/2017	
7	Chameli Self Help Group	Bata (Banjutoli)	Balrampur	10	22000.00		Agriculture	14/10/2016	
8	Punam Self Help Group	Balapani	Balrampur	10	19500.00		Agriculture	26/09/2017	
9	Gulab Self Help Group	Kudag	Balrampur	10	14500.00		Agriculture	06/102014	
10	Shubham Self Help Group	Balapani	Balrampur	10	7500.00	Res - AN	Agriculture	23/06/2017	
11	Chameli Self Help Group	Kudag	Balrampur	10	14000.00		Agriculture	9/3/2012	
12	Resham Self Help Group	Kudag	Balrampur	10	8500.00	1.25	Agriculture	9/3/201	

Agent of Mines Samri Mines Division Hindaico Industries Ltd

Annexure-H

View of Black top road constructed up to pit head to reduce dust problem.

Hindalco Industries Limited

Mines Division, Samri

Date - 19.04.2022

Annexure - i

Environment Management Cell

An Environment Management Cell is re-constituted by the following members which is compliance of the EC conditions for the Samri, Kudag and Tatijharia Bauxite Mines.

S.No.	Name	in the second seco	
		Designation	Position
1.	Mr. Vijay Chauhan	Agent of Mines	Chairman
2.	Mr. Amit Tiwary	Manager-Mines	Secretary
3.	Mr. Praween Pradhan	Managor Carl	Secretary
4.	Dr. M.Kum	Manager Geology	Member
r	Dr. M.Kumar	Sr. Medical Officer	Member
5.	Mr. K.K.Singh	Dy. Manager	Member
6.	Mr. J.P.Thakur	Dy.Officer -Lab	Mombor

Viev Chauhan Samn Mines Division (Agentof Mines) les Ltd

ANNEXURE – J

ाटा। त्रावन की रिमवीम कुहारों 10 के मांग्र चले इस आंदोलन में भाग 12 लेने कुसमुष्याः रोवरः, एवछणीसी, एजटीपीपी,बाल्को, निहारिका (a) सहित समी दोत्रों के लोगों ने भाग लिया दो घंटे तक यले इस आंदोलन में अन्य समी लोग

पदोन्नति मिलने याली थी। लेकिन

है। वे अभी स्थानांतरन के लिए पडना

त्ताई निगम के आयुक्त

दबाव नहीं खाल रहे हैं।

देशमुख को पाजमदियांच का

अपर कलेवटर पदस्थ किया गया

तेए लगा रहे जोर

th

672

वर्ष

125

हिंदी

0.005

रले उपनिवन थे।

प्रतनम् यहरूण पुत्री किरम का विवाह २० मई पर्षे को तखतपुर ध्वना अंतर्गत. गाम अमोरा निवाली रामनाथ के पुत्र शजेंद्रप्रसाद पाठक के पुत्र के साम हुआ था। विकार के एक साल बाद ही किरण को बहेन के लिए प्रता कित किए जाने लगा।

भाजनादगांव अपर कलेक्टर का

भी देशनुख नवा संजोर

परियोजना के अपर संचालक के

पत पर ग्रामीण शवालक के पत

पर पंचायत ग्रामीण विकास विमाग

में प्रतिनिधुक्ति पर थे। इस क्षीय

२००५ वेच के एक प्रशिध आईएस

कटमोरा एव रजत कुमान को

सारोगढ अनुविभागीय अधिवारी

कटघोरा का प्रभार

पर्देश शालन दारा अलसरों को शहावक कलेक्टर के

जारी आदेश के अनुसार राग्ररों - यद पर पदस्य किया गया है।

रहे ९४ वेव के अधिकारी आईके आईएएस आर संगीता को

हे। डीडी सिंह को जशपुर बनाया गया है।

त जिला अध्यक्ष ने दौरा

अधिकारी। मीसिन पश्चित्र को कलेक्टर बनाए जाने के बाद ब

छातीसगढ प्रदेश के गरांमान सारगर एवं पूर्व मुख्यमंत्री अजीत प्रनोय जोनी के सुपुत्र अमित जोगी का रधानीय युवा कार्यललीओं ने जन्म दिवस भगाता। पत्थलगांव के राग्यवायिक स्वास्थ्य केन्द्र के बार्ड में पहुंचलप गुवा कांग्रेसी कार्यकर्ताजों ने प्रीतपाल भादिया के

AT 4 41 11 कुशलकोन पूछा।

शीजन्य से फल, विरकुट, देख भाँ वितरण किया तथा कांद्रेसी

अमीव जहनी के जन्मदिवस के अचेतार पर अस्पताल परिसर में फल एवं चिरिकट दितरण के बक्त हरगोविष्य अच्चात मनोज अभ्यस्ट, रवि सादव, निज्ञामुद्दीन, सुरोण्य चेलवानी, शिव अग्रवाल, वेवराम सियार, अशोक पोहिला एवं अन्य 🛎 पानीन कार्यकर्ता अपस्थित थे।

खाद नहीं मिलने को लेकर कृषकों ने निकाली रेली पद विगत २-३ न ह से रिक्त था।

प्रसालमाय

क्षेत्र के किसानों को खाद नहीं मिल रहा है, जिसको लेकर चल पाधावगांध के किवान नेता चेदप्रकाश मिला ने प्रामीम किसानों

राध्य ही किसानों ने खाद की किल्लात के लिए ब्यापादियों से अधिकारियो द्वारा साठगाठ राक करे तामों की दिली पर अधिकार्ध आंछ मूंचे जमारत देख रहे हे बूखरी

को तेकर रू रेले आश्वासन मिला एक-दो _{कितान} दिन में होगा उपलब्ध जिर पर निकालकर f vi

विस्तार अधिकारी की पन्ना से खाद किल्लत के संबंध में जानकारी मांगी व अमेकर नार्थवाजी की गई। घन्ना ने आरवासन दिया कि वे एक-दी दिन में खाद पत्थलगांच में उपलब्ध कर इं जायेगी। इस आहवासन के पर बात् हि रेली में उपरिधत सेकडो किसान बायस जाने को रोयार हुए। N. L. H. त्रांश धरे

कंचे दलों में खरीवने को मजबूर है। देखी में भवन राम कुपूर, धरमभाग कुजुर, मससाय पन्ना, बुढाकांड सरपंच, हेमराम पटेल, जोरोफ रहा, तीओं बादव, टिकेश्वर यादव व अन्य क्रिसान मौजूद थे। भेली की अमुवाई किसान मेवा द्वापा की गई।

ते अपनी भावनाओं से अवगत हों ने यह भी मांग रखी कि त. प्रपत्त क्षेणी शिक्षक एवं केन्द्रीय केल्नमान दिया जाना वेतनमान विलने से प्रत्येक ०० से २००० समर तक का रेगा। महगाई सब्दे की घोषणा र होन् हिए तथा महंगाई भलो के जलुशार होना चाहिए लमा ति राहि। केन्द्र की घोषणा के होना थाहिए। जिस वरह से थी. शरियों को हिखा। विभाग में अग्रिम जासी हे उसी प्रकार एम. कील ग्रे भी अग्रिम चेलन यूदि सिलनी

यंक्रम में प्रया रूप से विश्रामपुर म जसाचे : ए. पी. दुपे, एस. चे, सिंह, ए. के, जेन, के, बर्मा, रचना बीवास्तव, रंजना पुर बनाक में प्रेमचनद सोनी, डी. तर, क्षे, भगत, कवनाषावण राम, गुमाम मोहम्मद खान, के. एन ठाकुर, जार, मी, सिंह, श्रीसांच लाक ने दीनानाथ साह, शानुमन इसाद, नारायण गुभा, घनरवाग

त्वाक समलल्यू साह, कृष्णा साह, रामपाल साह, राजेन्द्र जाततारे चित् राम सिंह, राजकुमार पेकरा, ब्रह्मल सिंह, धारसपति पैकरा, बीयती मानमति भगत, श्रीनती प्यारी होग्यो, सहदेव शिंह, झीमशी जनकलता जावसवाल, सीमती सुनिता पाण्डेय, जे एन, यायम, भो इसलान जेखरी, श्याम मारायण सिंह, उदयपुर काबा में मुखराम यादव, इरिशंकर मुप्ता, मोहेलाल राजवाड़े, फरीवानपुर सिंह, प्रमोव कुमार कन्न्येथ, अलोइस टामो, अमरनाथ महेत. देववुत्रमार वादन, शंकर राम, अध्रश्रीराम, श्रीमाप्ति इमीलियर टोप्पो, रामल ल सिंह, फ्रोटेलाल दुवे सोनारसाथ सिंह, राष्ट्र वर सिंह, सम्पूर्ण राध, क्रोगती अभवकिशोरी टोप्प) अनेश्वर सिंह, युहन पाम लक्षा अधिकाधित संख्या में हर ब्लाक ने शिसक-शिक्षिकाएं उपस्थित थी। शिक्षकों के प्रथताय को उचित कार्यवाही हेगु इसमी सूचना हेतु प्रदेश आधाल सुरेश तिवारी एव छप-प्रान्ताध्यक्ष थी, एस सिंह को दे दी सई हा मुख्यमंत्री छत्तीसगढ़ शासन च्यूल शिक्षा मन्त्री एवं आदिभ जाहि कल्याण मन्त्री को सभी भांगों जो की जायज माने हे स्वीकृत करने हेतु अंगुरोध पत्र लिखा गया है।

kar, sunst sinnes unitate seenst. ☎0771-5533466 ● Email-gopalasawa@yahoo.com, ambikavani@gmail.com

nror Mines Samri Mines Division

भवताव

डिव्यलको इण्डस्टीय लिपिटेड

प्रतमन्त्री खाने प्रसाग

Hindalco Industries Ltd

ANNEXURE - II

Environmental Status Report For Kudag Bauxite Mine at Post & Teh.: Samri,(Kusmi) Dist: Balrampur–Ramanujganj(C.G.)

Duration: April-May-June-2022

Name of Industry

M/s. Hindalco Industries Limited.,

Name of Laboratory:-

QCI-NABET, MoEF & CC (GOI) ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 60, Bajiprabhu Nagar, Nagpur - 440 033, MS Lab. & Consultancy: FP-34, 35, Food Park, MIDC, Butibori, Nagpur – 441122 Ph.: (0712) 2242077, 9373287475 Email: *info@anacon.in, ngp@anacon.in* website: <u>www.anaconlaboratories.com</u>

1.1 Introduction

Hindalco Industries Limited (Hindalco) is one among the flagship companies of the Aditya Birla Group of Industries and is one of the largest corporate groups in India. This group is a leading manufacturer of Aluminum in India, having integrated facilities encompassing bauxite, mining, refining and smelting to achieve Aluminum.

Various processing units of Hindalco are strategically located in different parts of the nation to achieve optimum benifits. Over the past few decades the group has grown multifold in its production capacities, product mix and diversification in mining. The Chhattisgarh Environment Conservation Board (CECB) granted permission for establishing the Bauxite Mine to Hindalco at block Tatijharia, Kudag and Samri mines inBalrampur District of Chhattisgarh State.

HINDALCO INDUSTRIES LTD., awarded the work to M/s ANACON LABORATORIES PVT. LTD. Nagpur(ALPL) for carrying out Environmental monitoring of parameters for assessing pollution levels and preparation of monthly reports (*April-May-June-2022*) as per the requirement of Chhattisgarh Environment Conservation Board (CECB) and Ministry of Environment, Forest and Climate Change (MoEF&CC) for Kudag mining lease in Balrampur District, Chhattisgarh State.

1.2 Background Information of KudagMine

Hindalco was granted Kudag Bauxite mining lease over an area of 377.116 hec. In Kudag village, Post office-Dumarkholi, Tehsil-Samri (Kusmi) of Balrampur district, Chhattisgarh on 24/12/1996 for a period of 20 years. As per the Mines and Mineral (Development and Regulation) Amendment Act, 2015, Kudag lease has been extended up to another 30 years i.e 23/12/2046.The mining operations were started on 02/07/1997. The production capacity of Kudag Bauxite Mine is 60,000 Tonne /Year.

1.3 Salient Features of Kudag BauxiteMine

The deposits occur in Kudag block, Post office Dumarkholi, Tehsil-Samri (Kusmi) of Balrampur district. This deposit has been identified as one of the resources to cater the raw material requirements of the Hindalco Alumina refinery at Renukoot, Uttar Pradesh. The salient features of the project are presented below in Table1.

Hindalco Industries Limited Kudag Mining Environmental Status Report for April-2022 to June-2022

Table: 1

Salient Features of Kudag Bauxite Mines

SI. No.	Particulars	Details	
1.	Survey of India Toposheet No.	64 M /15	
2.	Latitude	23º 26' 02"N to 23º 29'00"N	
3.	Longitude	83° 51' 00"E to 83° 59' 00"E	
4.	Elevation	1145-m above Mean Sea Level	
5.	Climatic Conditions (as per IMD, Ambikapur)	Annual maximum temperature : 30.3°C Annual minimum temperature : 17.7°C Average annual rainfall : 1401.1 mm	
6.	Mining lease area	377.116 Hec.	
7.	Method of mining	Open cast (Semi-Mechanized)	
8.	Mode of transportation	Trucks	
9.	Land use	Agricultural and Barren land	
10.	Nearest Road	Samri to Kusmi (17 km)	
11.	Nearest Airport	Ranchi Airport (151.09 Km)	
12.	Nearest Town	Ambikapur (127 km, SW)	

1.4 Environmental Monitoring

Regular monitoring of environmental parameters is of immense importance to assess the status of environment during mining operation. With the knowledge of baseline conditions, the monitoring program will serve as an indicator for any deterioration in environmental conditions due to mining operation of the project. Suitable mitigation steps will be taken in time to safeguard the environment based on monitoring reports. Monitoring is important in the control of pollution since the efficiency of control measures can only be determined by monitoring.

In order to find out the impact of mining activity on sensitive receptors, it is necessary to monitor Environmental Quality to know the level of concentrations of pollutants within and around the mining lease area. Accordingly Hindalco Industries through ALPL has been monitoring air, water and noise quality on monthly basis during these months (Table-2).

Hindalco Industries Limited Kudag Mining Environmental Status Report for April-2022 to June-2022

1.5 Air Environment

1.5.1 Ambient Air Quality Monitoring:

Ambient Air Quality and Fugitive emission monitored at 8 following locations with reference to Kudag mine lease area shown in (Fig.-1).

<u>Table 2</u>

Locations of Ambient Air O	<u> Duality Monitoring (</u>	(AAOM) (377.116 hec.)

Sr. No.	Core Zone	Sr. No.	Buffer Zone
1	Sairaidh Campus	5	Kutku Village
2	New Kudag/Nr.Weigh Bridge	6	Rajendrapur
3	Old Kudag/Mining Area	7	Tatijharia Village
4	SamriGopatu/Nr. Weigh Bridge	8	Virhorepat

The sampling stations are selected at the above mentioned locations, in downwind and upwind directions of the mining site. ALPL is carrying out regular monitoring for PM₁₀, PM_{2.5}, SO₂, NO₂, CO and Pb, Hg, As and Cr at above Ambient Air Quality Monitoring (AAQM) locations. The AAQM sampling sites are selected considering seasonal variation in wind speed and wind direction.

1.5.2 Sampling Duration and Frequency

Ambient air quality monitoring was carried out for the parameters PM_{10} , $PM_{2.5}$, SO_2 , NO_2 CO and Pb, Hg, As & Cr from April-2022 to June-2022 as per CPCB norms.

Data is compared with the present revised standards mentioned in the latest Gazette Notification of the Central Pollution Control Board (CPCB) 18th November, 2009 and as per consent conditions mentioned in consent letter.

1.5.3 MONITORED PARAMETERS AND FREQUENCY OF SAMPLING

Methods and Instruments used for Sampling

The air samples were analyzed as per methods specified by Central Pollution Control Board (CPCB).

The levels of Particulate Matter (PM_{10}), Sulphur Dioxide ($SO_{2,}$), Oxides of Nitrogen (NO_{2}), CO, Pb, Hg, As and Cr were monitored for establishing the baseline status. PM_{10} was collected with the help of Respirable particulate sampler operating 24 hours by drawing air which passes through the cyclone at the rate of 1.0 -1.3 m³/min which collects the particles less than 10 µm diameter over glass fiber filter paper. The dust deposited over the filter paper is measured as PM_{10} and the smaller particulates from $PM_{2.5}$ are collected into the membrane filter paper. other details are given in**(Table3)**.

<u>Table 3</u>

MONITORED PARAMETERS AND FREQUENCY OF SAMPLING

Parameters	Sampling frequency
Particulate Matter (PM ₁₀)	24 hourly sample twice a week for Three months
Particulate Matter (PM _{2.5})	24 hourly sample twice a week for Three months
Particulate Matter 2.5	24 hourly sample twice a week for Three months
Sulphur dioxide (SO ₂)	24 hourly sample twice a week for Three months
Oxides of Nitrogen (NO ₂)	24 hourly sample twice a week for Three months
CO, Pb, Hg, As, Cr	8 hourly samples for 24 hour twice a week for three months

Table 4.0

Measurement	Techniques	for various	<u>pollutan</u> ts

Sr. No.	Parameter	Technique	Technical Protocol	Minimum Reportable Value(µg/m³)
1.	Particulate Matter PM ₁₀	Respirable Dust Sampler (Gravimetric Method)	IS-5182 (Part-23)	5
2.	Particulate Matter PM _{2.5}	Respirable Dust Sampler (Gravimetric Method)	USEPA-40 (Part-50)	5
3.	Sulphur Dioxide	Modified West and Gaeke	IS-5182 (Part – II)	4
4.	Oxide of Nitrogen	Jacob &Hochheiser Method	IS-5182 (Part – VI)	4
5.	Carbon Monoxide	NDIR Spectroscopy	IS-5182 (Part – X)	2
6.	Pb, As, Hg, Cr	Acid Digestion Method	EPA Method	0.1

1.6 Meteorology: Wind Pattern

The data of wind pattern collected during the study period (April-May-June-2022) indicates that the wind was blowing predominately from (NW and NNW) directions, during study period.

Sr. No.	Directions / Wind Classes (m/s)	0.5 - 2.1	2.1 - 3.6	3.6 - 5.7	5.7 - 8.8	8.8 - 11.1	>= 11.1	Total (%)	
1	348.75 - 11.25	1.37363	3.38828	0.73260	0.00000	0.00000	0.00000	5.49451	
2	11.25 - 33.75	1.55678	2.42674	0.09158	0.00000	0.00000	0.00000	4.07509	
3	33.75 - 56.25	1.55678	1.51099	0.09158	0.00000	0.00000	0.00000	3.15934	
4	56.25 - 78.75	1.32784	0.86996	0.04579	0.00000	0.00000	0.00000	2.24359	
5	78.75 - 101.25	1.19048	0.54945	0.09158	0.00000	0.00000	0.00000	1.83150	
6	101.25 - 123.75	0.86996	0.45788	0.04579	0.00000	0.00000	0.00000	1.37363	
7	123.75 - 146.25	1.37363	0.77839	0.09158	0.09158	0.00000	0.00000	2.33516	
8	146.25 - 168.75	3.47985	2.88462	0.91575	0.13736	0.00000	0.00000	7.41758	
9	168.75 - 191.25	3.20513	3.47985	0.96154	0.45788	0.00000	0.00000	8.10440	
10	191.25 - 213.75	2.60989	4.02930	0.41209	0.45788	0.00000	0.00000	7.50916	
11	213.75 - 236.25	3.66300	1.55678	2.42674	0.54945	0.00000	0.00000	8.19597	
12	236.25 - 258.75	1.96886	2.56410	1.51099	0.54945	0.00000	0.00000	6.59341	
13	258.75 - 281.25	1.28205	2.01465	2.24359	0.91575	0.00000	0.00000	6.45604	
14	281.25 - 303.75	1.51099	2.88462	2.28938	1.23626	0.00000	0.00000	7.92125	
15	303.75 - 326.25	1.96886	3.98352	6.86813	1.32784	0.00000	0.00000	14.14840	
16	326.25 - 348.75	1.78571	4.53297	4.16667	1.14469	0.00000	0.00000	11.63000	
	Sub-Total	30.72340	37.91210	22.98530	6.86813	0.00000	0.00000	98.48900	
	Calms								
	Missing/Incomplete								
	Total							100.00	

Wind Frequency Distribution Data

Summary of Wind Pattern

Season First Pre-Dominant		Second Pre-Dominant	Calm	Average Wind
Wind Direction		Wind Direction	Condition	Speed
April-May-June-2022	NW (14.15%)	NNW (11.63%)	1.51 %	2.93 m/s

Hindalco Industries Limited Samri Mining Environmental Status Report for April-2022 to June-2022

Figure.02: Wind Class Frequency Distribution (April-May-June-2022)

1.7 MONITORED PARAMETERS AND FREQUENCY OF SAMPLING

Methods and Instruments used for Sampling

The air samples were analyzed as per methods specified by Central Pollution Control Board (CPCB). The levels of Particulate Matter (PM₁₀), Sulphur Dioxide (SO₂), Oxides of Nitrogen (NO₂), Carbon Monoxide (CO), Pb, Hg, As and Cr were monitored for establishing the baseline status.PM₁₀ was collected with the help of Respirable Particulate Sampler operating 24 hours bydrawing air which passes through the cyclone at the rate of 1.0 -1.3 m³/min which collects the particles less than 10 µm diameter over glass fibre filter paper. The dust deposited over the filter paper is measured as PM₁₀and the smaller particulates from 2.5 µm are collected into the Membrane Filter Paper. The dust fall rate was measured usingdust fall jar. The jar was exposed for one month in the mining area and Samri-Gopatu during pre and post monsoon period. The jar was filled with 2 lit of distilled water. The water in the jar is mixed with copper sulphate solution (0.02 N solutions) to prevent any growth of algae. The water level in the jar is constantly maintained in such a way that 2 lit of water is always retained. The measurement techniques used for various pollutantsand other details are given in **(Table 3)**.

