

The Additional PCCF, Ministry of Environment, Forests & Climate Change Regional office (West Central Zone), Ground Floor, East Wing, "New Secretary Building" Civil lines, Nagpur - 440001

28/05/2019

Subject: Compliance Status of Environment Clearance conditions of Durgmanwadi

Dear Sir,

Attached please find the compliance condition of the Environment Clearance granted to Durgmanwadi Bauxite Mines on 5th of February 2007 vide clearance No J-11015/239/2006-IA-II (M) under EIA 2006.

Please be informed that, since 17/03/2018, the mining activities at our Durgmanwadi Bauxite Mines have been stopped as per the directions and show cause notice dated 15th March 2018, bearing reference N0.Z-11013/3/2018-IA-II (M), issued by Ministry of Environment Forest & Climate Change. The same is enclosed for your ready reference as Annexure - 1.

Further, it may be noted that Environmental Clearance granted to **Durgmanwadi Bauxite Mines** is kept in abeyance by Ministry of Environment Forest & Climate Change.as per their direction dated: 6th March 2019, bearing reference no. F. No. J-11015/239/2005-IA-II (M).The same is enclosed for your ready reference as Annexure - 2.

We are herewith submitting the compliance against the conditions laid down in the Environment Clearance for the 6 months duration (October'18 to March'19).

Hope you will please find the above in order.

Thanking you,

los dispersional d

Uday ♥ Pawar Head – West Coast Mines Hindalco Industries Limited.

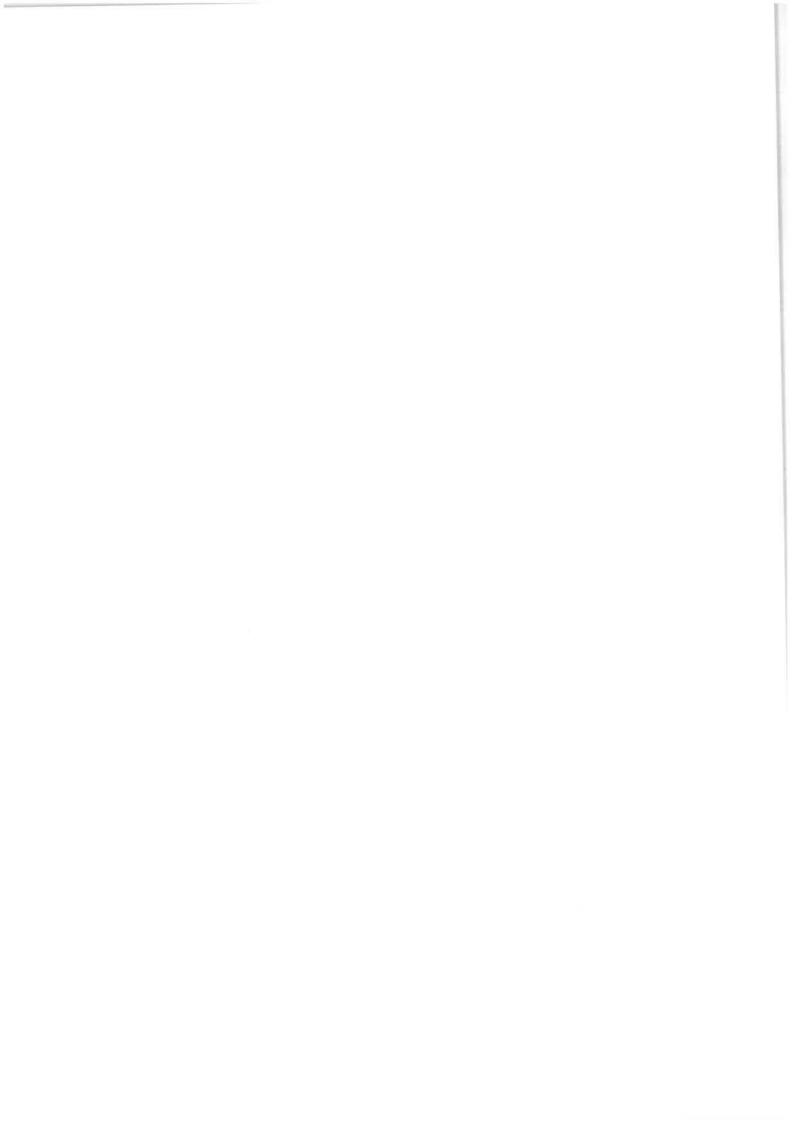
Encl. A/a Copy to:

The Member Secretary,
 Central Pollution Control Board,
 Parivesh Bhavan, East Arjun Nagar,
 DELHI - 110032

The Regional Officer
 Maharashtra Pollution Control Board
 Udyog Bhawan, <u>KOLHAPUR</u>.