Earmarked samples were collected for Particulate Matter- PM_{10} , Particulate Matter- $PM_{2.5}$, SO_2 and NO_X for 24 hourly and CO 8 hourly. Collected samples were sent to Laboratories for analysis.

SI. No.	Parameter	Technique	Technical Protocol	Minimum Reportable Value (µg/m³)
1.	Respirable Particulate Matter	Respirable Dust Sampler (Gravimetric Method)	IS-5182 (Part-23)	5
2.	Particulate Matter 2.5	Respirable Dust Sampler (Gravimetric Method)	Gravimetric Method	5
3.	Sulphur Dioxide	Modified West and Gaeke	IS-5182 (Part – II)	4
4.	Oxide of Nitrogen	Jacob &Hochheiser Method	IS-5182 (Part – VI)	4
5.	Carbon Monoxide	NDIR Spectroscopy	IS-5182 (Part – X)	2
6.	Pb, As,Hg, Cr	Acid Digestion Method	EPA Method	0.1

<u>Table 3.0</u> <u>Measurement Techniques for various pollutants</u>

Table 4

Statistical Analysis

Location	Month &	PM-10	PM-2.5	SO ₂	NO ₂	СО	Pb	Hg	As	Cr
	Year	$(\mu g / m^3)$	(µg/m ³)	$(\mu g / m^3)$	$(\mu g/m^3)$	(mg /m ³)	$(\mu g/m^3)$	$(\mu g / m^3)$	(ng/m^3)	(µg /m ³)
Core Zone						1				
Sairaidh	April-2022	59.9	26.8	10.2	18.2	0.324	0.017	BDL (DL-0.0005)	BDL (DL-0.1)	BDL (DL-0.03)
Campus	May-2022	63.1	25.0	10.2	20.6	0.231	0.017	BDL (DL-0.0005)	BDL (DL-0.1)	BDL (DL-0.03)
	June-2022	51.7	18.5	7.3	16.3	0.208	BDL (DL-0.01)	BDL (DL-0.0005)	BDL (DL-0.1)	BDL (DL-0.03)
	April-2022	57.2	22.2	9.8	21.0	0.304	0.017	BDL (DL-0.0005)	BDL (DL-0.1)	BDL (DL-0.03)
New Kudag/Nr. Weigh Bridge	May-2022	63.8	22.1	10.3	19.5	0.215	0.018	BDL (DL-0.0005)	BDL (DL-0.1)	BDL (DL-0.03)
	June-2022	51.1	18.5	9.4	17.3	0.201	0.015	BDL (DL-0.0005)	BDL (DL-0.1)	BDL (DL-0.03)
Old	April-2022	53.1	21.0	9.8	19.5	0.230	0.017	BDL (DL-0.0005)	BDL (DL-0.1)	BDL (DL-0.03)
Kudag/Mining	May-2022	59.8	19.1	10.8	19.0	0.207	0.016	BDL (DL-0.0005)	BDL (DL-0.1)	BDL (DL-0.03)
Area	June-2022	50.8	15.8	6.3	15.9	0.162	0.015	BDL (DL-0.0005)	BDL (DL-0.1)	BDL (DL-0.03)
Samri Gopatu/	April-2022	65.7	24.1	10.0	19.1	0.301	0.016	BDL (DL-0.0005)	BDL (DL-0.1)	BDL (DL-0.03)
Nr. Weigh	May-2022	67.1	25.0	10.1	20.2	0.246	0.017	BDL (DL-0.0005)	BDL (DL-0.1)	BDL (DL-0.03)
Bridge	June-2022	53.9	22.5	9.9	19.2	0.212	0.015	BDL (DL-0.0005)	BDL (DL-0.1)	BDL (DL-0.03)
CPCB Standards		100 (24 hrs)	60 (24 hrs)	80 (24 hrs)	80 (24 hrs)	2 (8 hrs)	1.0 (24 hrs)		6.0 (annual)	
Minimum		50.8	15.8	6.3	15.9	0.162				
Maximum		67.1	26.8	10.8	21.0	0.324	0.018			
Average		58.1	21.7	9.5	18.8	0.237	0.015			
98% le		66.8	26.4	10.7	20.9	0.320	0.018			

NOTES: • BDL- Below detection limit • DL- Indicates detection limit of instrument/method and shall be considered as 'absent'.

- The Average Concentration of PM_{10} within the Core Zone of Kudag Lease is 58.1 μ g/m³.
- The Average Concentration of PM25 with int he CoreZone of Kudag Leaseis 21.7µg/m³.
- The Average Concentration of SO₂ within the CoreZone of Kudag Lease is 9.5µg/m³.
- The Average Concentration of NO₂ within the Core Zone of Kudag Lease is $18.8 \,\mu\text{g/m}^3$.
- The Average Concentration of CO within the Core Zone of Kudag Lease is 0.237mg/m³.
- The Average Concentration of Pb within the Core Zone of Kudag Lease is 0.015µg/m³.

Conclusion :-

The Average Concentration within the Core Zone of Kudag Lease during this period **(April-May-June-2022)**, it is within permissible limits as per CPCB Standards.

Hindalco Industries Limited Kudag Mining Environmental Status Report for April-2022 to June-2022

										_	
Location	Month &	PM-10	PM-2.5	SO ₂	NO ₂	СО	Pb	Hg	As	Cr	
	Year	$(\mu g / m^3)$	(µg/m ³)	(µg /m ³)	$(\mu g / m^3)$	(mg /m ³)	(µg /m ³)	(µg /m ³)	(ng/m ³)	(µg /m ³)	
Buffer Zone											
	A	(0.0	20.4	0.0	10.7	0.272	BDL	BDL	BDL	BDL	
	April-2022	60.9	20.4	9.0	18.7	0.272	(DL-0.01)	(DL-0.0005)	(DL-0.1)	(DL-0.03)	
	Max 2022	54.9	26.7	07	14.4	0.200	0.016	BDL	BDL	BDL	
Kutku Village	Widy-2022	54.0	20.7	9.2	14.4	0.209	0.010	(DL-0.0005)	(DL-0.1)	(DL-0.03)	
	June-2022	49 1	16.4	68	16.1	0.161	BDL	BDL	BDL	BDL	
	June-2022	47.1	10.4	0.0	10.1	0.101	(DL-0.01)	(DL-0.0005)	(DL-0.1)	(DL-0.03)	
	April-2022	61.3	22.5	92	16.2	0.300	0.017	BDL	BDL	BDL	
	7 tp111 2022	01.0	22.0	7.2	10.2	0.000	0.017	(DL-0.0005)	(DL-0.1)	(DL-0.03)	
	May-2022	53.1	23.1	8.6	15.1	0.249	0.017	BDL	BDL	BDL	
Rajendrapur	5							(DL-0.0005)	(DL-0.1)	(DL-0.03)	
	June-2022	2 52.9	19.5	8.3	17.6	0.185	0.013				
							BDI	BDI	BDI		
	April-2022	59.7	21.3	10.3	17.6	0.206	0.015	(DL-0.0005)	(DL-0.1)	(DL-0.03)	
	14 0000	(0.0	01.4	10 7	20.6	0.005	0.010	BDL	BDL	BDL	
Tatijharia	May-2022	60.2	21.4	10.7	20.6	0.225	0.019	(DL-0.0005)	(DL-0.1)	(DL-0.03)	
Village	Luna 2022	llage	51 7	18 5	73	16.2	0.208	0.013	BDL	BDL	BDL
	June-2022	51.7	10.5	7.5	10.5	0.200	0.015	(DL-0.0005)	(DL-0.1)	(DL-0.03)	
	April-2022	61.0	22.1	10.0	18.3	0.212	0.016	BDL	BDL	BDL	
	r							DL-0.0005)	(DL-0.1)	(DL-0.03)	
	May-2022	60.9	20.6	9.5	19.7	0.205	0.017	BDL BDL	BDL	BDL	
Virhorepat								(DL-0.0005)	(DL-0.1)	(DL-0.03)	
-	June-2022	54.5	19.0	9.7	18.6	0.191	0.015	(DI = 0.0005)		DI -0.03	
		100	60	80	80	2	1.0	(DE 0.0000)	6.0		
CPCB Star	ndards	(24 hrs)	(24 hrs)	(24 hrs)	(24 hrs)	(8 hrs)	(24 hrs)		(annual)		
Minimum		49.1	16.4	6.8	14.4	0.161					
Maximum		61.3	26.7	10.7	20.6	0.300	0.019				
Average		56.7	21.0	9,1	17.4	0.219	0.016				
98% le		61.2	25.9	10.6	20.4	0.215	0.010				
		01.4	<u> </u>	10.0	20.I	0.271	0.017	1	1	1	

NOTES: • BDL- Below detection limit • DL- Indicates detection limit of instrument/method and shall be considered as 'absent'.

- The Average Concentration of PM10 within the Buffer Zone of Kudag Lease is 56.7 µg/m³.
- The Average Concentration of PM_{2.5} within the Buffer Zone of Kudag Lease is 21.0 μg/m³.
- The Average Concentration of SO₂ within the Buffer Zone of KudagLease is 9.1µg/m³.
- The Average Concentration of NO₂ within the Buffer Zone of KudagLease is $17.4 \ \mu g/m^3$.
- The Average Concentration of CO within the Buffer Zone of KudagLease is 0.219 mg/m³.
- The Average Concentration of Pb within the Buffer Zone of KudagLease is $0.016 \ \mu g/m^3$.

Conclusion :-

The Average Concentration within the Buffer Zone of Kudag Lease during this period **(April-May-June-2022)**. It is within permissible limits as per CPCB Standards.

Month-wise Summary of Statistical Analysis

Kudag Lease (Core Zone):-

3.1 Ambient Air Quality:

Ambient air quality has been generated as per NAAQS 2009 for the month of April-2022 to June-2022. PM_{10} , $PM_{2.5}$, SO_2 , NO_2 and CO the values obtained were then compared vis-a-vis the standards prescribed by CPCB for Industrial/Rural/Residential uses.

3.2 <u>Presentation of Results</u>:

The summary of Ambient Air Quality monitoring results from April-2022 to June-2022 are presented in detail in Table 4.0. 98th percentile; maximum and minimum values etc. have been computed from the collected raw data for all the AAQ monitoring station. The data has been compared with the standards prescribed by Central Pollution Control Board (CPCB)/NAAQS for residential and rural zone.

A. <u>Particulate Matter-PM₁₀</u>:

The minimum and maximum concentrations for Particulate Matter-PM₁₀ were recorded as 50.8 μ g/m³ and 67.1 μ g/m³ respectively. The minimum and maximum concentration was recorded at Old Kudag/Mining Area and Samri Gopatu/ Nr. Weigh Bridge . The average concentration of PM₁₀ was 58.1 μ g/m³.

B. Particulate Matter-PM_{2.5}:

The minimum and maximum concentrations for Particulate Matter-PM_{2.5} were recorded as 15.8 μ g/m³ & 26.8 μ g/m³ respectively. The minimum concentration was recorded at Old Kudag/Mining Area. The maximum concentration was recorded at Sairaidh Campus. The average concentration of PM_{2.5} was 21.7 μ g/m³.

C. <u>Sulphur Dioxide (SO₂):</u>

The minimum and maximum for SO₂ concentrations were recorded as 6.3 μ g/m³ and 10.8 μ g/m³at respectively. The minimum & maximum concentration was recorded at Old Kudag/Mining Area. The average concentration of SO₂ was 9.5 μ g/m³.

D. <u>Nitrogen Dioxide (NO₂):</u>

The minimum and maximum for NO₂ concentrations were recorded as 15.9 μ g/m³ and 21.0 μ g/m³. The minimum concentration was recorded at Old Kudag/Mining Area. The maximum concentration was also recorded at New Kudag/Nr. Weigh Bridge. The average concentration of NO₂ was 18.8 μ g/m³.

E. <u>Carbon Monoxide (CO):</u>

The minimum and maximum for CO concentrations were recorded as 0.162 mg/m³ and 0.324 mg/m³. The minimum concentration was recorded at Old Kudag/Mining Area. The maximum concentration was also recorded at Sairaidh Campus. The average concentration of CO was 0.237 mg/m³.

F. Lead (Pb):

Maximum Lead detected in PM_{10} samples was 0.018 µg/m³at New Kudag/Nr. Weigh Bridge.

No lead could be detected in PM_{2.5}samples at any of the Ambient Air samples at any of the locations.

G. Mercury (Ha):

Mercury was not detected at any of the locations in PM_{10} samples as well as $PM_{2.5}$ Samples.

H. Arsenic (As):

Arsenic was not detected at any of the locations in PM_{10} samples as well as $PM_{2.5}$ Samples.

I. <u>Chromium(Cr):</u>

Chromium was not detected at any of the locations in PM_{10} samples as well as $PM_{2.5}$ Samples.

Kudag Lease (Buffer Zone):-

3.3 Ambient Air Quality:

Ambient air quality has been generated as per NAAQS 2009 for the month of April-2022 to June-2022. PM_{10} , $PM_{2.5}$, SO_2 , NO_2 & CO. The values obtained were then compared vis-a-vis the standards prescribed by CPCB for Industrial/ Rural / Residential uses.

3.3.1 <u>Presentation of Results:</u>

The summary of Ambient Air Quality monitoring results from April-2022 to June-2022 are presented in detail in Table 4.0. 98th percentile; maximum and minimum values etc. have been computed from the collected raw data for all the AAQ monitoring station. The data has been compared with the standards prescribed by Central Pollution Control Board (CPCB)/NAAQS for residential and rural zone.

A. <u>Particulate Matter-PM₁₀:</u>

The minimum and maximum concentrations for Particulate Matter-PM₁₀ were recorded as 49.1 μ g/m³and 61.3 μ g/m³ respectively. The minimum concentration was recorded at Kutku village. The maximum concentration was also recorded at Virhorepat. The average concentration of PM₁₀ was 56.7 μ g/m³.

B. Particulate Matter-PM_{2.5}:

The minimum and maximum concentrations for Particulate Matter-PM_{2.5} were recorded as 16.4 μ g/m³ & 26.7 μ g/m³ respectively. The minimum and maximum concentration was recorded at Kutku Village. The average concentration of PM_{2.5} was 21.0 μ g/m³.

C. <u>Sulphur Dioxide (SO₂):</u>

The minimum and maximum for SO₂ concentrations were recorded as 6.8 μ g/m³ and 10.7 μ g/m³ respectively. The minimum concentration was recorded at Kutku village location. The maximum concentration was also recorded at Tatijharia Village. The average concentration of SO₂ was 9.1 μ g/m³.

D. <u>Nitrogen Dioxide (NO₂):</u>

The minimum and maximum for NO₂ concentrations were recorded as 14.4 μ g/m³ and 20.6 μ g/m³. The minimum concentration was recorded at Kutku Village location and the maximum concentration was recorded at Tatijharia Village. The average concentration of NO₂ was 17.4 μ g/m³.

E. <u>Carbon Monoxide (CO):</u>

The minimum and maximum for CO concentrations were recorded as 0.161 mg/m^3 and 0.300 mg/m^3 . The minimum concentration was recorded at Kutku village location and the maximum concentration was recorded at Rajendrapur. The average concentration of CO was 0.219 mg/m^3 .

F. Lead (Pb):

Maximum Lead detected in PM_{10} samples was 0.019 µg/m³ at Tatijharia Village. No lead could be detected in $PM_{2.5}$ samples at any of the Ambient Air samples at any of the locations.

G. Mercury (Hg):

Mercury was not detected at any of the locations in PM_{10} samples as well as $PM_{2.5}$ Samples.

H. Arsenic (As):

Arsenic was not detected at any of the locations in PM_{10} samples as well as $PM_{2.5}$ Samples.

I. <u>Chromium (Cr):</u>

Chromium was not detected at any of the locations in PM_{10} samples as well as $PM_{2.5}$ Samples.

1.8 Noise Environment

The Director General of Mines Safety in its circular No. DG (Tech)/18 of 1975, has prescribed the noise level in mining occupations (TLV) for workers, in an 8 hour shift period with unprotected ear as 90 dB(A) or less. There will be some noise sources in mines, which produce noise levels above 90 dB(A), however; the workers are not expected to be exposed continuously for 8 hours. In order to maintain this statutory requirement noise monitoring has been carried out in and around the mining lease area.

Work zone noise level in the mining area shall increase due to blasting excavation and transportation. The impacts due to the mining activities on the noise levels shall be negligible, if all the precautions for the elimination of the noise are taken. The mining activities will be undertaken during day time only. The day time equivalent noise levels, when all the machineries are in operation, shall be minimized as the machineries have been provided with control equipment. Noise monitoring carried out on monthly basis at mining site; Core Zone and Buffer Zone areas shown in **Fig. 3**.

Identification of sampling locations

Noise at different noise generating sources has been identified based on the activities in the village area and ambient noise due to traffic.

The noise monitoring has been conducted for determination of ambient noise levels in the mining area and villages. The noise levels at each location were recorded for 24 hours.

Instrument used for monitoring

Noise levels were measured using integrated sound level meter Model no. HTC-SL-1352. This instrument is capable of measuring the Sound Pressure Level (SPL), Leq.

Method of Monitoring

Sound Pressure Level (SPL) measurements were monitored at eight locations. The readings were taken for every hour for 24 hours. The day noise levels have been monitored during 6 am to 10 pm and night levels during 10 pm to 6 am at eight locations within 10-km radius of the study area.

Noise level monitoring was carried out continuously for 24 hours with one hour interval starting at 06.00 hrs to 06.00 hrs next day.

Noise levels monitored during day and night at Four locations are found to be below in the Mining Area than the stipulated standard of CPCB for Industrial area as 75dB(A) and 70dB(A) for day and night respectively as given in **(Table 5)**.

Table 5

Noise Emission Monitoring Report

CD NO	LOCATION	Marth	Noise-	·dB(A)
SK. NO.	LUCATION	Month	Day Time	Night Time
Core Zone				
		April-2022	68.3	54.7
1.	New Kudag/Nr. Weigh	May-2022	64.9	52.1
	Bridge	June-2022	57.1	43.8
2.		April-2022	56.2	42.9
	Old Kudag/Mining Area	May-2022	56.4	41.6
		June-2022	51.9	39.1
Buffer Zon	ie			
	Rajendrapur	April-2022	58.3	49.1
1.		May-2022	57.1	47.1
		June-2022	62.9	51.7
		April-2022	53.9	42.1
2.	Tatijharia Village	May-2022	51.7	41.6
		June-2022	48.3	37.6
CPCB Stan	dards			
Industrial	Area		75	70
Residentia	l area		55	45

Conclusion: -The Noise Monitoring Results at Kudag Lease during this period **(April-May-June-2022)**, All Results are within Limit as per CPCB Standards.

<u>Table 6</u>

HEMM Spot Noise Level Monitoring

		•			Un	it: dB(A)	Leq
SI. No.	Location	April-2022		May-2022		June-2022	
	Location	Min.	Max.	Min.	Max.	Min.	Max.
1.	Nr. Weigh Bridge	62.7	64.9	68.1	71.6	68.1	72.9
2.	Mining Area	58.3	61.7	63.9	67.2	57.6	62.8

2.0 Water Quality Monitoring

The existing status of water quality for ground water was assessed by collecting the water samples from underground wells from the mining area/old kudag.

The purpose of the study is to assess the water quality characteristics for critical parameters, evaluate the impacts on agricultural productivity, habitat conditions, recreational resources and aesthetics in the vicinity and identification of impact on water quality by this project and related activities.

The physico-chemical analysis of water samples collected during the study period is given in **(Table-7 and Fig.5)**. The overall water quality found to be below the stipulated standards of IS 10500-2012 for ground water & found to be fit for drinking purpose for tested parameters. Thus the impacts due to mining activities have been found to be insignificant.

The drinking water is supplied by the tankers from for-away sources. Hence, additional care now be taken to chlorinate the tankers before leaving the supply source.

<u>Table 7</u>

Report on Chemical Examination of Ground Water Quality (June-2022)

Hindalco Industries Limited Kudag Mining Environmental Status Report for April-2022 to June-2022

Location: GW1) Saraidih (Hindalco Campus) Sample Source:-Borewell Water

	TEST RESULTS					
S.N.	Test Parameter	Measurement Unit	Test Method	Require IS 10 (Drinking Wa Including A	ement as per 500 : 2012 Iter Specifications) mendment No. 3	Test Result
		Um		Accentable	Permissible	
				Limit	Limit #	
I	Biological Testing 1. Water		1	1	1	•
1	Total coliform	Per 100 ml	IS 15185 : 2016	Absent	Absent	Absent
2	Escherichia coli	Per 100 ml	IS 15185 : 2016	Absent	Absent	Absent
П	Chemical Testing 1. Water		•	•	•	
3	Alkalinity (as CaCO ₃)	mg/l	IS 3025 (Part 23) : 1986	200	600	186
4	Ammonia (as N)	mg/l	IS 3025 (Part 34) : 1988	0.5	No relaxation	BDL (DL – 0.1)
5	Anionic surface active agents (as MBAS)	mg/l	IS 13428 : 2005 Annex K	0.2	1.0	BDL (DL – 0.01)
6	Colour	Hazen units	IS 3025 (Part 4) : 2021	5	15	1
7	Cyanide (as CN)	mg/l	IS 3025 (Part 27) : 1986	0.05	No relaxation	BDL (DL - 0.005)
8	Chloride (as Cl)	mg/l	IS 3025 (Part 32) :1988	250	1000	26.57
9	Calcium (as Ca)	mg/l	IS 3025 (Part 40) : 1991	75	200	48.93
10	Chloramines (as Cl ₂)	mg/l	IS 3025 (Part 26) : 2021	4.0	No relaxation	BDL (DL – 0.1)
11	Free residual chlorine	mg/l	IS 3025 (Part 26) : 2021	Min. 0.2	1	BDL (DL – 0.1)
12	Fluoride (as F)	mg/l	IS 3025 (Part 60) : 2008	1.0	1.5	0.27
13	Magnesium (as Mg)	mg/l	IS 3025 (Part 46) : 1994	30	100	13.46
14	Nitrate (as NO ₃)	mg/l	APHA 23 rd Edition	45	No relaxation	$\frac{BDL(DL-2)}{11}$
15	Udour	-	IS 3025 (Part 5) : 2018	Agreeable	Agreeable	Agreeable
16	pH	-	IS 3025 (Part 11) : 1983	6.5 to 8.5	No relaxation	8.14 at 25°C
1/	Phenolic compounds (as C_6H_5OH)	mg/1	IS 3025 (Part 43): 1992	200	0.002	BDL (DL - 0.001)
10	Sulphide (as SO_4)	mg/l	IS 3025 (Part 24) : 1980	200	400 No relevation	27.45 PDI (DL 0.02)
20	Tasta	IIIg/1	IS 3025 (Part 8) : 1980	0.05	Agreenble	A graenble
20	Total dissolved solids	- mg/l	IS 3025 (Part 16) : 1984	500	2000	Agreeable 453
21	Turbidity	NTU	IS 3025 (Part 10) : 1984	1	5	0.4
22	Total hardness (as $CaCO_2$)	mg/l	IS 3025 (Part 21) : 2009	200	600	177.60
23	Mineral Oil	mg/l	ANtr/7 2/RES/06: 2018	0.5	No relaxation	BDI (DI $= 0.001$)
11 11	Chamical Tosting	iiig/1	AINI//.2/KL5/00. 2010	0.5	110 Telaxation	DDE (DE 0.001)
¹¹	Chemical Lesung					
25	2. Residues III water	···· ~ /1	IS 2025 (Devet 27) + 1088	0.01	No natomotion	DDI (DI 0.01)
25	Alsonic (as As)	IIIg/1	15 3023 (Part 37) : 1988	0.01		DDL (DL - 0.01)
26	Aluminium (as Al)	mg/l	15 3025 (Part 2) : 2019	0.03	0.2	BDL (DL - 0.01)
27	Barium (as Ba)	mg/l	IS 3025 (Part 2) : 2019	0.7	No relaxation	BDL (DL - 0.01)
28	Boron (as B)	mg/l	IS 3025 (Part 2) : 2019	0.5	2.4	BDL (DL - 0.1)
29	Copper (as Cu)	mg/l	IS 3025 (Part 2) : 2019	0.05	1.5	BDL (DL - 0.03)
30	Cadmium (as Cd)	mg/l	IS 3025 (Part 2) : 2019	0.003	No relaxation	BDL (DL - 0.001)
31	Iron (as Fe)	mg/l	IS 3025 (Part 2) : 2019	1.0	No relaxation	0.21
32	Lead (as Pb)	mg/l	IS 3025 (Part 2) : 2019	0.01	No relaxation	BDL (DL - 0.001)
33	Manganese (as Mn)	mg/l	IS 3025 (Part 2) : 2019	0.1	0.3	BDL (DL – 0.05)
34	Mercury (as Hg)	mg/l	IS 3025 (Part 48) : 1994	0.001	No relaxation	BDL (DL - 0.0005)
35	Molybdenum (as Mo)	mg/l	IS 3025 (Part 2) : 2019	0.07	No relaxation	BDL (DL - 0.01)
36	Nickel (as Ni)	mg/l	IS 3025 (Part 2) · 2019	0.02	No relaxation	BDL(DL - 0.01)
37	Selenium (as Se)	mg/1	IS 3025 (Part 56) · 2003	0.02	No relaxation	BDL (DL - 0.001)
38	Silver (as Ag)	mg/1	IS 13428 · 2005	0.01	No relevation	BDL (DL 0.001)
20	Total Chromium (as Cr)	mg/1	$\frac{1513720.2003}{152025 (Port 2).2010}$	0.1	No relevation	PDL(DL - 0.001)
39	$7 \sin (\cos 7\pi)$	111g/1	13.5025 (Fall 2) : 2019	0.05	15	$\frac{\text{DDL}(\text{DL} - 0.03)}{\text{DDL}(\text{DL} - 0.1)}$
40	Zinc (as Zn)	mg/I	15 3025 (Part 2) : 2019	1 3	15	BDL (DL - 0.1)

Hindalco Industries Limited Kudag Mining Environmental Status Report for April-2022 to June-2022

TEST RESULTS

				Requirer	nent as per		
				Duinking Wat	00 : 2012 or Specifications)	Test Results	
S.N.	Test Parameter	Measurement Unit	Test Method	(Drinking wat	er Specifications)		
				Acceptable	Permissible		
п	Chambred Tractice			Limit	Limit #		
11	2 Residues In Water						
41	Polychlorinated binhenyls						
	2,2',5-trichlorobiphenyl	μg/l	ANtr/7.2/RES/04: 2018	0.5	No relaxation	BDL (DL – 0.03)	
	2,4,4'-trichlorobiphenyl	μg/l	ANtr/7.2/RES/04: 2018	0.5	No relaxation	BDL (DL – 0.03)	
	2,2',5,5'-tetrachlorobiphenyl	μg/l	ANtr/7.2/RES/04: 2018	0.5	No relaxation	BDL (DL - 0.03)	
	2,2',4,5,5'-pentachlorobiphenyl	μg/l	ANtr/7.2/RES/04: 2018	0.5	No relaxation	BDL (DL - 0.03)	
	2,2',3,4,4',5'-hexachlorobiphenyl	μg/l	ANtr/7.2/RES/04: 2018	0.5	No relaxation	BDL (DL – 0.03)	
	2,2',4,4',5,5'-hexachlorobiphenyl	μg/l	ANtr/7.2/RES/04: 2018	0.5	No relaxation	BDL (DL – 0.03)	
	2,2',3,4,4',5,5'-heptachlorobiphenyl	μg/l	ANtr/7.2/RES/04: 2018	0.5	No relaxation	BDL (DL – 0.03)	
42	Polynuclear aromatic hydrocarbons	1	1	r	1	1	
	Naphthalene	μg/l	ANtr/7.2/RES/03: 2018	0.1	No relaxation	BDL (DL – 0.03)	
	Acenaphthylene	μg/l	ANtr/7.2/RES/03: 2018	0.1	No relaxation	BDL (DL – 0.03)	
	Acenaphthene	μg/l	ANtr/7.2/RES/03: 2018	0.1	No relaxation	BDL (DL – 0.03)	
	Fluorene	μg/l	ANtr/7.2/RES/03: 2018	0.1	No relaxation	$\frac{BDL (DL - 0.03)}{DDL (DL - 0.03)}$	
	Anthracene	μg/1	ANtr//.2/RES/03: 2018	0.1	No relaxation	$\frac{BDL(DL-0.03)}{DDL(DL-0.03)}$	
	Phenanthrene	μg/1	ANtr//.2/RES/03: 2018	0.1	No relaxation	$\frac{BDL(DL-0.03)}{DDL(DL-0.03)}$	
	Fluoranthene	μg/1	ANtr/ /.2/RES/03: 2018	0.1	No relaxation	$\frac{BDL (DL - 0.03)}{DDL (DL - 0.02)}$	
	Pyrene	μg/1	ANtr//.2/RES/03: 2018	0.1	No relaxation	BDL (DL - 0.03)	
	Charles and Charle	μg/1	ANtr/ / .2/RES/03: 2018	0.1	No relaxation	BDL (DL - 0.03)	
	Panza (a) ny mana	μg/1	ANIF/7.2/RES/03: 2018	0.1	No relaxation	BDL(DL - 0.03)	
	Benzo(b)fluoranthana	μg/1	ANU/ 7.2/RES/03. 2018	0.1	No relaxation	BDL(DL = 0.03)	
	Benzo(k)fluoranthene	μg/1	ANtr/7 2/RES/03: 2018	0.1	No relaxation	$\frac{\text{BDL}(\text{DL} = 0.03)}{\text{BDL}(\text{DL} = 0.03)}$	
	Indeno(123 cd)nyrene	μg/1	ANtr/7 2/RES/03: 2018	0.1	No relaxation	$\frac{\text{BDL}(\text{DL} = 0.03)}{\text{BDL}(\text{DL} = 0.03)}$	
	Dibenzo(a h)anthracene	μg/1 μg/1	ANtr/7 2/RES/03: 2018	0.1	No relaxation	BDL(DL = 0.03)	
	Benzo(ghi)pervlene	μg/1 μg/1	ANtr/7 2/RES/03: 2018	0.1	No relaxation	BDL(DL = 0.03)	
43	Trihalomethanes	1 18-				(****)	
i	Bromoform	mø/l		0.1	No relaxation	BDL (DL -0.05)	
ii	Dibromochloromethane	mg/l		0.1	No relaxation	BDL (DL -0.05)	
iii	Bromodichloromethane	mg/l	ANtr/7.2/RES/05: 2018	0.06	No relaxation	BDL (DL -0.05)	
iv	Chloroform	mg/l		0.2	No relaxation	BDL (DL -0.05)	
44	Pesticide Residues Organochlorine	iiig/1		0.2	To relaxation	DDE (DE 0.05)	
- 	Alpha HCH	ug/1	ANtr/7 2/RES/01 · 2018	0.01	No relayation	BDI (DI 0.01)	
 ;;	Pote UCU	μg/1	ANtr/7 2/RES/01: 2018	0.01	No relevation	$\frac{\text{BDL}(\text{DL} - 0.01)}{\text{PDL}(\text{DL} - 0.02)}$	
	Commo UCU (Lindono)	μg/1	A Ntr/7 2/DES/01: 2018	0.04	No relevation	$\frac{\text{BDL}(\text{DL} - 0.03)}{\text{PDL}(\text{DL} - 0.02)}$	
 	Dahma - HCH (Lindane)	μg/1	ANu/7.2/RES/01.2018	2	No relaxation	DDL(DL - 0.03)	
1V	Delta- HCH	μg/1	ANII/ 7.2/RES/01: 2018	0.04	No relaxation	BDL (DL - 0.03)	
V .	Alachlor	μg/l	ANtr/ /.2/RES/01: 2018	20	No relaxation	BDL (DL - 0.03)	
V1	Aldrin	μg/l	ANtr/ /.2/RES/01: 2018	0.03	No relaxation	BDL (DL - 0.03)	
V11	Dieldrin	μg/l	ANtr/7.2/RES/01: 2018	0.03	No relaxation	BDL (DL - 0.03)	
V111	Butachlor	μg/l	ANtr//.2/RES/01: 2018	125	No relaxation	BDL (DL - 0.03)	
1X	p,p´-DDE	μg/l	ANtr/7.2/RES/01: 2018	1	No relaxation	BDL (DL - 0.03)	
Х	o,p´-DDE	μg/l	ANtr/7.2/RES/01: 2018	1	No relaxation	BDL (DL - 0.03)	
xi	p,p´-DDD	μg/l	ANtr/7.2/RES/01: 2018	1	No relaxation	BDL (DL - 0.03)	
xii	o,p'-DDD	μg/l	ANtr/7.2/RES/01: 2018	1	No relaxation	BDL (DL - 0.03)	
xiii	o,p'- DDT	μg/l	ANtr/7.2/RES/01: 2018	1	No relaxation	BDL (DL - 0.03)	
xiv	p,p'- DDT	μg/l	ANtr/7.2/RES/01: 2018	1	No relaxation	BDL (DL - 0.03)	
XV	Endosulphan						
	Alpha-Endosulphan						
	Beta-Endosulphan	ug/l	ANtr/7.2/RES/01: 2018	0.4	No relaxation	BDL (DL - 0.03)	
	Endosulphan sulphate	1.8-				(=	

S.N.	Test Parameter	Measurement Unit	Test Method	Requirer IS 105 (Drinking Wat Including An	Test Result	
				Acceptable	Permissible	
				Limit	Limit #	
44	Pesticide Residues Organophos	phorus				
xvi	2,4-Dichlorophenoxyacetic acid	μg/l	ANtr/7.2/RES/02:2018	30	No relaxation	BDL (DL - 0.03)
xvii	Monocrotophos	μg/l	ANtr/7.2/RES/02:2018	1	No relaxation	BDL (DL - 0.03)
xviii	Atrazine	μg/1	ANtr/7.2/RES/02:2018	2	No relaxation	BDL (DL - 0.03)
xix	Parathion methyl	μg/1	ANtr/7.2/RES/02:2018	0.3	No relaxation	BDL (DL - 0.03)
XX	Paraoxon methyl	μg/l	ANtr/7.2/RES/02:2018	-	-	BDL (DL - 0.03)
xxi	Isoproturon	μg/l	ANtr/7.2/RES/02:2018	9	No relaxation	BDL (DL - 0.03)
xxii	Malathion	μg/l	ANtr/7.2/RES/02:2018	190	No relaxation	BDL (DL - 0.03)
xxiii	Malaoxon	μg/l	ANtr/7.2/RES/02:2018	-	-	BDL (DL - 0.03)
xxiv	Ethion	μg/l	ANtr/7.2/RES/02:2018	3	No relaxation	BDL (DL - 0.03)
XXV	Chlorpyrifos	μg/l	ANtr/7.2/RES/02:2018	30	No relaxation	BDL (DL - 0.03)
xxvi	Phorate					
	Phorate-sulfone	μg/1	ANtr/7.2/RES/02 : 2018	2	No relaxation	BDL (DL - 0.03)
	Phorate-sulfoxide					

TEST RESULTS

NOTES: • Please see watermark "Original Test Report" to confirm the authenticity of this report. • Results shall be referred to tested sample(s) and applicable to tested parameters only. • Test report shall not be reproduced except in full without prior written approval of Anacon Labs. • Liability of Anacon Labs is limited to invoiced amount only. • Non-perishable and perishable sample(s) shall be disposed off after 30 days and 15 days respectively from the date of issue of Test Report, unless specified otherwise. • #Permissible limit in absence of an alternate source for drinking water. • 'mg/l' is equivalent to 'ppm'. • 'µg/l' is equivalent to 'ppb'. • BDL- Below detection limit. • DL- DL Indicates detection limit of instrument /method and shall be considered as 'absent'. • Result for test no. 11 is not relevant. • ANqr RES-: Inhouse validated method.

REMARKS: As requested by the client, sample was tested for above parameters only. **Sample complies with IS:10500:2012, for tests conducted,** indicating that it is fit for drinking purpose with respect to tested parameters.

-----End of Report-----

Hindalco Industries Limited Kudag Mining Environmental Status Report for April-2022 to June-2022

Location:	GW2) Kudag Village
	Sample Source:-Borewell Water

S.N.	Test Parameter	Measurement Unit	Test Method	Require IS 10 (Drinking Wa Including A Acceptable	ement as per 500 : 2012 iter Specifications) mendment No. 3 Permissible	Test Result
				Limit	Limit #	
	Biological Testing 1. Water	D 100 1	10.15105 - 2017		A1 /	A1
		Per 100 ml	IS 15185 : 2016	Absent	Absent	Absent
<u>2</u>	Escherichia coli Chamical Tosting 1 Watan	Per 100 ml	18 15185 : 2016	Absent	Absent	Absent
3	Alkalinity (as CaCO ₂)	ma/l	IS 3025 (Part 23) · 1986	200	600	176.28
3	Ammonia (as N)	mg/l	$13 3025 (Part 34) \cdot 1980$	200	No relayation	170.20
5	Anionic surface active agents (as MBAS)	mg/l	IS 13428 · 2005 Annex K	0.3	1.0	BDL(DL = 0.01)
6	Colour	Hazen units	IS 3025 (Part 4) : 2021	5	1.0	1
7	Cvanide (as CN)	mg/l	IS 3025 (Part 27) : 1986	0.05	No relaxation	BDL (DL - 0.005)
8	Chloride (as Cl)	mg/l	IS 3025 (Part 32) :1988	250	1000	17.28
9	Calcium (as Ca)	mg/l	IS 3025 (Part 40) : 1991	75	200	43.91
10	Chloramines (as Cl ₂)	mg/l	IS 3025 (Part 26) : 2021	4.0	No relaxation	BDL (DL – 0.1)
11	Free residual chlorine	mg/l	IS 3025 (Part 26) : 2021	Min. 0.2	1	BDL (DL – 0.1)
12	Fluoride (as F)	mg/l	IS 3025 (Part 60) : 2008	1.0	1.5	0.18
13	Magnesium (as Mg)	mg/l	IS 3025 (Part 46) : 1994	30	100	12.54
14	Nitrate (as NO ₃)	mg/l	APHA 23rd Edition	45	No relaxation	BDL (DL – 2)
15	Odour	-	IS 3025 (Part 5) : 2018	Agreeable	Agreeable	Agreeable
16	pH	-	IS 3025 (Part 11) : 1983	6.5 to 8.5	No relaxation	6.91 at 25°C
17	Phenolic compounds (as C ₆ H ₅ OH)	mg/l	IS 3025 (Part 43) : 1992	0.001	0.002	BDL (DL - 0.001)
18	Sulphate (as SO ₄)	mg/l	IS 3025 (Part 24) : 1986	200	400	19.46
19	Sulphide (as H ₂ S)	mg/l	IS 3025 (Part 29) : 1986	0.05	No relaxation	BDL (DL – 0.03)
20	Taste	-	IS 3025 (Part 8) : 1984	Agreeable	Agreeable	Agreeable
21	Total dissolved solids	mg/l	IS 3025 (Part 16) : 1984	500	2000	427
22	Turbidity	NTU	IS 3025 (Part 10) : 1984	1	5	0.6
23	Total hardness (as CaCO ₃)	mg/l	IS 3025 (Part 21) : 2009	200	600	161.27
24	Mineral Oil	mg/l	ANtr/7.2/RES/06: 2018	0.5	No relaxation	BDL (DL – 0.001)
П	Chemical Testing 2. Residues In Water					
25	Arsenic (as As)	mg/l	IS 3025 (Part 37) : 1988	0.01	No relaxation	BDL (DL - 0.01)
26	Aluminium (as Al)	mg/l	IS 3025 (Part 2) : 2019	0.03	0.2	BDL (DL - 0.01)
27	Barium (as Ba)	mg/l	IS 3025 (Part 2) · 2019	0.7	No relaxation	BDL (DL - 0.01)
28	Boron (as B)	mg/l	IS 3025 (Part 2) : 2019	0.5	2.4	BDL (DL = 0.1)
20	Copper (as Cu)	mg/l	IS 3025 (Part 2) : 2019	0.05	1.5	BDL(DL = 0.03)
30	Cadmium (as Cd)	mg/1	IS 3025 (Part 2) · 2019	0.003	No relavation	BDL (DL - 0.001)
21	Lean (ag Eq)	mg/1	$13 3025 (1 att 2) \cdot 2019$ IS 2025 (Dart 2) · 2010	0.005	No relevation	DDL (DL = 0.001)
22	L and (an Dh)	111g/1	13.3023 (Fall 2): 2019	0.01	No relaxation	0.20
32	Lead (as Pb)	mg/l	18 3025 (Part 2) : 2019	0.01	No relaxation	BDL (DL - 0.001)
33	Manganese (as Mn)	mg/l	18 3025 (Part 2) : 2019	0.1	0.3	BDL $(DL - 0.05)$
34	Mercury (as Hg)	mg/l	18 3025 (Part 48) : 1994	0.001	No relaxation	BDL (DL - 0.0005)
35	Molybdenum (as Mo)	mg/l	IS 3025 (Part 2) : 2019	0.07	No relaxation	BDL (DL - 0.01)
36	Nickel (as Ni)	mg/l	IS 3025 (Part 2) : 2019	0.02	No relaxation	BDL (DL - 0.01)
37	Selenium (as Se)	mg/l	IS 3025 (Part 56) : 2003	0.01	No relaxation	BDL (DL- 0.001)
38	Silver (as Ag)	mg/l	IS 13428 : 2005	0.1	No relaxation	BDL (DL - 0.001)
39	Total Chromium (as Cr)	mg/l	IS 3025 (Part 2) : 2019	0.05	No relaxation	BDL (DL - 0.03)
40	Zinc (as Zn)	mg/l	IS 3025 (Part 2) : 2019	5	15	BDL (DL - 0.1)