COMPLIANCE STATUS OF ENVIRONMENTAL CLEARANCE CONDITIONS

Environment Clearance Durgmanwadi Bauxite Mines granted on 5th of February 2007 vide clearance No J-11015/239/2006-IA-II (M)


	.No.	Conditions	Compliance
Spe	ecific (Conditions :-	
i)	The prince of Sta	te mining activity to be restricted to evaluate land only for which the enservation plan has been accepted by the late Government.	land only when the mine was operational Please be informed that, since 17/03/2018 the mining activities at Durgmanwad Bauxite Mines have stopped as per the MoEF&CC directions and show cause notice dated 15th March 2018.
ii)	pro	eparation of conservation plan for otection of endangered fauna reported in study area.	Conservation Plan for protection of endangered species was prepared and submitted to MoEF at the time of grant of Environment clearance.
iii)	bac	p soil to be stacked properly with proper pe with adequate safeguards & kfilled for reclamation & rehabilitation mined out area.	rehandled and 1 c
iv)	than The	erburden to be stacked at earmarked app site(s) only at max height not more a 20 m and slopes not to exceed 28 ⁰ . OB dumps shall be scientifically etated with suitable native species to vent erosion and surface runoff.	All the overburden dumps were backfilled into the mined out voids, when the mine was operational. The backfilled areas have been scientifically vegetated through afforestation.
v)	Exte	ernal OB dumps and other wastes to be ked at earmarked sites only.	There are no external dumps for overburden stacking.
vi)	appr	ch drains and siltation ponds of copriate size to be constructed to arrest and sediment flows.	The run-off mine was channelized towards settling tanks and silt check dams. All the natural storm water streams are passed through silt check dams. The mine is
⁄ii)	Drill invo	ling and blasting should not be lved.	not operational since 17 th March 2018. No drilling & blasting was carried out when the mine was operational.
riii)	ha.	plants per ha.	The plantation has been carried out every year as per plan. Till date 3,36,999 plants have been planted within & outside the lease area and at feeder road side. The area

ix)	Implement suitable conservation measures to augment ground water resources in the area. Regular monitoring of ground water level	covered with plantation within mine lease area is 74.04 Ha. As Mine is not in operation since 17 March 2018, no reclamation activities were being carried out since then. During the year 2018-19, 25000 saplings and grass seeds have been planted to cover 12 Ha. 6 No. of water harvesting ponds have been developed in the mined out area when the mine was operational. The ground water quality is monitored on
A)	and quality shall be carried out by establishing a network of existing wells.	quarterly basis through MoEF approved third party.
xi)	Plan rainwater harvesting measures on long-term basis should be planned and implemented.	6 No. of water harvesting ponds have been developed in the mined out area when the mine was operational which is still exist.
xii)	 a) Vehicular emissions to be kept under Control. b) The vehicles should be covered with a tarpaulin and shall not be over loaded. c) Regular water sprinkling arrangements shall be made to control the fugitive dust generation from the haul roads. 	There was a system to check the PUC certificates of hired trucks, when the mine was operational. Timely maintenance of all heavy equipment was carried out. All transport vehicles were covered with tarpaulin. The vehicles were weighed within the mines and all the vehicles were carrying bauxite as per RLW, when the mine was operational. Mobile water tankers were used to sprinkle water on haul roads, when the mine was operational.
xiii)	Install sewage treatment plant for colony. ETP should be provided for workshop and waste generation from mining operation.	Not Applicable – There is no colony set up at the mines.
xiv)	A final Mine closer plan along with details of Corpus Fund should be submitted to the MoEF 5 years in advance of final mine closer for approval.	Please be informed that, since 17/03/2018, the mining activities in Durgmanwadi Bauxite Mines has been stopped as per the MoEF&CC directions and show cause notice dated 15th March 2018, bearing reference N0.Z-11013/3/2018-IA-II (M), issued by Ministry of Environment Forest & Climate Change. Final Mine closure plan will be submitted to concerned agency within prescribed time limit and as per the direction received from competent authority.