TEST RESULTS

Hindalco Industries Limited Kudag Mining Environmental Status Report for April-2022 to June-2022

TEST RESULTS

				Requirer	ment as per	
				15 105 (Dwinking Wat	00:2012	Test Results
S.N.	Test Parameter	Measurement Unit	Test Method	Including An	nondmont No. 3	
				A acontoblo	Downiggible	
				Limit	I imit #	
п	Chamical Tasting			Lillin	Lillint #	<u> </u>
	2. Residues In Water					
41	Polychlorinated biphenyls					
	2,2',5-trichlorobiphenyl	μg/l	ANtr/7.2/RES/04: 2018	0.5	No relaxation	BDL (DL – 0.03)
	2,4,4'-trichlorobiphenyl	μg/l	ANtr/7.2/RES/04: 2018	0.5	No relaxation	BDL (DL – 0.03)
	2,2',5,5'-tetrachlorobiphenyl	μg/l	ANtr/7.2/RES/04: 2018	0.5	No relaxation	BDL (DL - 0.03)
	2,2',4,5,5'-pentachlorobiphenyl	μg/l	ANtr/7.2/RES/04: 2018	0.5	No relaxation	BDL (DL - 0.03)
	2,2',3,4,4',5'-hexachlorobiphenyl	μg/l	ANtr/7.2/RES/04: 2018	0.5	No relaxation	BDL (DL – 0.03)
	2,2',4,4',5,5'-hexachlorobiphenyl	μg/l	ANtr/7.2/RES/04: 2018	0.5	No relaxation	$\frac{BDL (DL - 0.03)}{DDL (DL - 0.02)}$
- 12	2,2',3,4,4',5,5'-heptachlorobiphenyl	μg/I	ANtr//.2/RES/04: 2018	0.5	No relaxation	BDL (DL – 0.03)
42	Norphthalana		ANH: 17 2/DEC/02, 2019	0.1	No relevation	
		μg/1	ANtr/7 2/RES/03: 2018	0.1	No relaxation	$\frac{BDL(DL - 0.03)}{BDL(DL - 0.03)}$
	Acenaphthytene	μg/1	ANtr/7 2/RES/03: 2018	0.1	No relaxation	$\frac{\text{BDL}(\text{DL} = 0.03)}{\text{BDL}(\text{DL} = 0.03)}$
	Fluorene	μg/1	ANtr/7.2/RES/03: 2018	0.1	No relaxation	BDL(DL = 0.03)
	Anthracene	μg/1 μg/1	ANtr/7.2/RES/03: 2018	0.1	No relaxation	BDL(DL - 0.03)
	Phenanthrene	μg/l	ANtr/7.2/RES/03: 2018	0.1	No relaxation	BDL (DL - 0.03)
	Fluoranthene	μg/l	ANtr/7.2/RES/03: 2018	0.1	No relaxation	BDL (DL - 0.03)
	Pyrene	μg/l	ANtr/7.2/RES/03: 2018	0.1	No relaxation	BDL (DL - 0.03)
	Benzo(a)anthracene	μg/l	ANtr/7.2/RES/03: 2018	0.1	No relaxation	BDL (DL - 0.03)
	Chrysene	μg/l	ANtr/7.2/RES/03: 2018	0.1	No relaxation	BDL (DL - 0.03)
	Benzo(a)pyrene	μg/l	ANtr/7.2/RES/03: 2018	0.1	No relaxation	BDL (DL - 0.03)
	Benzo(b)fluoranthene	μg/l	ANtr/7.2/RES/03: 2018	0.1	No relaxation	BDL (DL – 0.03)
	Benzo(k)fluoranthene	μg/l	ANtr/7.2/RES/03: 2018	0.1	No relaxation	BDL (DL – 0.03)
	Indeno(123,cd)pyrene	μg/l	ANtr/7.2/RES/03: 2018	0.1	No relaxation	$\frac{BDL (DL - 0.03)}{DDL (DL - 0.03)}$
	Dibenzo(a,h)anthracene	μg/l	ANtr//.2/RES/03: 2018	0.1	No relaxation	$\frac{BDL (DL - 0.03)}{DDL (DL - 0.02)}$
43	Tribalomothanos	μg/1	AINIF/ /.2/RES/05: 2018	0.1	No relaxation	BDL (DL - 0.03)
+3 ;	Promoform	mg/1		0.1	No relevation	PDI (DI 0.05)
1	Dibromochloromothano	mg/1		0.1	No relevation	$\frac{BDL(DL-0.05)}{PDL(DL-0.05)}$
	Dioromotionoromethane	mg/1	ANtr/7.2/RES/05: 2018	0.1	No relaxation	$\frac{\text{BDL}\left(\text{DL}-0.03\right)}{\text{PDL}\left(\text{DL}-0.05\right)}$
	Chlanafarma	mg/1		0.00	No relaxation	$\frac{\text{BDL}(\text{DL}-0.03)}{\text{DDL}(\text{DL}-0.05)}$
1V	Chioroform Besticide Desidues Organesklaving	mg/1		0.2	No relaxation	BDL (DL -0.03)
44	Pesticide Residues Organochiorine	/1	ANH /7 2/DEC/01, 2019	0.01		
1	Alpha-HCH	μg/1	ANtr/ /.2/RES/01: 2018	0.01	No relaxation	BDL (DL - 0.01)
11	Beta HCH	µg/l	ANtr/ /.2/RES/01: 2018	0.04	No relaxation	BDL (DL - 0.03)
111	Gamma - HCH (Lindane)	μg/l	ANtr//.2/RES/01: 2018	2	No relaxation	BDL (DL - 0.03)
iV	Delta- HCH	μg/l	ANtr/7.2/RES/01: 2018	0.04	No relaxation	BDL (DL - 0.03)
v	Alachlor	μg/l	ANtr/7.2/RES/01: 2018	20	No relaxation	BDL (DL - 0.03)
vi	Aldrin	μg/l	ANtr/7.2/RES/01: 2018	0.03	No relaxation	BDL (DL - 0.03)
vii	Dieldrin	μg/l	ANtr/7.2/RES/01: 2018	0.03	No relaxation	BDL (DL - 0.03)
viii	Butachlor	μg/l	ANtr/7.2/RES/01: 2018	125	No relaxation	BDL (DL - 0.03)
ix	p,p'-DDE	μg/l	ANtr/7.2/RES/01: 2018	1	No relaxation	BDL (DL - 0.03)
х	o,p'-DDE	μg/l	ANtr/7.2/RES/01: 2018	1	No relaxation	BDL (DL - 0.03)
xi	p,p´-DDD	μg/l	ANtr/7.2/RES/01: 2018	1	No relaxation	BDL (DL - 0.03)
xii	o,p´-DDD	μg/l	ANtr/7.2/RES/01: 2018	1	No relaxation	BDL (DL - 0.03)
xiii	o,p'- DDT	μg/l	ANtr/7.2/RES/01: 2018	1	No relaxation	BDL (DL - 0.03)
xiv	p,p'- DDT	μg/1	ANtr/7.2/RES/01: 2018	1	No relaxation	BDL (DL - 0.03)
XV	Endosulphan			·	•	
	Alpha-Endosulphan					
	Beta-Endosulphan	μg/l	ANtr/7.2/RES/01: 2018	0.4	No relaxation	BDL (DL - 0.03)
	Endosulphan sulphate					

S.N.	Test Parameter	Measurement Unit	Test Method	Requirer IS 105 (Drinking Wat Including An	Test Result	
				Acceptable	Permissible	
				Limit	Limit #	
44	Pesticide Residues Organophos	phorus				
xvi	2,4-Dichlorophenoxyacetic acid	μg/l	ANtr/7.2/RES/02 : 2018	30	No relaxation	BDL (DL - 0.03)
xvii	Monocrotophos	μg/l	ANtr/7.2/RES/02:2018	1	No relaxation	BDL (DL - 0.03)
xviii	Atrazine	μg/l	ANtr/7.2/RES/02:2018	2	No relaxation	BDL (DL - 0.03)
xix	Parathion methyl	μg/1	ANtr/7.2/RES/02:2018	0.3	No relaxation	BDL (DL - 0.03)
XX	Paraoxon methyl	μg/l	ANtr/7.2/RES/02:2018	-	-	BDL (DL - 0.03)
xxi	Isoproturon	μg/l	ANtr/7.2/RES/02:2018	9	No relaxation	BDL (DL - 0.03)
xxii	Malathion	μg/l	ANtr/7.2/RES/02:2018	190	No relaxation	BDL (DL - 0.03)
xxiii	Malaoxon	μg/l	ANtr/7.2/RES/02:2018	-	-	BDL (DL - 0.03)
xxiv	Ethion	μg/l	ANtr/7.2/RES/02:2018	3	No relaxation	BDL (DL - 0.03)
xxv	Chlorpyrifos	μg/l	ANtr/7.2/RES/02:2018	30	No relaxation	BDL (DL - 0.03)
xxvi	Phorate					
	Phorate-sulfone	μg/1	ANtr/7.2/RES/02 : 2018	2	No relaxation	BDL (DL - 0.03)
	Phorate-sulfoxide					

TEST RESULTS

NOTES: • Please see watermark "Original Test Report" to confirm the authenticity of this report. • Results shall be referred to tested sample(s) and applicable to tested parameters only. • Test report shall not be reproduced except in full without prior written approval of Anacon Labs. • Liability of Anacon Labs is limited to invoiced amount only. • Non-perishable and perishable sample(s) shall be disposed off after 30 days and 15 days respectively from the date of issue of Test Report, unless specified otherwise. • #Permissible limit in absence of an alternate source for drinking water. • 'mg/l' is equivalent to 'ppm'. • 'µg/l' is equivalent to 'ppb'. • BDL- Below detection limit. • DL- DL Indicates detection limit of instrument /method and shall be considered as 'absent'. • Result for test no. 11 is not relevant. • ANqr RES-: Inhouse validated method.

REMARKS: As requested by the client, sample was tested for above parameters only. **Sample complies with IS:10500:2012, for tests conducted,** indicating that it is fit for drinking purpose with respect to tested parameters.

-----End of Report-----

Table 8 Report on Chemical Examination of Soil (June-2022)

S1) Soil:-Location:- Old Kudag/Mining Area

Page 1 of 2

S.N.	Test Parameter	Measurement Unit	Test Method	Test Resulta
1	Infiltration rate	mm/hr	Lab/SOP	20.24
2	Bulk density	g/cm ³	Lab/SOP	1.623
3	Water holding capacity	%	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	34.21
4	Particle size distribution	•		
	Sand	%	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India	43.58
	Silt	%	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India	36.21
	Clay	%	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India	20.12
5	Texture	-	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India	Loam
6	pH (1:2.5 Aq. Extract) at 25 ^o C	-	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	7.13 at 25 ⁰ C
7	Electrical Conductivity (1:2.5 Aq. Extract)	μs/cm	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	23.6
8	Water soluble Calcium (as Ca)	mg/Kg	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	461
9	Water soluble Magnesium (as Mg)	mg/Kg	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	230
10	Water soluble Sodium (as Na)	mg/Kg	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	29.6
11	Water soluble Potassium (as K)	mg/Kg	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	217
12	Water soluble Chloride (as Cl)	mg/Kg	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	1498
13	Water soluble Sulphate (as SO ₄)	mg/Kg	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	30.6
14	Exchangeable Sodium (as Na)	mg/Kg	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	29.6
15	Exchangeable Potassium (as K)	mg/Kg	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	217
16	Exchangeable Calcium (as Ca)	mg/Kg	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	461
17	Exchangeable Magnesium (as Mg)	mg/Kg	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	230
18	Sodium adsorption ratio	-	By Calculation	1.59
19	Total Organic matter	%	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	1.25
20	Total Organic Carbon	%	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	0.73
21	Available Nitrogen (as N)	Kg/hec	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	2.67
22	Available Phosphorous (as P)	Kg/hec	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	38.16
23	Available Potassium (as K)	Kg/hec	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	486.1
24	CEC	meq/100g	Method Manual, Soil testing in India	3.28

Hindalco Industries Limited Kudag Mining Environmental Status Report for April-2022 to June-2022

(Department of agriculture & corporation, Govt of India)

S.N.	Test Parameter	Measurement Unit	Test Method	Test Result
25	Arsenic (As)	mg/Kg	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	Absent
26	Boron (B)	mg/Kg	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	0.16
27	Cadmium (Cd)	mg/Kg	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	Absent
28	Chromium (Cr)	mg/Kg	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	Absent
29	Copper (Cu)	mg/Kg	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	4.18
30	Lead (Pb)	mg/Kg	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	Absent
31	Nickel (Ni)	mg/Kg	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	Absent
32	Cobalt (Co)	mg/Kg	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	0.13
33	Iron (Fe)	mg/Kg	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	9.42
34	Manganese (Mn)	mg/Kg	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	21.46
35	Zinc (Zn)	mg/Kg	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	0.28
36	Selenium (Se)	mg/Kg	Method Manual, Soil testing in India (Department of agriculture & corporation, Govt of India)	Absent

NOTES: Please see watermark "Original Test Report" to confirm the authenticity of this report. • Results shall be referred to tested sample(s) and applicable to tested parameters only. • Test report shall not be reproduced except in full without prior written approval of Anacon Labs. • Liability of Anacon Labs is limited to invoiced amount only. • Non-perishable and perishable sample(s) shall be disposed off after 30 days and 15 days respectively from the date of issue of Test Report, unless specified otherwise • 'g/100 g' is equivalent to '%w/w'. • 'mg/kg' is equivalent to 'ppm'

Remarks: As requested by the client, sample was tested for above paraeters only.

-----END OF REPORT-----

Fig 5: Sampling Locations for Water

Agent of Mines Samri Mines Division Hindalco Industries Ltd

Environmental Status Report For Kudag Bauxite Mine at Post & Teh.: Samri,(Kusmi) Dist: Balrampur–Ramanujganj(C.G.)

Duration: July-August-September-2022

Name of Industry

M/s. Hindalco Industries Limited.,

Name of Laboratory:-

QCI-NABET, MoEF & CC (GOI) ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 60, Bajiprabhu Nagar, Nagpur - 440 033, MS Lab. & Consultancy: FP-34, 35, Food Park, MIDC, Butibori, Nagpur – 441122 Ph.: (0712) 2242077, 9373287475 Email: *info@anacon.in, ngp@anacon.in* website: <u>www.anaconlaboratories.com</u>

1.1 Introduction

Hindalco Industries Limited (Hindalco) is one among the flagship companies of the Aditya Birla Group of Industries and is one of the largest corporate groups in India. This group is a leading manufacturer of Aluminum in India, having integrated facilities encompassing bauxite, mining, refining and smelting to achieve Aluminum.

Various processing units of Hindalco are strategically located in different parts of the nation to achieve optimum benifits. Over the past few decades the group has grown multifold in its production capacities, product mix and diversification in mining. The Chhattisgarh Environment Conservation Board (CECB) granted permission for establishing the Bauxite Mine to Hindalco at block Tatijharia, Kudag and Samri mines inBalrampur District of Chhattisgarh State.

HINDALCO INDUSTRIES LTD., awarded the work to M/s ANACON LABORATORIES PVT. LTD. Nagpur(ALPL) for carrying out Environmental monitoring of parameters for assessing pollution levels and preparation of monthly reports (*July-August-September-2022*) as per the requirement of Chhattisgarh Environment Conservation Board (CECB) and Ministry of Environment, Forest and Climate Change (MoEF&CC) for Kudag mining lease in Balrampur District, Chhattisgarh State.

1.2 Background Information of KudagMine

Hindalco was granted Kudag Bauxite mining lease over an area of 377.116 hec. In Kudag village, Post office-Dumarkholi, Tehsil-Samri (Kusmi) of Balrampur district, Chhattisgarh on 24/12/1996 for a period of 20 years. As per the Mines and Mineral (Development and Regulation) Amendment Act, 2015, Kudag lease has been extended up to another 30 years i.e 23/12/2046.The mining operations were started on 02/07/1997. The production capacity of Kudag Bauxite Mine is 60,000 Tonne /Year.

1.3 Salient Features of Kudag BauxiteMine

The deposits occur in Kudag block, Post office Dumarkholi, Tehsil-Samri (Kusmi) of Balrampur district. This deposit has been identified as one of the resources to cater the raw material requirements of the Hindalco Alumina refinery at Renukoot, Uttar Pradesh. The salient features of the project are presented below in Table1.

Hindalco Industries Limited Kudag Mining Environmental Status Report for July-2022 to September-2022

Table: 1

Salient Features of Kudag Bauxite Mines

S I	Particulars	Details
Ν		
0		
1	Survey of India Toposheet No.	64 M /15
2	Latitude	23º 26' 02"N to 23º 29'00"N
3	Longitude	83º 51' 00"E to 83º 59' 00"E
4	Elevation	1145-m above Mean Sea Level
5.	Climatic Conditions (as per IMD, Ambikapur)	Annual maximum temperature : 30.3°C Annual minimum temperature : 17.7°C Average annual rainfall : 1401.1 mm
6	Mining lease area	377.116 Hec.
7	Method of mining	Open cast (Semi-Mechanized)
8	Mode of transportation	Trucks
9	Land use	Agricultural and Barren land
1 0	Nearest Road	Samri to Kusmi (17 km)
1 1	Nearest Airport	Ranchi Airport (151.09 Km)
1 2	Nearest Town	Ambikapur (127 km, SW)

1.4 Environmental Monitoring

Regular monitoring of environmental parameters is of immense importance to assess the status of environment during mining operation. With the knowledge of baseline conditions, the monitoring program will serve as an indicator for any deterioration in environmental

conditions due to mining operation of the project. Suitable mitigation steps will be taken in time to safeguard the environment based on monitoring reports. Monitoring is important in the control of pollution since the efficiency of control measures can only be determined by monitoring.

In order to find out the impact of mining activity on sensitive receptors, it is necessary to monitor Environmental Quality to know the level of concentrations of pollutants within and around the mining lease area. Accordingly Hindalco Industries through ALPL has been monitoring air, water and noise quality on monthly basis during these months (Table-2).

Hindalco Industries Limited Kudag Mining Environmental Status Report for July-2022 to September-2022

15 Air Environment

1.5.1 Ambient Air Quality Monitoring:

Ambient Air Quality and Fugitive emission monitored at 8 following locations with reference to Kudag mine lease area shown in (Fig.-1).

<u>Table 2</u>

S	Core Zone	S	Buffer Zone
r		r	
•		<u>.</u>	
		N	
N		Ο	
ο		•	
•			
1	Sairaidh Campus	5	Kutku Village
2	New Kudag/Nr.Weigh Bridge	6	Rajendrapur
3	Old Kudag/Mining Area	7	Tatijharia Village
4	SamriGopatu/Nr. Weigh Bridge	8	Virhorepat

Locations of Ambient Air Quality Monitoring (AAQM) (377.116 hec.)

The sampling stations are selected at the above mentioned locations, in downwind and upwind directions of the mining site. ALPL is carrying out regular monitoring for PM₁₀, PM_{2.5}, SO₂, NO₂, CO and Pb, Hg, As and Cr at above Ambient Air Quality Monitoring (AAQM) locations. The AAQM sampling sites are selected considering seasonal variation in wind speed and wind direction.

1.5.2 Sampling Duration and Frequency

Ambient air quality monitoring was carried out for the parameters PM₁₀, PM_{2.5}, SO₂, NO₂ CO and Pb, Hg, As & Cr from July-2022 to September-2022 as per CPCB norms.

Data is compared with the present revised standards mentioned in the latest Gazette Notification of the Central Pollution Control Board (CPCB) 18th November, 2009 and as per consent conditions mentioned in consent letter.

1.5.3 MONITORED PARAMETERS AND FREQUENCY OF SAMPLING

Methods and Instruments used for Sampling

The air samples were analyzed as per methods specified by Central Pollution Control Board (CPCB).

The levels of Particulate Matter (PM_{10}), Sulphur Dioxide ($SO_{2,}$), Oxides of Nitrogen (NO_{2}), CO, Pb, Hg, As and Cr were monitored for establishing the baseline status. PM_{10} was collected with the help of Respirable particulate sampler operating 24 hours by drawing air which passes through the cyclone at the rate of 1.0 -1.3 m³/min which collects the particles less than 10 µm diameter over glass fiber filter paper. The dust deposited over the filter paper is measured as PM_{10} and the smaller particulates from $PM_{2.5}$ are collected into the membrane filter paper. other details are given in**(Table3)**.

Table 3

MONITORED PARAMETERS AND FREQUENCY OF SAMPLING

Parameters	Sampling frequency
Particulate Matter (PM ₁₀)	24 hourly sample twice a week for Three months
Particulate Matter (PM _{2.5})	24 hourly sample twice a week for Three months
Particulate Matter 2.5	24 hourly sample twice a week for Three months
Sulphur dioxide (SO2)	24 hourly sample twice a week for Three months
Oxides of Nitrogen (NO ₂)	24 hourly sample twice a week for Three months
CO, Pb, Hg, As, Cr	8 hourly samples for 24 hour twice a week forthree months

Hindalco Industries Limited Samri Mining Environmental Status Report for July – 2022 to September – 2022

Table 4.0

Measurement Techniques for various pollutants

S r N o	Paramet er	Technique	Tec hni cal Pro toc ol	Mini mum Repo rtabl e Value (µg/ m ³)
1	Particulat e Matter PM ₁₀	Respirable Dust Sampler (Gravimetric Method)	IS- 518 2 (Par t- 23)	5
2	Particulat e Matter PM _{2.5}	Respirable Dust Sampler (Gravimetric Method)	USE PA- 40 (Par t- 50)	5
	Sulphur Dioxide	Modified West and Gaeke	IS- 518 2 (Par t – II)	4
4	Oxide of Nitrogen	Jacob &Hochheiser Method	IS- 518 2 (Par t - VI)	4
5	Carbon Monoxide	NDIR Spectroscopy	IS- 518 2 (Par t - X)	2
6	Pb, As, Hg, Cr	Acid Digestion Method	EPA Met hod	0.1

Details of Salient Features

1.6 Meteorology: Wind Pattern

The data of wind pattern collected during the study period (July-Aug-Sept – 2022) indicates that the wind was blowing predominately from (E and S) directions, during study period.

Directi ons / Wind Classes (m/s)	0 5 - 2 1	2 1 - 3 6	3 6 - 5 7	5 7 - 8 8	8 8 - 1 1 1	> = 1 1 1	T o t a 1 (%)
348.75 - 11.25	0 0 2 8 0 8	0 0 1 1 7 7 7	0 0 0 2 7 1	0 0 0 2 2 6	0 0 0 0 0 0	0 0 0 0 0 0	0 0 4 4 8 3

Wind Frequency Distribution Data

ANACON LABORATORIES PVT.LTD.

Details of Salient Features

	0	5	7	4	0	0	7
	0	0	0	0	0	0	0
							0
	0	0	0	0	0	0	0
11.25 -	2	0	0	0	0	0	4
33.75	9	9	1	6	0	0	7
	4	5	8	3	0	0	1
	3	1	1	4	0	0	0
	8	1	2	1	0	0	1
	0	0	0	0	0	0	
							0
	0	0	0	0	0	0	
33 75 -	2	1	0	0	0	0	4
56.25	0	0	5	4	0	0	0
	3	4	4	5	0	0	7
	8	1	3	2	0	0	6
	0	7	5	9	0	0	1
	0	0	0	0	0	0	
	Ũ	Ŭ	0	0	0		0
		0	0		0	0	
56.25	1	1	2	1	0	0	0
78.75	8	2	0	1	0	0	2
	1	6	3	3	0	0	5
	1	8	8	2	0	0	0
	6	1	0	2	0	0	0
	0	0	0	0	0	0	
	0	0	0	0	0	0	0
	•						
	0	1	0	0	0	0	0
78.75 -			2	2	0	0	9
101.25	0	0	8	1	6	0	8
	1		9	1	7	0	2
	1	5	8	1	9	0	6
	0	7	0	4	3	0	
	0	0	0	0	0	0	0
101 05	0	0	0	0	0	0	0
101.25 -	2	2 1	2	I C	0	0	9
120.70				6	0	0	2
	3	2	3	3	9	0	5
	8	8	8	0	0	0	7
	0	6	0	4	6	0	
	0	0	0	0	0	0	0
	•	· ·		•			
				0	0		0
123.75 -	3	2		0	0		8
140.20	2	9	8	8	0		9 2
	1	4		6	9	0	2
	5			0	0		1
	6	8	6	5	6	0	
146.25 -	0	0	0	0	0	0	0

ANACON LABORATORIES PVT.LTD.

168.75							•
	0	0	0	0	0	0	0
	2	4	0	0	0	0	8
	7	3	8	4	0	0	6
	6	4	1	5	9	0	9
	2	7	5	2	0	0	2
	7	8	2	9	6	0	
	0	0	0	0	0	0	
	Ũ	Ũ	Ũ				0
						0	
168 75	2	3	1	0	0	0	0
191.25	9	4	6	7	1	0	9
	4	4	3	6	3	0	2
		2	0	9	5	0	2
	8	0	4	9	9	0	1
	0	0	4	9	9	0	
	0	0	0	0	0	0	0
	•	•					
101 05	0	0	0	0	0	0	0
191.25 -	5	2	2	0	0	0	8
210.70	6	1	2 1	2	0	0	7
	6		1	1	0	0	6
	8	1	9		0	0	8
	5	4	2	/	0	0	
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
213.75 -	3	1	1	0	0	0	6
230.23	2	5	9	0	0	0	9
	1	3	4	9	0	0	3
	5	9	7	0	0	0	5
	6	9	5	6	0	0	
	0	0	0	0	0	0	0
	•	•	•		•		
	0	0	0	0	0	0	0
236.25 -	2	1	0	0	0	0	5
258.75	8	8	2	0	0	0	7
	9	1	7	9	0	0	2
	8	1	1	0	0	0	5
	6	6	7	6	0	0	
	0	0	0	0	0	0	0
					•	· ·	
	0	0	0	0	0	0	0
258.75 -	1	1	0	0	0	0	3
281.25	9	3	0	0	0	4	8
	0	5	9	0	0	5	4
	2	8	0	0	0	2	3
	2	7	6	0	0	9	
281.25	0	0	0	0	0	0	0
303.75			•				•
	0	0	0	0	0	0	0

	1 4 9	2 1 2	0 0 0	0 0 0	0 0 0	0 0 0	3 6 2
	4	8	0	0	0	0	3 2
	0	0	0	0	0	0	0
303.75 -	0 1	0 1	0	0	0	0	0 3
326.25	3 5	3 1	5 4	0	0 0	0	2 1 5
	8 7	3 4	3 5	0 0	0 0	0 0	6
	0.	0	0.	0.	0.	0.	0
326.25 -	0 1	0 0	0	0	0 0	0 0	0 2
348.75	4	3	4 5	2 2	0	0	4 4 5
 	3	0	2 9	6 4	0	0	7
Sub- Total	0 3 8 3	0 3 0 1	1 7 7 5	0 0 9 5	0 0 1 0	0 0 4	0 9 7 3
	6 0 5	6 3 0	3 6	5 6 2	8 7 0	5 2 9	7 3 2
Calms						1	0 0 2 6 2 6 8
Missing/Incor	nplete						0 0
							0 0 0 0 0
Total							1
							0 0 0 0

0

Summary of Wind Pattern

Season	First Pre- Dominant Wind Direction	Second Pre- Dominant Wind Direction	Calm Condition	Average Wind Speed
July- Aug- Sept- 2022	E (9.78%)	S (8.92%)	2.63	3.70 m/s

Hindalco Industries Limited Samri Mining Environmental Status Report for April-2022 to June-2022

Figure.02: Wind Class Frequency Distribution (July-August-September-2022)

1.7 MONITORED PARAMETERS AND FREQUENCY OF SAMPLING Methods and

Instruments used for Sampling

The air samples were analyzed as per methods specified by Central Pollution Control Board (CPCB). The levels of Particulate Matter (PM₁₀), Sulphur Dioxide (SO₂), Oxides of Nitrogen (NO₂),Carbon Monoxide (CO), Pb, Hg, As and Cr were monitored for establishing the baseline status. PM₁₀ was collected with the help of Respirable Particulate Sampler operating 24 hours by drawing air which passes through the cyclone at the rate of 1.0 -1.3 m³/min which collects the particles less than 10 μ m diameter over glass fibre filter paper. The dust deposited over the filter paper is measured as PM₁₀and the smaller particulates from 2.5 μ m are collected into the Membrane Filter Paper. The dust fall rate was measured usingdust fall jar. The jar was exposed for one month in the mining area and Samri-Gopatuduring pre and post monsoon period. The jar was filled with 2 lit of distilled water. The water in the jar is mixed with copper sulphate solution (0.02 N solutions) to prevent any growth of algae. The water level in the jar is constantly maintained in such a way that 2 lit of water is always retained. The measurement techniques used for various pollutants and other details are given in **(Table 3)**.

Earmarked samples were collected for Particulate Matter- PM_{10} , Particulate Matter- $PM_{2.5}$, SO_2 and NO_X for 24 hourly and CO 8 hourly. Collected samples were sent to Laboratories for analysis.

S I N o.	Paramete r	Technique	Tech nica l Prot ocol	Minim um Repor table Value (µg/ m ³)
1	Respirable Particulate Matter	Respirable Dust Sampler (Gravimetric Method)	IS- 5182 (Part -23)	5
2	Particulate Matter 2.5	Respirable Dust Sampler (Gravimetric Method)	Grav imet ric Meth od	5
3	Sulphur Dioxide	Modified West and Gaeke	IS- 5182	4

Table 3.0 Measurement Techniques for various pollutants

			(Part - II)	
4	Oxide of Nitrogen	Jacob &Hochheiser Method	IS- 5182 (Part - VI)	4
5	Carbon Monoxide	NDIR Spectroscopy	IS- 5182 (Part - X)	2
6	Pb, As,Hg, Cr	Acid Digestion Method	EPA Meth od	0.1

<u>Table 4</u>

Statistical Analysis

Loca tion	M o n t h & Y e a r	P M - 1 0 (μ g / m 3)	P M - 2 5 (μ g / m 3)	S Ο 2 (μ g / m 3)	Ν Ο 2 (μ g / m 3)	C O (m g / m 3)	Ρ b (μ g / m 3)	Η g (μ g / m 3)	A s (n g / m 3)	C r (μ g / m 3)
Core Zon	e			I	1			P	1	1
Saira idh Cam pus	J u 1 y - 2 0 2 2	5 4 7	1 9 7	9 5	2 1 9	0 1 9 7	B D L (D L - 0 0 1)	B D L D L - 0 0 0 0 5)	B D L D L - 0 1)	B D L (D L - 0 0 3)
	A u g - 2 0 2 2 2	5 7 7	2 3 3	9 1	2 4 3	0 1 9 8	0 0 1 9	B D L D L - 0 0 0 0 5)	B D L D L - 0 1)	B D L (D L - 0 0 3)
	S e p t - 2 0	5 9 8	1 9 1	1 0 8	1 9 0	0 2 0 7	0 0 1 7	B D L D L - 0	B D L D L - 0	B D L (D L - 0

	2 2							0 0 5)	1)	03)
	J u 1 y - 2 0 2 2	5 8 7	2 1 7	1 1 7	1 9 5	0 1 8 5	0 0 1 5	B D L D L - 0 0 0 0 5)	B D L (D L - 0 1)	B D L (D L - 0 0 3)
New Kuda g/Nr. Weig h Bridg e	A u - 2 0 2 2	5 9 6	2 5 0	8 9	2 2 8	0 2 7 0	0 0 1 9	B D L D L - 0 0 0 5)	B D L C D L - 0 1)	B D L (D L - 0 0 3)
	S e p t - 2 0 2 2	6 5 5	2 7 5	1 0 3	2 0 8	0 2 4 5	0 0 1 7	B D L D L - 0 0 0 0 5)	B D L (D L - 0 1)	B D L (D L - 0 0 3)
Old Kud ag/M ining Area	J u 1 y - 2 0 2 2	5 5 0	1 7 7	7 0	1 6 3	0 1 7 6	0 0 1 6	B D L C D L - 0 0	B D L (D L - 0 1	B D L (D L - 0 0 3

								0 0 5)))
	A g - 2 0 2 2	6 0 0	2 1 7	1 0 5	2 0 8	0 2 0 6	0 0 1 8	B D L D L - 0 0 0 5)	B D L (D L - 0 1)	B D L (D L - 0 0 3)
	S e p t - 2 0 2 2	6 2 1	2 5 1	1 1 0	2 1 0	0 2 3 3	0 0 1 6	B D L D L - 0 0 0 5)	B D L (D L - 0 1)	B D L (D L - 0 0 3)
Samr i Gop atu/ Nr.	J u 1 y - 2 0 2 2	5 1 7	1 9 2	8 2	1 7 4	0 1 7 8	0 0 1 5	B D L D L - 0 0 0 0 5)	B D L (D L - 0 1)	B D L (D L - 0 0 3)
Weig h Brid ge	A u g - 2 0 2 2	5 7 9	2 0 5	9 7	1 8 2	0 2 4 3	0 0 1 7	B D L D L - 0 0 0 0 0	B D L (D L - 0 1)	B D L (D L - 0 0 3)

Details of Salient Features

1	1		1				1		1	
								5		
	S e p t - 2 0 2 2	6 2 0	2 1 4	1 0 2	2 0 0	0 2 2 1	0 0 1 7	B D L D L - 0 0 0 0 5)	B D L (D L - 0 1)	B D L (D L - 0 0 3)
CPCB Stand	dards	1 0 (2 4 h r s)	6 0 (2 4 h r s)	8 0 (2 4 h r s)	8 0 (2 4 h r s)	2 (8 h r s)	1 0 (2 4 h r s)	-	6 0 (a n u a 1)	- - -
Minimum		5 1 7	1 7 7	7 0	1 6 3	0 1 7 6		- - -	-	- -
Maximum		6 5 5	2 7 5	1 1 7	2 4 3	0 2 7 0	0 0 1 9			
Average		5 8 7	2 1 8	9 7	2 0 2	0 2 1 3	0 0 1 7	- - -		
98% le		6 4 8	2 7 0	1 1 5	2 4 0	0 2 6 5	0 0 1 9	- - -	- -	- - -

NOTES: • BDL- Below detection limit • DL- Indicates detection limit of instrument/method and shall be considered as 'absent'.

• The Average Concentration of PM10 within the Core Zone of Kudag Lease is 58.7 µg/m³.

• The Average Concentration of PM2.5 with int he CoreZone of Kudag Leaseis 21.8µg/m³.

• The Average Concentration of SO₂ within the CoreZone of Kudag Lease is 9.7µg/m³.

• The Average Concentration of NO₂ within the Core Zone of Kudag Lease is $20.2 \,\mu\text{g/m^3}$.

- The Average Concentration of CO within the Core Zone of Kudag Lease is 0.213mg/m³.
- The Average Concentration of Pb within the Core Zone of Kudag Lease is 0.017µg/m³.

Conclusion :-

The Average Concentration within the Core Zone of Kudag Lease during this period **(July-August-September-2022)**, it is within permissible limits as per CPCB Standards.

Locati on	M o n t h & Y e a r	P M - 1 0 (μ g / m 3)	P M - 2 5 (μ g / m 3)	S Ο 2 (μ g / m 3)	Ν Ο 2 (μ g / m 3)	C O (m g / m 3)	Ρ b (μ g / m 3)	Η g (μ g / m 3)	A s (n g / m 3)	C r (μ g / m 3)
Buffer Zoi	J u 1 y - 2 0 2 2	5 1 1	1 7 4	7 4	1 6 5	0 1 5 4	B D L (D L - 0 0 1	B D L - 0 0 0	B D L (D L - 0 1	B D L (D L - 0 0
Kutk u Villag e	A u g - 2 0 2 2 2	5 7 4	1 8 8	7 7	1 6 7	0 1 9 8) B D L (D L - 0 0 1)	5) B D L (D L - 0 0 0 0 0 5) B D L (D L - 0 1)	3) B D L (D L - 0 0 3)
	S e p t - 2 0	5 3 2	2 0 5	8 8	1 7 8	0 1 8 5	0 0 1 4) B L (D L -	B D L (D L -	B D L (D L -

Tatijh aria		Rajen drapu r		
J u l	S e p t - 2 0 2 2	A u g - 2 0 2 2	J u 1 y - 2 0 2 2	2 2
5 0	5 8 4	5 9 0	5 5 9	
1 6	1 9 3	2 1 7	2 1 9	
7 1	8 6	8 7	9 4	
1 6	1 8 0	1 7 2	1 8 4	
0.1	0 1 9 6	0 1 9 2	0 2 0 2	
0 0	0 0 1 4	0 0 1 7	0 0 1 5	
B D L	B D L 0 0 0 5)	B D L C D L - 0 0 0 0 5)	B D L (D L - 0 0 0 0 5)	0 0 0 5)
B D L	B D L (D L - 0 1)	B D L (D L - 0 1)	B D L (D L - 0 1)	0 1)
B D L	B D L (D L - 0 0 3)	B D L (D L - 0 0 3)	B D L (D L - 0 0 3)	0 0 3)

Villag e	y - 2 0 2 2	5	9		5	73	1 4	(D L - 0 0 0 0 5)	(D - 0 1)	(D L - 0 0 3)
	A u - 2 0 2 2	5 6 1	2 0 7	1 0 0	1 8 3	0 2 1 1	0 0 1 6	B D L - 0 0 0 5)	B D L (D L - 0 1)	B D L (D L - 0 0 3)
	S e p t - 2 0 2 2	6 0 3	2 4 4	9 3	2 0 5	0 2 2 7	0 0 1 7	B D L O D L - 0 0 0 0 5)	B D L (D L - 0 1)	B D L (D L - 0 0 3)
Virho repat	J u 1 y - 2 0 2 2	5 6 1	2 0 6	1 0 7	1 7 6	0 2 8	0 0 1 6	B D L - 0 0 0 0 5	B D L (D L - 0 1)	B D L (D L - 0 0 3)

)		
	A u g - 2 0 2 2 2	5 2 6	1 9 1	9 1	1 8 9	0 1 9 1	0 0 1 9	B D L (D L - 0 0 0 0 5)	B D L (D L - 0 1)	B D L (D L - 0 0 3)
	S e p t - 2 0 2 2	6 1 1	2 0 0	9 9	1 7 1	0 1 9 2	0 0 1 6	B D L (D L - 0 0 0 0 5)	B D L (D L - 0 1)	B D L (D L - 0 0 3)
CPCB Stand	ards	1 0 (2 4 h r s)	6 0 (2 4 h r s)	8 0 (2 4 h r s)	8 0 (2 4 h r s)	2 (8 h r s)	1 0 (2 4 h r s)	-	6 0 (a n u a 1)	-
Minimum		5 0 5	1 6 9	7 1	1 6 5	0 1 5 4	- - -	- - -	-	-
Maximum		6 1 1	2 4 4	1 0 7	2 0 5	0 2 2 8	0 0 1 9	-	-	-
Average		5 6	2 0	8 9	1 7	0 1	0 0	-		

	0	1		8	9 6	1 6		
98% le	6 0	2 3	1 0	2 0	0.2	0.0	 	
	9	9	5	1	2 8	1 9		

NOTES: • BDL- Below detection limit • DL- Indicates detection limit of instrument/method and shall be considered as 'absent'.

- The Average Concentration of PM₁₀ within the Buffer Zone of Kudag Lease is 56.0 μg/m³.
- The Average Concentration of PM2.5 within the Buffer Zone of Kudag Lease is 20.1 µg/m³.
- The Average Concentration of SO₂ within the Buffer Zone of KudagLease is 8.9µg/m³.
- The Average Concentration of NO₂ within the Buffer Zone of KudagLease is $17.8 \ \mu g/m^3$.
- The Average Concentration of CO within the Buffer Zone of KudagLease is 0.196 mg/m³.
- The Average Concentration of Pb within the Buffer Zone of KudagLease is 0.016 μ g/m³.

Conclusion :-

The Average Concentration within the Buffer Zone of Kudag Lease during this period **(July-Aug-Sept-2022)**. It is within permissible limits as per CPCB Standards.

Month-wise Summary of Statistical Analysis

Kudag Lease (Core Zone):-

3.1 Ambient Air Quality:

Ambient air quality has been generated as per NAAQS 2009 for the month of July-2022 to September-2022. PM_{10} , $PM_{2.5}$, SO_2 , NO_2 and CO the values obtained were then compared vis-a-vis the standards prescribed by CPCB for Industrial/ Rural/ Residential uses.

3.2 <u>Presentation of Results</u>:

The summary of Ambient Air Quality monitoring results from July-2022 to September-2022 are presented in detail in Table 4.0. 98th percentile; maximum and minimum values etc. have been computed from the collected raw data for all the AAQ monitoring station. The data has been compared with the standards prescribed by Central Pollution Control Board (CPCB)/NAAQS for residential and rural zone.

A. Particulate Matter-PM₁₀:

The minimum and maximum concentrations for Particulate Matter-PM₁₀ were recorded as 51.7 μ g/m³ and 65.5 μ g/m³ respectively. The minimum and maximum concentration was recorded at Samri Gopatu/ Nr. Weigh Bridge and New Kudag/Nr. Weigh Bridge . The average concentration of PM₁₀ was 58.7 μ g/m³.

B. Particulate Matter-PM_{2.5}:

The minimum and maximum concentrations for Particulate Matter-PM_{2.5} were recorded as 17.7 μ g/m³ & 27.5 μ g/m³ respectively. The minimum concentration was recorded at Old Kudag/Mining Area. The maximum concentration was recorded at New Kudag/Nr. Weigh Bridge. The average concentration of PM_{2.5} was 21.8 μ g/m³.

C. <u>Sulphur Dioxide (SO₂):</u>

The minimum and maximum for SO₂ concentrations were recorded as 7.0 μ g/m³ and 11.7 μ g/m³at respectively. The minimum concentration was recorded at Old Kudag/Mining Area and The maximum concentration was recorded at New Kudag/Nr. Weigh Bridge.The average concentration of SO₂ was 9.7 μ g/m³.

D. <u>Nitrogen Dioxide (NO₂):</u>

The minimum and maximum for NO₂ concentrations were recorded as 16.3 μ g/m³ and 24.3 μ g/m³. The minimum concentration was recorded at Old Kudag/Mining Area. The maximum concentration was also recorded at Sairaidh Campus. The average concentration of NO₂ was 20.2 μ g/m³.

E. <u>Carbon Monoxide (CO):</u>

The minimum and maximum for CO concentrations were recorded as 0.176mg/m³ and 0.270 mg/m³. The minimum concentration was recorded at Old Kudag/Mining Area. The maximum concentration was also recorded at New Kudag/Nr. Weigh Bridge. The average concentration of CO was 0.213 mg/m³.

F. Lead (Pb):

Maximum Lead detected in PM_{10} samples was 0.019 μ g/m³at Sairaidh Campus. No lead could be detected in $PM_{2.5}$ samples at any of the Ambient Air samples at any of the locations.

G. Mercury (Hg):

Mercury was not detected at any of the locations in PM₁₀ samples as well as PM_{2.5}Samples.

H. Arsenic (As):

Arsenic was not detected at any of the locations in PM₁₀ samples as well as PM_{2.5}Samples.

I. <u>Chromium(Cr):</u>

Chromium was not detected at any of the locations in PM_{10} samples as well as $PM_{2.5}$ Samples.

Kudag Lease (Buffer Zone):-

3.3 Ambient Air Quality:

Ambient air quality has been generated as per NAAQS 2009 for the month of July-2022 to September-2022. PM_{10} , $PM_{2.5}$, SO_2 , NO_2 & CO. The values obtained were then compared visa-vis the standards prescribed by CPCB for Industrial/ Rural / Residential uses.

3.3.1 Presentation of Results:

The summary of Ambient Air Quality monitoring results from July-2022 to September-2022 are presented in detail in Table 4.0. 98th percentile; maximum and minimum values etc. have been computed from the collected raw data for all the AAQ monitoring station. The data has been compared with the standards prescribed by Central Pollution Control Board (CPCB)/NAAQS for residential and rural zone.

A. <u>Particulate Matter-PM₁₀:</u>

The minimum and maximum concentrations for Particulate Matter- PM_{10} were recorded as 50.5 $\mu g/m^3$ and 61.1 $\mu g/m^3$ respectively. The minimum concentration was recorded at Tatijharia Village. The maximum concentration was also recorded at Virhorepat. The average concentration of PM_{10} was 56.0 $\mu g/m^3$.

B. Particulate Matter-PM_{2.5}:

The minimum and maximum concentrations for Particulate Matter-PM_{2.5} were recorded as 16.9 μ g/m³ & 24.4 μ g/m³ respectively. The minimum and maximum concentration was recorded at Tatijharia Village. The average concentration of PM_{2.5} was 20.1 μ g/m³.

C. <u>Sulphur Dioxide (SO₂):</u>

The minimum and maximum for SO₂ concentrations were recorded as 7.1 μ g/m³ and 10.7 μ g/m³ respectively. The minimum concentration was recorded at Tatijharia Village location. The maximum concentration was also recorded at Virhorepat. The average concentration of SO₂ was 8.9 μ g/m³.

D. <u>Nitrogen Dioxide (NO₂):</u>

The minimum and maximum for NO₂ concentrations were recorded as 16.5 μ g/m³ and 20.5 μ g/m³. The minimum concentration was recorded at Kutku Village location and the maximum concentration was recorded at Tatijharia Village. The average concentration of NO₂ was 17.8 μ g/m³.

E. <u>Carbon Monoxide (CO):</u>

The minimum and maximum for CO concentrations were recorded as 0.154 mg/m³ and 0.228 mg/m³. The minimum concentration was recorded at Kutku village location and the maximum concentration was recorded at Virhorepat. The average concentration of CO was 0.196 mg/m³.

F. Lead (Pb):

Maximum Lead detected in PM_{10} samples was 0.019 µg/m³ at Virhorepat. No lead could be detected in $PM_{2.5}$ samples at any of the Ambient Air samples at any of the locations.

G. Mercury (Hg):

Mercury was not detected at any of the locations in PM₁₀samples as well as PM_{2.5}Samples.

H. Arsenic (As):

Arsenic was not detected at any of the locations in PM₁₀samples as well as PM_{2.5}Samples.

I. Chromium (Cr):

Chromium was not detected at any of the locations in PM_{10} samples as well as $PM_{2.5}$ Samples.

Details of Salient Features

1.8 Noise Environment

The Director General of Mines Safety in its circular No. DG (Tech)/18 of 1975, has prescribed the noise level in mining occupations (TLV) for workers, in an 8 hour shift period with unprotected ear as 90 dB(A) or less. There will be some noise sources in mines, which produce noise levels above 90 dB(A), however; the workers are not expected to be exposed continuously for 8 hours. In order to maintain this statutory requirement noise monitoring has been carried out in and around the mining lease area.

Work zone noise level in the mining area shall increase due to blasting excavation and transportation. The impacts due to the mining activities on the noise levels shall be negligible, if all the precautions for the elimination of the noise are taken. The mining activities will be undertaken during day time only. The day time equivalent noise levels, when all the machineries are in operation, shall be minimized as the machineries have been provided with control equipment. Noise monitoring carried out on monthly basis at mining site; Core Zone and Buffer Zone areas shown in **Fig. 3**.

Identification of sampling locations

Noise at different noise generating sources has been identified based on the activities in the village area and ambient noise due to traffic.

The noise monitoring has been conducted for determination of ambient noise levels in the mining area and villages. The noise levels at each location were recorded for 24 hours.

Instrument used for monitoring

Noise levels were measured using integrated sound level meter Model no. HTC-SL- 1352. This instrument is capable of measuring the Sound Pressure Level (SPL), Leq.

Method of Monitoring

Sound Pressure Level (SPL) measurements were monitored at eight locations. The readings were taken for every hour for 24 hours. The day noise levels have been monitored during 6 am to 10 pm and night levels during 10 pm to 6 am at eight locations within 10-km radius of the study area.

Noise level monitoring was carried out continuously for 24 hours with one hour interval starting at 06.00 hrs to 06.00 hrs next day.

Noise levels monitored during day and night at Four locations are found to be below in the Mining Area than the stipulated standard of CPCB for Industrial area as 75dB(A) and 70dB(A) for day and night respectively as given in **(Table 5)**.

<u>Table 5</u>

Noise Emission Monitoring Report

C	LOCATION	Manth	Noise-dB(A)		
R	LOCATION	Month	Day Time	Nigh t	
N O				Time	
Core Z	one				
1	New Kudag/Nr.	July- 2022	62.9	51.6	
•	Weigh Bridge	August- 2022	67.2	56.1	
		Septemb er-2022	61.9	54.7	
2	Old Kudag/Mining Area	July- 2022	54.7	43.8	
•		August- 2022	61.9	54.7	
		Septemb er-2022	59.2	47.3	
Buffer	Zone	1	1		
1	Rajendranur	July- 2022	64.9	51.6	
•	5	August- 2022	56.7	43.9	
		Septemb er-2022	61.3	48.1	
2	Tatiiharia Village	July- 2022	51.6	39.7	
•		August- 2022	54.6	43.9	
		Septemb er-2022	53.7	41.6	
СРСВ	Standards				
Indust	rial Area		75	70	
Reside	ntial area		55	45	

<u>Conclusion:</u>-The Noise Monitoring Results at Kudag Lease during this period **(July-August-September-2022)**, All Results are within Limit as per CPCB Standards.

<u>Table 6</u>

Monitoring

HEMM Spot Noise Level

Unit: dB(A) Leq

S	Location	July-2022		Aug 2	gust- 022	Septembe r-2022		
N O		M i n	M a x	M i n	M a X	M i n	M a x	
1	Nr. Weigh Bridge	5 7 2	6 1 9	6 8 3	7 2 8	7 2 6	7 4 1	
2	Mining Area	6 4 1	6 8 3	6 9 1	7 4 2	6 8 3	7 2 4	

2.0 Water Quality Monitoring

The existing status of water quality for ground water was assessed by collecting the water samples from underground wells from the mining area/old kudag.

The purpose of the study is to assess the water quality characteristics for critical parameters, evaluate the impacts on agricultural productivity, habitat conditions, recreational resources and aesthetics in the vicinity and identification of impact on water quality by this project and related activities.

The physico-chemical analysis of water samples collected during the study period is given in **(Table-7 and Fig.5)**. The overall water quality found to be below the stipulated standards of IS 10500-2012 for ground water & found to be fit for drinking purpose for tested parameters. Thus the impacts due to mining activities have been found to be insignificant.

The drinking water is supplied by the tankers from for-away sources. Hence, additional care now be taken to chlorinate the tankers before leaving the supply source.

 Table 7

 Report on Chemical Examination of Ground Water Quality (September-2022)

Location:										
TEST RESULTS										
Test Parameter	M e a s u r e m e n t U n i t	Test Method	Requi IS 10: (Drink Speci Ind Amen A c c c e p t t a b l l e t t a b l l e	rement as per 500 : 2012 king Water ifications) cluding dment No. 4 P e r m i s s i b l e L i i m i	Tes t Res ult					
Biological Testing 1. Water			i t	t #						
Total coliform	P e r 1 0 0 m	IS 15185 : 2016	A b s e n t	A b s e n t	Abse nt					
Escherichia coli	P e r 1 0 0 m 1	IS 15185 : 2016	A b s e n t	A b s e n t	Ab sen t					
Chemical Testing 1. Water										
Alkalinity (as CaCO ₃)	m g / l	IS 3025 (Part 23) : 1986	2 0 0	60 0	176					
Ammonia (as N)	m g l	IS 3025 (Part 34) : 1988	0 5	N o r e l a x a t i o n	BDL (D L – 0.1)					

Anionic surface active agents (as MBAS)	m g / l	IS 13428 : 2005 Annex K	0 2	1. 0	BDL (D L- 0.0 1)
Colour	H a z e n u i t s	IS 3025 (Part 4) : 2021	5	15	1
Cyanide (as CN)	m g l	IS 3025 (Part 27) : 1986	0 5	N o r e l a x a t i o n	BDL (D L – 0.0 05)
Chloride (as Cl)	m g / l	IS 3025 (Part 32) :1988	2 5 0	10 0 0	31.68
Calcium (as Ca)	m g / l	IS 3025 (Part 40) : 1991	7 5	20 0	51.46
Chloramines (as Cl ₂)	m g l	IS 3025 (Part 26) : 2021	4 0	N o r e l a x a t i o n	BDL (D L – 0.1)
Free residual chlorine	m g / l	IS 3025 (Part 26) : 2021	M i n 0 2	1	BDL (D L- 0.1)
Fluoride (as F)	m g / l	IS 3025 (Part 60) : 2008	1 0	1. 5	0.2 4
Magnesium (as Mg)	m g / l	IS 3025 (Part 46) : 1994	3 0	10 0	12. 58
Nitrate (as NO ₃)	m g l	APHA 23 rd Edition	4 5	N o r e l a	BD L (D L – 2)

				x a t i	
				0	
			A g r	A g r	
Odour	_	IS 3025 (Part 5)	e	e	Agre
Odour	-	2018	a	a	le
			1	1	
			e	e N	
			6	о	
			5	r e	7.02
лU		IS 3025 (Part 11) :	t	1	7.93 at
pm	-	2022	0	a X	25° C
			8	a t	
			5	i o	
			0	n	BDI
Phenolic compounds	m g	IS 3025		0. 0	(D
(as C ₆ H ₅ OH)	/ 1	(Fait 45). 1992	0	0 2	0.0
	m	IS 3025	2		01)
Sulphate (as SO ₄)	g /	(Part 24) :	0	$40 \\ 0$	31. 52
	1	2022	0	N	
				0	
				r	
	m	IS 3025	0	e 1	BDL (D
Sulphide (as H ₂ S)	g /	(Part 29) : 1986	0	a x	L – 0.0
	l		5	a t	3)
				i	
				0 n	
			A g	A g	
		IS 3025	r	r	Agre
Taste	-	(Part 8) :	e	e	eab
		1904	b	a b	le
			l e	l e	
Total dissolved calida	m g	IS 3025 (Part 16)	5	20	176
Total dissolved solids	7 1	1984	0	0	470
Turbidity	N T	IS 3025 (Part 10) :	1	5	0.6
	Um	1984			
Total hardness (as	g	IS 3025 (Part 21) :	2 0	60	180.3
CaCO ₃)	1	2009	0	U	1
Mineral Oil	m g	ANtr/7.2/	0	N o	BD L
	Ĩ	KE5/00:	5		(D

	1	2018		r	L-				
	1	2010		e	0.0				
				1	01)				
				а	,				
				х					
				а					
				t					
				i					
				0					
				n					
Chemical Testing 2. Residues In Water									
				Ν					
				0					
				r	DD				
			0	e	BD				
	m	IS 3025	0	1	L				
Arsenic (as As)	g	(Part 37) ·		2	(D				
rusenie (us rus)	/	1988	0	v	L -				
	1	1900	1	л Э	0.0				
				a t	1)				
				ι					
				1					
				0					
				n					
					BD				
	m	15 2025	0	0	L				
A 1,	g	(Bent 2) -		0	(D				
Aluminium (as Al)	Ī	(Part 2):	0		L -				
	1	2019	3	2	0.0				
			_		1)				
				Ν	/				
				0					
				Ū					
				r					
				1	BD				
	m	15 2025	0	1	L				
	g	18 3025	0	I	(D				
Barium (as Ba)	Ĭ	(Part 2) :		а	L -				
	1	2019	7	х	0.0				
	•			а	1)				
				t	1)				
				i					
				0					
				n					
					BD				
	m	10.000-		<i>c</i>	L				
	σ	IS 3025	0	2	(D				
Boron (as B)	ъ /	(Part 2) :			L-				
	1	2019	5	4	0.1				
	1)				
					, RD				
	m		0		T				
	~	IS 3025	U U	1					
Copper (as Cu)	g ,	(Part 2) :							
/	1	2019		5	L -				
	1		5		0.0				
					3)				
				N					
				0	BD				
	172		0		T				
		IS 3025		r					
Cadmium (as Cd)	g /	(Part 2) :	0	e	(D T				
	1	2019	0	1	L -				
	I	-	3	а	0.0				
			5	x	01)				
				2					
	L	L		u	L				

				t i o n	
Iron (as Fe)	m g / 1	IS 3025 (Part 2) : 2019	1 0	N o r e l a x a t i o n	0.26
Lead (as Pb)	m g / l	IS 3025 (Part 2) : 2019	0 0 1	N o r e l a x a t i o n	BD L (D L - 0.0 01)
Manganese (as Mn)	m g / 1	IS 3025 (Part 2) : 2019	0 1	0 3	BD L (D L - 0.0 5)
Mercury (as Hg)	m g / 1	IS 3025 (Part 48) : 1994	0 0 0 1	N o r e l a x a t i o n	BD L (D L - 0.0 00 5)
Molybdenum (as Mo)	m g / l	IS 3025 (Part 2) : 2019	0 0 7	N o r e l a x a t i o n	BD L (D L - 0.0 1)
Nickel (as Ni)	m g /	IS 3025 (Part 2) : 2019	0 0	N o	BD L (D

	1		2	r e l a x a t i o n	L - 0.0 1)
Selenium (as Se)	m g l	IS 3025 (Part 56) : 2003	0 0 1	N o r e l a x a t i o n	BD L (D L- 0.0 01)
Silver (as Ag)	m g / l	IS 13428 : 2005	0 1	N o r e l a x a t i o n	BD L (D L - 0.0 01)
Total Chromium (as Cr)	m g / l	IS 3025 (Part 2) : 2019	0 0 5	N o r e l a x a t i o n	BD L (D L - 0.0 3)
Zinc (as Zn)	m g 1	IS 3025 (Part 2) : 2019	5	1 5	BD L (D L - 0.1)

	TEST RESULTS					
S N	Test Paramete r	Meas urem ent Unit	Test Meth od	Requirement as per IS 10500 : 2012 (Drinking Water Specifications) Including Amendment No. 4		T e s t R e s u l t s
				Ac ce pt ab le Li mi t	Pe rm issi ble Li mi t #	3
I I	Chemical Testing 2. Residues In Wate	r				
4 1	Polychlorin ated biphenyls					
	2,2',5- trichlorobip henyl	μg/l	ANtr/7 .2/RES /04: 2018			B D L D L - 0 3)
	2,4,4'- trichlorobip henyl	μg/l	ANtr/7 .2/RES /04: 2018	0.5	No rela xati on	B D L D L - 0 3)
	2,2',5,5'- tetrachlorobi phenyl	μ <u>g</u> /l	ANtr/7 .2/RES /04: 2018			B D L (D L - 0

						03)
			ANtr/7 .2/RES /04: 2018			B D L
	2,2',4,5,5'- pentachloro	μ <u>α</u> /l				(D L
	biphenyl	10				- 0
						0 3)
			ANtr/7 .2/RES /04: 2018			B D L
	2,2',3,4,4',5'		2010			(D L
	hexachlorob iphenyl	μg/l				- 0
						0 3)
			ANtr/7 .2/RES /04: 2018			B D L
	2,2',4,4',5,5'		2010			(D L
	hexachlorob iphenyl	μg/l				-
						0 3)
			ANtr/7 .2/RES /04: 2018			B D L
	2,2',3,4,4',5, 5'-		2018			(D L
	heptachloro biphenyl	µg/l				-
						0 3
4 2	Polynuclear aromatic	hydrocarbons	<u> </u>)
-		μg/l			Na	B D
	Naphthalene		ANtr/7 .2/RES /03:	0.1	rela xati on	L (D
			2018			L

	μg/l	ANtr/7 .2/RES /03: 2018		3) B D L (
Acenaphthyl ene				D L - 0
	μg/l	ANtr/7 .2/RES		0 3) B D
Acenaphthe ne		/03: 2018		L (D L
	μg/l	ANtr/7 .2/RES /03: 2018) B L (
Fluorene				D L - 0
	μg/l	ANtr/7		0 3) B
		.2/RES /03: 2018		D L (D
Anthracene				L - 0
	μg/l	ANtr/7		0 3) B
Phenanthren e		.2/RES /03: 2018		D L

				D
				Ľ
				-
				0
				0
				3
	μg/l	ANtr/7		B
		.2/RES		D
		2018		L
				(D
Fluoranthen				L
e				_
				0
				03
)
	µg/l	ANtr/7 2/RES		B D
		/03:		Ĺ
		2018		(
				Ď
Pyrene				L
				-
				0
				0
				3
	µg/l	ANtr/7		B
		.2/RES /03·		D
		2018		
				(D
Benzo(a)ant				L
hracene				
				—
				- 0
				- 0
	0			
	μg/l	ANtr/7 .2/RES		
	μg/l	ANtr/7 .2/RES /03: 2018		
	μg/l	ANtr/7 .2/RES /03: 2018		
	μg/l	ANtr/7 .2/RES /03: 2018		- 0 3) B D L (D L
Chrysene	µg/l	ANtr/7 .2/RES /03: 2018		
Chrysene	μg/l	ANtr/7 .2/RES /03: 2018		
Chrysene	μg/l	ANtr/7 .2/RES /03: 2018		
Chrysene	µg/l	ANtr/7 .2/RES /03: 2018		
Chrysene	μg/l	ANtr/7 .2/RES /03: 2018		
Chrysene Benzo(a)nyr	μg/l μg/l	ANtr/7 .2/RES /03: 2018 ANtr/7		

		2018		(D
				Ĺ
				-
				0
				03)
	μg/l	ANtr/7 .2/RES		B D
		703: 2018		L
Benzo(b)flu				D L
oranthene				_
				0
				03
	μg/l	ANtr/7 .2/RES		B D
		/03: 2018		L
Davida (1) fla				D L
oranthene				_
				0
				03
	μg/l	ANtr/7 2/RFS) B D
		/03: 2018		L
				(D I
Indeno(123, cd)pyrene				
				0
				0 3
	μg/l	ANtr/7) B
		.2/RES /03: 2018		D L
		2010		(D
Dibenzo(a,h)anthracene				L
				0
				0 2
Benzo(ahi)n	uc/l	ΔN++/7)
Donzo(Em)p	με/1	2 11 111/ /		ч

	erylene		.2/RES /03: 2018			D L (D L
						- 0 0 3)
3	Trihalomethanes					P
	Bromofor	mg/		0.	No rel axa	D L (D L
1	m	1		1	tio n	- 0 5)
i i	Dibromoc hlorometh ane	mg/ l	ANtr/7.2 /RES/05: 2018	0. 1	No rel axa tio n	B D L (D L - 0 0 5)
i i i	Bromodich lorometha ne	mg/ l		0. 06	No rel axa tio n	B D L (D L - 0 0 5)
i v	Chlorofor m	mg/ l		0. 2	No rel axa tio n	, B D L (D L -

						0 0		
						5		
4	Pesticide Residues Organochlorine							
i	Alpha- HCH	μg/l	ANtr/7.2 /RES/01: 2018	0. 01	No rel axa tio n	B D L (D L - 0 0 1)		
i i	Beta HCH	μg/l	ANtr/7.2 /RES/01: 2018	0. 04	No rel axa tio n	B D L (D L - 0 0 3)		
1 1 1	Gamma - HCH (Lindane)	μg/l	ANtr/7.2 /RES/01: 2018	2	No rel axa tio n	B D L (D L - 0 3)		
i v	Delta- HCH	μg/l	ANtr/7.2 /RES/01: 2018	0. 04	No rel axa tio n	B D L O D L - 0 0		

						3
v	Alachlor	µg/l	ANtr/7.2 /RES/01: 2018	20	No rel axa tio n	B D L (D L - 0 0 3)
v i	Aldrin	μg/l	ANtr/7.2 /RES/01: 2018	0. 03	No rel axa tio n	B D L (D L - 0 0 3)
V i i	Dieldrin	μg/l	ANtr/7.2 /RES/01: 2018	0. 03	No rel axa tio n	B D L (D L - 0 0 3)
V i i i	Butachlor	μg/l	ANtr/7.2 /RES/01: 2018	12 5	No rel axa tio n	B D L (D L - 0 0 3)
i x	p,p´-DDE	μg/l	ANtr/7.2 /RES/01: 2018	1	No rel axa	B D L

					tio n	(D L
						- 0
						0 3)
			ANtr/7.2 /RES/01: 2018			B D L
x	o.p'-DDE	uø/1		1	No rel	(D L
	->r	1.0			tio n	- 0
			101/20			0 3)
			ANtt//.2 /RES/01: 2018			D B
x	p,p′-DDD	μg/l		1	No rel axa	(D L
					tio n	- 0
			ANtr/7.2			0 3) B
			/RES/01: 2018			D L
x i	o,p´-DDD	μg/l		1	No rel axa	D L
1					tio n	0
			ANtr/7.2			0 3) B
x i	o,p´- DDT	μg/l	/RES/01: 2018	1	No rel axa	D L
1 1 1					tio n	D L

						- 0 0 3)
x i v	p,p′- DDT	μg/l	ANtr/7.2 /RES/01: 2018	1	No rel axa tio n	B D L (D L - 0 0 3)
X V	Endosulph an					
	Alpha- Endosulph an Beta- Endosulph an Endosulph an sulphate	μg/l	ANtr/7. 2/RES/ 01: 2018	0. 4	No rel axa tio n	B D L (D L - 0 0 3)

		TEST RESUL	TS		
Test Parameter	M e a s u r e m e n t U n i t	Test Meth od	Requirer IS 105 (Drinki Specif Incl Amendr A c c c e p t a b l e	nent as per 00 : 2012 ng Water ications) uding nent No. 4 Pe r mi ssi bl e Li mi t #	Test Res ult

			L i m i		
Pesticide Residues Orga	nophosphorus		l		
2,4- Dichloropheno xyacetic acid	μ g l	ANtr/7 .2/RES /02 : 2018	3 0	N o rel ax ati on	BDL (DL - 0.03)
Monocrotophos	μ g 1	ANtr/7 .2/RES /02 : 2018	1	N o rel ax ati on	BDL (DL - 0.03)
Atrazine	μ g 1	ANtr/7 .2/RES /02 : 2018	2	N o rel ax ati on	BDL (DL - 0.03)
Parathion methyl	μ g 1	ANtr/7 .2/RES /02 : 2018	0	N o rel ax ati on	BDL (DL - 0.03)
Paraoxon methyl	μ g 1	ANtr/7 .2/RES /02 : 2018	-	-	BDL (DL - 0.03)
Isoproturon	μ g 1	ANtr/7 .2/RES /02 : 2018	9	N o rel ax ati on	BDL (DL - 0.03)
Malathion	μ g 1	ANtr/7 .2/RES /02 : 2018	1 9 0	N o rel ax ati on	BDL (DL - 0.03)
Malaoxon	μ g 1	ANtr/7 .2/RES /02 : 2018	-	-	BDL (DL - 0.03)
Ethion	μ g 1	ANtr/7 .2/RES /02 : 2018	3	N o rel ax ati on	BDL (DL - 0.03)
Chlorpyrifos	μ g / 1	ANtr/7 .2/RES /02 : 2018	3 0	N o rel ax	BDL (DL - 0.03

					ati on)
	Phorate				N	וחפ
	Phorate-sulfone	μ	ANtr/7		0	(DI
[g	.2/RES	2	rel	(DL
	Phorate-	/	/02 :	2	ax	0.03
	sulfoxide	1	2018		ati	0.05
					on)

NOTES: • Please see watermark "Original Test Report" to confirm the authenticity of this report. • Results shall be referred to tested sample(s) and applicable to tested parameters only. • Test report shall not be reproduced except in full without prior written approval of Anacon Labs. • Liability of Anacon Labs is limited to invoiced amount only. • Non-perishable and perishable sample(s) shall be disposed off after 30 days and 15 days respectively from the date of issue of Test Report, unless specified otherwise. • #Permissible limit in absence of an alternate source for drinking water. • 'mg/l' is equivalent to 'ppm'. • 'µg/l' is equivalent to 'ppb'. • BDL- Below detection limit. • DL- DL Indicates detection limit of instrument /method and shall be considered as 'absent'. • Result for test no. 11 is not relevant. • ANqr RES-: Inhouse validated method.

REMARKS: As requested by the client, sample was tested for above parameters only. **Sample complies with IS:10500:2012, for tests conducted,** indicating that it is fit for drinking purpose with respect to tested parameters.

-----End of Report-----

Location:	GW2) Kudag Village
	Sample Source:-Borewell Water

		IESI KESULIS			
	M e a s		Requ IS 10 (Drinl Spec In Amen	irement as per 500 : 2012 king Water fifcations) cluding dment No.	
Test Parameter	u r e n t U n i t	Test Method	A c c e p t a b l e L i m	P e r m i s s i b l e L i m	Tes t Res ult
Biological Testing 1. Water			i t	i t #	
Total coliform	P e r 1 0 0 m 1	IS 15185 : 2016	A b s e n t	A b s e n t	Abse nt
Escherichia coli	P e r 1 0 0 m 1	IS 15185 : 2016	A b s e n t	A b s e n t	Ab sen t
Chemical Testing 1. Water					
Alkalinity (as CaCO ₃)	m g / l	IS 3025 (Part 23) : 1986	2 0 0	60 0	187.9 6
Ammonia (as N)	m g l	IS 3025 (Part 34) : 1988	0 5	N o r l a x a t i	BDL (D L – 0.1)

				0	
Anionic surface active agents (as MBAS)	m g /	IS 13428 : 2005 Annex K	0	n 1. 0	BDL (D L – 0.0
Colour	H a c n u n i t s	IS 3025 (Part 4) : 2021	5	15	1)
Cyanide (as CN)	m g / l	IS 3025 (Part 27) : 1986	0 0 5	N o r e l a x a t i o n	BDL (D L- 0.0 05)
Chloride (as Cl)	m g / l	IS 3025 (Part 32) :1988	2 5 0	10 0 0	26.58
Calcium (as Ca)	m g / l	IS 3025 (Part 40) : 1991	7 5	20 0	47.82
Chloramines (as Cl ₂)	m g 1	IS 3025 (Part 26) : 2021	4 0	N o r e l a x a t i o n	BDL (D L – 0.1)
Free residual chlorine	m g l	IS 3025 (Part 26) : 2021	M i n 0	1	BDL (D L- 0.1)
Fluoride (as F)	m g / l	IS 3025 (Part 60) : 2008	1 0	1. 5	0.2 1
Magnesium (as Mg)	m g / l	IS 3025 (Part 46) : 1994	3 0	10 0	13. 59
Nitrate (as NO ₃)	m g / l	APHA 23 rd Edition	4 5	N o r e	BD L (D L – 2)

				1	
				l a x a t i o n	
Odour	-	IS 3025 (Part 5) : 2018	A g r e a b l e	A g r e a b l e	Agre eab le
рН	-	IS 3025 (Part 11) : 2022	6 .5 t o 8 .5	N o r e l a x a t i o n	6.87 at 25° C
Phenolic compounds (as C ₆ H ₃ OH)	m g / l	IS 3025 (Part 43) : 1992	0 0 0 1	0. 0 0 2	BDL (D L- 0.0 01)
Sulphate (as SO4)	m g / l	IS 3025 (Part 24) : 2022	2 0 0	40 0	23. 97
Sulphide (as H ₂ S)	m g l	IS 3025 (Part 29) : 1986	0 0 5	N o r e l a x a t i o n	BDL (D L – 0.0 3)
Taste	-	IS 3025 (Part 8) : 1984	A g r e a b l c	A g r e e a b l e	Agre eab le
Total dissolved solids	m g / l	IS 3025 (Part 16) : 1984	5 0 0	20 0 0	461
Turbidity	N T U	IS 3025 (Part 10) : 1984	1	5	0.7
Total hardness (as CaCO ₃)	m g / l	IS 3025 (Part 21) : 2009	2 0 0	60 0	175.3 6

Mineral Oil	m g l	ANtr/7.2/ RES/06: 2018	0 5	N o r e l a x a t i o n	BD L (D L - 0.0 01)
Chemical Testing 2. Residues In Water					
Arsenic (as As)	m g l	IS 3025 (Part 37) : 1988	0 0 1	N o r e l a x a t i o n	BD L (D L - 0.0 1)
Aluminium (as Al)	m g / 1	IS 3025 (Part 2) : 2019	0 0 3	0 2	BD L (D L - 0.0 1)
Barium (as Ba)	m g / l	IS 3025 (Part 2) : 2019	0 7	N o r e l a x a t i o n	BD L (D L - 0.0 1)
Boron (as B)	m g 1	IS 3025 (Part 2) : 2019	0 5	2 4	BD L (D L - 0.1)
Copper (as Cu)	m g / l	IS 3025 (Part 2) : 2019	0 0 5	1 5	BD L (D L - 0.0 3)
Cadmium (as Cd)	m g 1	IS 3025 (Part 2) : 2019	0 0 0 3	N o r e l	BD L (D L - 0.0 01)

				a x a t i o n	
Iron (as Fe)	m g / l	IS 3025 (Part 2) : 2019	1 0	N o r e l a x a t i o n	0.24
Lead (as Pb)	m g l	IS 3025 (Part 2) : 2019	0 0 1	N o r e l a x a t i o n	BD L (D L - 0.0 01)
Manganese (as Mn)	m g / 1	IS 3025 (Part 2) : 2019	0 1	0 3	BD L (D L - 0.0 5)
Mercury (as Hg)	m g l	IS 3025 (Part 48) : 1994	0 0 0 1	N o r e l a x a t i o n	BD L (D L - 0.0 00 5)
Molybdenum (as Mo)	m g / l	IS 3025 (Part 2) : 2019	0 0 7	N o r e l a x a t i o n	BD L (D L - 0.0 1)

Nickel (as Ni)	m g l	IS 3025 (Part 2) : 2019	0 0 2	N o r e l a x a t i o n	BD L (D L - 0.0 1)
Selenium (as Se)	m g l	IS 3025 (Part 56) : 2003	0 0 1	N o r e l a x a t i o n	BD L (D L- 0.0 01)
Silver (as Ag)	m g / 1	IS 13428 : 2005	0 1	N o r e l a x a t i o n	BD L (D L - 0.0 01)
Total Chromium (as Cr)	m g / l	IS 3025 (Part 2) : 2019	0 0 5	N o r e l a x a t i o n	BD L (D L - 0.0 3)
Zinc (as Zn)	m g / 1	IS 3025 (Part 2) : 2019	5	1 5	BD L (D L - 0.1)

		Т	EST RESULTS			
S N	Test Paramete r	Meas urem ent Unit	Test Meth od	Requirem IS 1050 (Drinkir Specifi Including A No	tent as per 0 : 2012 1g Water cations) Amendment 5. 4	T e s t R e s u l t s
				Ac ce pt ab le Li mi t	Pe rm issi ble Li mi t #	3
I I	Chemical Testing 2. Residues In Wate	r				
4 1	Polychlorin ated biphenyls					
	2,2',5- trichlorobip henyl	μg/l	ANtr/7 .2/RES /04: 2018			B D L D L - 0 0 3)
	2,4,4'- trichlorobip henyl	μ <u>g</u> /l	ANtr/7 .2/RES /04: 2018	0.5	No rela xati on	B D L (D L - 0 0 3)
	2,2',5,5'- tetrachlorobi phenyl	μ <u>g</u> /l	ANtr/7 .2/RES /04: 2018			B D L (D L - 0

						0 3)
			ANtr/7 .2/RES /04: 2018			B D L
	2,2',4,5,5'-	ua/l	2010			(D L
	biphenyl	μĘr				- 0
						0 3)
			ANtr/7 .2/RES /04: 2018			B D L
	2,2',3,4,4',5'	a	2010			(D L
	hexachlorob iphenyl	μg/l				- 0
						0 3)
			ANtr/7 .2/RES /04: 2018			B D L
	2,2',4,4',5,5'		2016			(D L
	hexachlorob iphenyl	μg/l				- 0
						0 3
			ANtr/7 .2/RES /04:			B D L
	2,2',3,4,4',5,		2018			(D L
	heptachloro biphenyl	μg/l				-
						0 3
4	Polynuclear aromatic	hydrocarbons)
2	•	μg/l				В
	Nanhthalene		۵N++/7	0.1	No rela	L
	raphtnatene		.2/RES /03: 2018	0.1	xati on	(D L
			•			_

	1			
				- 0
	110/l	ANtr/7		0 3) B
	~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	.2/RES /03: 2018		D L
Acenaphthyl ene				D L
				0 0
	μg/l	ANtr/7		3) B
		.2/RES /03: 2018		D L
Acenaphthe ne				D L
				0
		A Nitr/7		0 3) B
	~~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~	.2/RES /03: 2018		D L
Fluorene				( D L
				- 0
				0 3 )
	μg/l	ANtr/7 .2/RES /03: 2018		B D L
Anthroene				( D L
Antinacene				- 0
				0 3 )
Dharradhar	μg/l	ANtr/7 .2/RES		B D



				D
				2
				_
				0
				0
				)
	μg/l	ANtr/7 .2/RES		B D
		/03:		L
		2018		<u>(</u>
Electronthan				D L
e				_
				0
				03
				)
	μg/1	ANtr/7 .2/RES		D
		/03: 2018		L
				( D
				L
Pyrene				_
				0
				03
	μσ/l	ANtr/7		) B
	μg/1	.2/RES		D
		703: 2018		L
				( D
Benzo(a)ant				L
hracene				-
				0
				0
				3
	μg/l	ANtr/7		B
		.2/RES /03:		D L
		2018		(
				D
Chrysene				L
				-
				0
				0
				3
Benzo(a)pyr	μg/l	ANtr/7		B
ene		.2/KES /03:		



		2018		( D
				Ĺ
				-
				0
				03)
	μg/l	ANtr/7 .2/RES		B D
		703: 2018		L
Benzo(b)flu				D L
oranthene				_
				0
				03
	μg/l	ANtr/7 .2/RES		B D
		/03: 2018		L
Davida (1) fla				D L
oranthene				_
				0
				03
	μg/l	ANtr/7 2/RFS		) B D
		/03: 2018		L
				( D I
Indeno(123, cd)pyrene				
				0
				0 3
	μg/l	ANtr/7		) B
		.2/RES /03: 2018		D L
		2010		( D
Dibenzo(a,h )anthracene				L
				0
				0 2
Benzo(ahi)n	uc/l	ΔN++/7		) 
Donzo(Em)p	με/1	2 11 111/ /		ч



	erylene		.2/RES /03: 2018			D L ( D L
						- 0 0 3 )
3	Trihalomethanes					P
	Bromofor	mg/		0.	No rel axa	D L ( D L
	m	1		1	tio n	- 0 5 )
i i	Dibromoc hlorometh ane	mg/ l	ANtr/7.2 /RES/05: 2018	0. 1	No rel axa tio n	B D L ( D L - 0 0 5 )
i i i	Bromodich lorometha ne	mg/ l		0. 06	No rel axa tio n	B D L ( D L - 0 0 5 )
i v	Chlorofor m	mg/ l		0. 2	No rel axa tio n	, B D L ( D L -



						0
						05
4	Pesticide Residues Or	ganochlorine	I			)
i	Alpha- HCH	μg/l	ANtr/7.2 /RES/01: 2018	0. 01	No rel axa tio n	B D L D L - 0 0 1 )
i i	Beta HCH	µg/l	ANtr/7.2 /RES/01: 2018	0. 04	No rel axa tio n	B D L ( D L - 0 3 )
i i i	Gamma - HCH (Lindane)	μg/l	ANtr/7.2 /RES/01: 2018	2	No rel axa tio n	B D L ( D L - 0 0 3 )
i v	Delta- HCH	μg/l	ANtr/7.2 /RES/01: 2018	0. 04	No rel axa tio n	B D L ( D L - 0 0



						3
v	Alachlor	µg/l	ANtr/7.2 /RES/01: 2018	20	No rel axa tio n	B D L ( D L - 0 0 3 )
v i	Aldrin	μg/l	ANtr/7.2 /RES/01: 2018	0. 03	No rel axa tio n	B D L ( D L - 0 0 3 )
V i i	Dieldrin	μg/l	ANtr/7.2 /RES/01: 2018	0. 03	No rel axa tio n	B D L ( D L - 0 0 3 )
V i i i	Butachlor	μg/l	ANtr/7.2 /RES/01: 2018	12 5	No rel axa tio n	B D L ( D L - 0 0 3 )
i x	p,p´-DDE	μg/l	ANtr/7.2 /RES/01: 2018	1	No rel axa	B D L



					tio n	( D L
						0 0 3 )
x	o,p´-DDE	μg/l	ANtr/7.2 /RES/01: 2018	1	No rel axa tio n	B D L ( D L - 0 0 3 )
x i	p,p´-DDD	μg/l	ANtr/7.2 /RES/01: 2018	1	No rel axa tio n	B D L ( D L - 0 0 3 )
x i i	o,p´-DDD	μg/l	ANtr/7.2 /RES/01: 2018	1	No rel axa tio n	B D L ( D L - 0 0 3 )
x i i i	o,p´- DDT	μg/l	ANtr/7.2 /RES/01: 2018	1	No rel axa tio n	B D L ( D L



Details of Salient Features

						- 0 0 3 )
x i v	p,p´- DDT	µg/l	ANtr/7.2 /RES/01: 2018	1	No rel axa tio n	B D L ( D L - 0 0 3 )
X	Endosulph					
	Alpha- Endosulph an Beta- Endosulph an Endosulph an sulphate	μg/l	ANtr/7. 2/RES/ 01: 2018	0. 4	No rel axa tio n	B D L ( D L - 0 0 3 )

			TEST RESUL	TS		
		M e a		Requirer IS 105 (Drinki	nent as per 00 : 2012 ng Water	
		s u r		Specif Incl Amendr	ications) uding nent No. 4	
P	Test arameter	e m e n t U n i t	Test Meth od	A c c e p t a b l e	Pe r mi ssi bl e Li ti mi t #	Test Res ult

OT DECLUTO



			L i m i		
Pesticide Residues Orga	nophosphorus	I			
2,4- Dichloropheno xyacetic acid	μ g 1	ANtr/7 .2/RES /02 : 2018	3 0	N o rel ax ati on	BDL (DL - 0.03 )
Monocrotophos	μ g l	ANtr/7 .2/RES /02 : 2018	1	N o rel ax ati on	BDL (DL - 0.03 )
Atrazine	μ g 1	ANtr/7 .2/RES /02 : 2018	2	N o rel ax ati on	BDL (DL - 0.03 )
Parathion methyl	μ g 1	ANtr/7 .2/RES /02 : 2018	0	N o rel ax ati on	BDL (DL - 0.03 )
Paraoxon methyl	μ g 1	ANtr/7 .2/RES /02 : 2018	-	-	BDL (DL - 0.03 )
Isoproturon	μ g 1	ANtr/7 .2/RES /02 : 2018	9	N o rel ax ati on	BDL (DL - 0.03 )
Malathion	μ g 1	ANtr/7 .2/RES /02 : 2018	1 9 0	N o rel ax ati on	BDL (DL - 0.03 )
Malaoxon	μ g 1	ANtr/7 .2/RES /02 : 2018	-	-	BDL (DL - 0.03 )
Ethion	μ g 1	ANtr/7 .2/RES /02 : 2018	3	N o rel ax ati on	BDL (DL - 0.03 )
Chlorpyrifos	μ g / 1	ANtr/7 .2/RES /02 : 2018	30	N o rel ax	BDL (DL - 0.03



				ati on	)
Phorate Phorate-sulfone Phorate- sulfoxide	μ g / 1	ANtr/7 .2/RES /02 : 2018	2	N o rel ax ati on	BDL (DL - 0.03 )

NOTES: • Please see watermark "Original Test Report" to confirm the authenticity of this report. • Results shall be referred to tested sample(s) and applicable to tested parameters only. • Test report shall not be reproduced except in full without prior written approval of Anacon Labs. • Liability of Anacon Labs is limited to invoiced amount only. • Non-perishable and perishable sample(s) shall be disposed off after 30 days and 15 days respectively from the date of issue of Test Report, unless specified otherwise. • #Permissible limit in absence of an alternate source for drinking water. • 'mg/l' is equivalent to 'ppm'. • 'µg/l' is equivalent to 'ppb'. • BDL- Below detection limit. • DL- DL Indicates detection limit of instrument /method and shall be considered as 'absent'. • Result for test no. 11 is not relevant. • ANqr RES-: Inhouse validated method.

**REMARKS:** As requested by the client, sample was tested for above parameters only. **Sample complies with IS:10500:2012, for tests conducted,** indicating that it is fit for drinking purpose with respect to tested parameters.







Fig 5: Sampling Locations for Water

ent OI Mines Samri Mines Division Hindalco Industries Ltd

Apun/Air/R/Aug 2017/1125/05/8/2017



# ANNEXURE - III

#### REGIONAL OFFICE CHHATTISGARH ENVIRONMENT CONSERVATION BOARD

Bank Colony, Behind B.T.I., Nawapara, Ambikapur (C.G.) Fax/Phone 07774-231936

No. 234 /RO/TS/CECB/2017

To,

Ambikapur, Dt. 05 8 2017

M/s Hindalco Industries Limited, (Kudag Bauxite Mine) Village- Kudag, Tehsil - Samri, District - Balrampur-Ramanujganj (C.G.)

Subject : Renewal of consent of the board under Section 21 of the Air (Prevention & Control of Pollution) Act, 1981.

Ref.: Your online application no. 486480 dated 21/07/2017 and subsequent correspondence ending dated 04/08/2017.

With reference to your above, application consent and license are hereby renewed for a period of Five years i.e. from 01/12/2017 to 30/11/2022 with the terms and conditions incorporated in the consent issued by Board Office letter No. 6884/TS/CECB/2007, Raipur, dated 24/12/2007, subsequent renewal of consent issued by Board and additional condition mentioned below:-

NAME	PRODUCTION CAPACITY
Mining of Bauxite Ore	0.6 Lakhs T./Annum
	(Zero point Six Lakhs Tones Per Annum)

#### Additional Conditions:

- 1. The Industry shall operate & maintain the air pollution control system effectively & regularly. Effective steps shall be taken to control fugitive dust emission. Fixed type automatic water sprinkling system shall be installed at haul roads/other roads, ore stock yard etc. Dust suppression system (water sprinkling arrangement) shall be made more effective to ensure ambient air quality within prescribed limit in and around the mine area all the time.
- 2. Regular monitoring for the measurement of air pollutants level in ambient shall be carried out. Industry shall submit air quality monitoring reports to the Board regularly.
- 3. Industry shall ensure safe and scientific arrangement for disposal of all solid wastes. Excavated area shall be reclaimed scientifically.
- 4. All internal roads shall be made pucca & shall be maintained properly. Dust, muck & sludge generated due to transportation on the road shall be cleaned and disposed off properly. Industry shall maintain good house keeping within mine lease area. Industry shall ensure the transportation of ore in duly covered vehicles.
- 5. Industry shall use fly ash based products in their construction/ repairing activities.
- 6. Wide green belt of broad leaf local species shall be developed all along the mine lease area. As for as possible maximum area of open spaces shall be utilized for plantation purposes.
- Industry shall submit Environment statement to the Board as per provision of Environmental (Protection) Amendment Rule, 1993 for the previous year ending 31st March on or before 30th September every year.
- 8. Chhattisgarh Environment Conservation Board reserves the rights to revoke the Consent at any time for any violation/non-compliance.
  - Please acknowledge the receipt of this letter.

#### For and on behalf of CHHATTISGARH ENVIRONMENT CONSERVATION BOARD



Regional Officer, Chhattisgarh Environment Conservation Board, Ambikapur

ient of Mines Samri Mines Division Hindalco Industries Ltd

tpur/water rug 201

#### **REGIONAL OFFICE**

CHHATTISGARH ENVIRONMENT CONSERVATION BOARD

Bank	Colony, Behind B.T.I., Nawapara, A	mbikapur (C.G.) Fax/Phone 07774-231936
No.	833/RO/TS/CECB/2017	Ambikapur, Dt. 05 8 2917
To,		
	M/s Hindalco Industries Lir	nited,

M/s Hindalco Industries Limited, (Kudag Bauxite Mine) Village- Kudag, Tehsil - Samri, District - Balrampur-Ramanujganj (C.G.)

Subject : Renewal of consent of the board under Section 25/26 of the Water (Prevention & Control of Pollution) Act, 1974.

Ref.: Your online application no. 486480 dated 21/07/2017 and subsequent correspondence ending dated 04/08/2017.

With reference to your above, application consent and license are hereby renewed for a period of Five years i.e. from 01/12/2017 to 30/11/2022 with the terms and conditions incorporated in the consent issued by Board Office letter No. 6880/TS/CECB/2007, Raipur, dated 24/12/2007, subsequent renewal of consent issued by Board and additional condition mentioned below:-

NAME	PRODUCTION CAPACITY	
Mining of Bauxite Ore	0.6 Lakhs T./Annum	
	(Zero point Six Lakhs Tones Per Annum)	

#### Additional Conditions:

- 1. Industry shall operate and maintain the effluent treatment system effectively and regularly. Industry shall ensure treated effluent quality within the standards prescribed by Board published in Gazette Notification dated 25.03.1988. Treated effluent shall be used for dust suppression, domestic use, irrigation, other useful purposes etc. Industry shall not discharge any treated/untreated effluent into the river or any other surface water bodies. No effluent shall be discharged outside of the mine premises in any circumstances; hence zero discharge condition shall be maintained all the time; failing which, this renewal of consent may be cancelled.
- 2. Industry shall ensure safe and scientific arrangement for disposal of all solid wastes. Excavated area shall be reclaimed scientifically.
- 3. All internal roads shall be made pucca & shall be maintained properly. Dust, muck & sludge generated due to transportation on the road shall be cleaned and disposed off properly. Industry shall maintain good house keeping within mine lease area. Industry shall ensure the transportation of ore in duly covered vehicles.
- 4. Industry, shall use fly ash based products in their construction/ repairing activities.
- 5. Industry shall submit monitoring report of effluent regularly.
- 6. Wide green belt of broad leaf local species shall be developed all along the mine lease area. As for as possible maximum area of open spaces shall be utilized for plantation purposes.
- 7. Provision of water harvesting system should be provided in the industry premises.
- Industry shall submit Environment statement to the Board as per provision of Environmental (Protection) Amendment Rule, 1993 for the previous year ending 31st March on or before 30th September every year.
- 9. Chhattisgarh Environment Conservation Board reserves the rights to revoke the Consent at any time for any violation/non-compliance.

Please acknowledge the receipt of this letter.

For and on behalf of

CHHATTISGARH ENVIRONMENT CONSERVATION BOARD

Regional Officer

Chhattisgarh Environment Conservation Board,

Ambikapur

Hindalco Industries Ltd. Samri Mines Division Distt.Balrampur (C.G.) Date. 7.3.17 (122) Received by .....

dent of Mines Samri Mines Division Hindalco Industries Ltd

#### **Hindalco Industries Limited**

#### **Mines Division Samri**

#### Annexure - IV & V

# Lease Wise production 2022-23 (April'22 - Sept.'22)

Lease	Production (MT)	Mined out Area (Ha.)	Reclaimed Area (Ha.)
Samri	2,05,550	6.083	1.208
Tatijharia	2,03,500	7.027	2.438
Kudag	22,000	1.256	0.101
Total	4,31,050	14.366	3.747

# Lease Wise Afforestation 2022-23 (April'22 - Sept.'22)

Lease	No. of Saplings planted	Afforested Area (Ha.)
Samri	39,071	10.918
Tatijharia	17,110	5.628
Kudag	6,020	2.024
Total	62,201	18.57

Agent of Mines Samri Mines Division Hindalco Industries Ltd

#### Annexure-VI

## Actual Expenditure incurred in Environment Management Plan: -

Total cost incurred for protection of environment in Samri, Tatijharia & Kudag Bauxite mine of Hindalco Industries Ltd. of Chhattisgarh state during the first half period of F.Y. 2022-23 (April 2022 to Sept. 2022).

S.No.	Environmental Protection measure	Actual Cost (Lac) FY 2022-23 (April'22 to Sept.'22)
1	Environment Monitoring	3.00
2	Green Belt	3.26
3	Occupational Health Monitoring	4.50
4	Reclamation/ Rehabilitation on mined out area (Samri – 1.208 Ha., Tatijharia – 2.438 Ha., Kudag – 0.101 Ha.) – <b>Total – 3.747 Ha.</b>	11.24
	Total	22.00

- Environment monitoring jobs has been out sourced to Annacon Lab, recognized by MoEF (GOI) & NABL etc.
- One centralized nursery has been established at Samri mines for Samri, Tatijharia & Kudag lease.
- Reclamation of mined out land has been out sourced along with production. Average cost of reclamation considered @ 3.00 Lac per ha

Samri Mines Division Hindalco Industries Ltd


भारत सरकार जल शक्ति मंत्रालय जल संसाधन, नदी विकास और गंगा संरक्षण विभाग केन्द्रीय भूमि जल प्राधिकरण Government of India Ministry of Jal Shakti Department of Water Resources, River Development & Ganga Rejuvenation Central Ground Water Authority

# (भूजल निकासी हेतु अनापत्ति प्रमाण पत्र) NO OBJECTION CERTIFICATE (NOC) FOR GROUND WATER ABSTRACTION

Project Name:				Kudag Bauxite Mines Of M/s Hindalco Industries Limited												
Project Address:				Village Kudag Block Kusmi												
Village:				Kudag				1	Block: Kusmi							
District: Pin Code: Communication Address: Address of CGWB Regional Office :				Balrampur				1	State: Chhat		ttisgarh					
				Hindalco Industries Ltd Samri Mine Division Baba Chpwk At Post Kusmi, Distt Balrampur,, Kusmi, Balrampur, Chhattisgarh - 497224 Central Ground Water Board North Central Chhattisgarh, 2nd Floor, Lk Corporate And Logistic Park, Dhamtari Road, Nh-30, Dumartarai, Raipur, Chhattisgarh - 492015												
															1.	NOC No.: CGWA/NOC/MIN/REN/1/2021/6171
2	Application	ation No.: 21-4/1433/C				:T/MIN/2018				Category: (GWRE 2017)		Sat	Safe			
4.	Project Status: Existing Wit Requirment				h Additional Ground Water				5.	NOC T	/pe:	Re	Renewal			
6.	Valid from: 29/04/2021								7.	Valid u	p to:	28/	28/04/2023			
8.	Ground W	ater Abst	traction F	Permi	tted:											
Fresh Water				Saline	Water	8		Dewate		atering		Total				
	m³/day m³/y		ear	m³/day		m³/year		m³/day		n	n³/year	m	//day	m³/	/year	
	2.00	620	.00													
9.	Details of	ground w	vater abs	stracti	on /Dew	atering	struct	ures								
Total Exis					ting No.:3					Tota		tal Prop	al Proposed N		0.:1	
				DW	DCB	BW	TW	MP	MPu	DW	DCB	BW	TW	MP	MPu	
	Abstraction Structure* 1				0	0	2	0	0	0	0	1	0	0	0	

### (Compliance Conditions given overleaf)

This is an auto generated document & need not to be signed.

18/11, जामनगर हाउस, मानसिंह रोड, नई दिल्ली - 110011 / 18/11, Jamnagar House, Mansingh Road, New Delhi-110011 Phone: (011) 23383561 Fax: 23382051, 23386743 Website: cgwa-noc.gov.in

Agent of Mines Samn Mines Division Hindalco Industriae I .

पानी बचाये - जीवन बचाये SAVE WATER - SAVE LIFE

## Validity of this NOC shall be subject to compliance of the following conditions:

### Mandatory conditions:

Installation of tamper proof digital water flow meter with telemetry on all the abstraction selucture(e) shall be mandatory for all users seeking No Objection Certificate and internation regarding their installation shall be communicated to the CGWA within 30 days of grant of No Objection Certificate.

2) Proponents shall mandatority get water flow meter calibrated from an authorized agency once in a year

3) Construction of purpose-built observation wells (piezometers) for ground water level monitoring shall be mandatory as per Section 14 of Guidelines. Water level data shall be made available to CGWA through web portal. Detailed guidelines for construction of piezometers are given in Annexure-II of the guidelines.

4) Proponents shall monitor quality of ground water from the abstraction structure(s) once in a year. Vieter samples from bore wells/ tube wells / dug wells shall be collected during April/May every year and analysed in NABL accredited laboratories for basic parameters (cations and anions), heavy metals, posticides/ organic compounds etc. Water quality data shall be made available to CGWA through mounted control of the same set of the same

5). In case of mining projects, additional key wells shall be established in consultation with the Regional Director. CGWB for ground water level monitoring four (4) times a year (January, May, August and November) in core as well as buffer zones of the mine. the web portal

6). In case of mining project the firm shall submit water quality report of mine discharger seepage from Govt, approved NABL accreation lab

7) The firm shall report compliance of the NOC conditions online in the wabsite (www.cgwa.noc.gov.in) within one year from the date of issue of this NOC.

8) Industries abstracting ground water in excess of 100 m 3.1d shall undertake enrulal water audit through certified auditors and submit audit reports within three months of completion of the same to CGWA. All such industries shall be required to reduce their ground water use by at least 20% over the next three years through appropriate means.

9) Application for renewal can be submitted online from 90 days before the expiry of NOC. Ground water withdrawal, if any, after expiry of NOC shall be illegal & lable for legal action as per provisions ronment (Protection) Act. 1986

10) This NOC is subject to prevailing Central/State Government rules/taxes/norms or Court orders related to construction of tube well/ground water abstraction structure / recharge or conservation structure/discharge of effluents or any such matter as applicable

#### General conditions:

11) No additional ground water abstraction and/or de-watering structures shall be constructed for this purpose without prior approval of the Central Ground Water Authority (CGWA)

12) The proponent shall seek prior permission from CGWA, for any increase in quantum of groundwater abstraction (more than that permitted in NOC for specific period)

12) Proponents shall install root top rain water harvesting in the premise as per the existing building bye laws in the premise.

14) The project proponent shall take all necessary measures to prevant contamination of ground water in the premises failing which the firm shall be responsible for any consequences ansing

15). In case of industries that are likely to contaminate the ground water, no recharge measures shall be taken up by the firm inside the plant premises. The runoff generated from the rooftop shall be stored and put to beneficial use by the firm

16) Wherever feesible, requirement of water for greenbeit (horticulture) shell be met from recycled / treated waste water.

17) Wherever the NOC is for abstraction of saline water and the existing wells (s) is fare yielding hesh water, the same shall be sealed and new tubewell(s) tapping saline water zone shall be constructed within 3 months of the issuance of NOC. The firm shall also ensure sale disposal of table residue, if any

18) Unexpected visitations in antow of ground water into the mine pil, if any, shall be reported to the concerned Regional Director, Central Ground Water Board

19) In case of violation of any NOC conditions, the applicant shall be liable to pay the penalties as per Section 16 of Guidelines.

20) This NOC does not absolve the proponents of their obligation / requirement to obtain other statutory and administrative clearances from appropriate authorities

21) The issue of this NOC does not imply that other statutory / administrative clearances shall be granted to the project by the concerned authorities. Such authorities would consider the project on marks and take docisions independently of the NDC.

22) In case of change of ownership, new owner of the industry will have to apply for incorporation of necessary changes in the No Objection Centificate with documentary proof within 60 days of taking over possession of the premises

23) This NOC is being issued without any prepudice to the directions of the Honote NGT/court orders in cases related to ground water or any other related motions

24) Proponents, who have installed constructed anti-cial recharge structures in compliance of the NOC granted to them previously and have availed rebets of upto 50% (titly percent) in the ground-water abstraction charges/ground water restoration charges, shall continue to regularly maintain antificial recharge structures

25) Industries which are likely to cause ground water pollution e.g. Tanning, Staughter Houses, Dye, Chemical/ Petrochemical, Cost washeries, pharmaceutical, other hazardous units etc. (as per CPCE list) need to undertake necessary well head protection measures to ensure prevention of ground water pollution as per Annexure III of the guidelines.

26) In case of new infrastructure projects having ground water abstraction of more than 20 m3/day, the firm/entity shall ensure implementation of dual water supply system in the projects

27) In case of infrastructure projects, paved/parking area must be covered with interlocking/perforsted tiles or other suitable measures to ensure groundwater infiltration/harvesting

28) In case of cost and other base metal mining projects, the project proponent shall use the advance dewatering technology (by construction of series of dewatering abstraction structures) to avoid

tion of surface water 29) The NOC issued is conditional subject to the conditions mentioned in the Public notice dated 27 01.2021 failing which penalty/EC/cancellation of NOC shall be imposed as the case may be 30) This NOC is issued subject to the clearance of Expert Appraisal Committee (EAC) (/ applicable).

(Non-compliance of the conditions mentioned above is likely to result in the cancellation of NOC and legal action against the proponent.)

Agent of Mines Samn Mines Division Hindelco Industries Ltd