General Conditions.	
No change in mining technology and scope of working without prior approval	Noted and agreed.
No change in calendar plan including excavation, quantum of mineral ore & waste.	Noted and agreed.
Conservation measures for protection of flora & fauna in the core & buffer zone to be drawn	Mined out area were scientifically afforested For this we procured soil, manure, verm compost, bagasse and press-mud to improve the condition of plantation base. We have engaged experts to implement afforestation activity. Care had been taken to plant mostly local flora along with some exotic species. The working hours were restricted only to develop the second se
Establish four ambient air quality monitoring stations in the core zone & buffer zone for RPM, SPM, SO2, NOx. Monitoring.	day light when mine was operational. 4 Nos. of Ambient air quality stations have been established in the core and as well as in buffer area.
Regular submission of data on ambient air quality (RPM, SPM, SO2,NOx)	The monitoring is carried out as per the schedule and Data is submitted regularly. The Post monsoon and winter season reports are attached.
Regular control of fugitive dust emissions from all the sources	The dust generated during mining operations was suppressed by atomized water sprinklers and during mining and transportation by mobile water tankers when the mine was operational.
	All the noise generating machineries were enclosed to suppress the noise during operation. The noise level in the work environment was below 85dBA and all the workers engaged during operation of HEMM were provided with ear-plugs / muffs, when the mine was operational.
prescribed and a CCD too the	There was no industrial waste water, as there was no processing was carried out, when the mine was operational.
protective received	Regular training to employees on Safety and Health aspects was provided, when mine was in operation.
	No change in mining technology and scope of working without prior approval No change in calendar plan including excavation, quantum of mineral ore & waste. Conservation measures for protection of flora & fauna in the core & buffer zone to be drawn Establish four ambient air quality monitoring stations in the core zone & buffer zone for RPM, SPM, SO2, NOx. Monitoring. Regular submission of data on ambient air quality (RPM, SPM, SO2,NOx) Regular control of fugitive dust emissions from all the sources Take measures for control of noise levels below 85 dBA in the work environment Proper collection, treatment of industrial waste water to conform the standards prescribed under GSR 422 (E) dt.19 th May, 1993 Provide adequate training and information on safety & health aspects & provide

	•	-	ovided with dusk n when the mine was	nasks & ear-plugs / operational.
x)	Undertake periodical Occupational health surveillance program of workers	year for		as done once in a and there were no the hazards.
xi)	Set-up separate environmental management cell with suitable qualified personnel.	unit lev		en employed at the l Environment cell
xii)	The project authority shall inform to the regional office located at Bhopal regarding date of financial closures and final approval of the project by the concerned authorities and the date of start of land development.	the mir Bauxite MoEF	ning activities at Mines have been	since 17/03/2018, our Durgmanwadi stopped as per the and show cause 018.
xiii)	The funds earmarked for environmental protection measures shall be kept in separate account and should be diverted for other purposes.	implem measure as furni	es along with item- shed below.	nmental protection -wise breakup such
		SO. NO.	Shop Order Description	Expenditure for the year 2018 -19 (Rs.)
		1610 & 1611	Aftercare (watering)	4,34,560.0
		1612	Environment Monitoring	7,86,920.0
		1613	Dust suppression	64,770.0
		1614	Statutory Compliance	19,743.0
		1615	Environment Others	1,63,351.0
		1616	ISO – 14001 system	0.0
		3019	Mine restoration & rehabilitation	13,57,178.0
xiv)	The project authority shall inform to the regional office located at Bhopal regarding date of financial closures and final approval of the project by the concerned authorities and the date of start of land development.	the m Bauxite MoEF notice referen issued Climat will be	ining activities e Mines has been & CC direction dated 15th Ma ce N0.Z-11013/ by Ministry of En e Change. Final	stopped as per the s and show causerch 2018, bearing
xv)	The project authorities should extend full cooperation to the officer(s) of the Regional office by furnishing the requisite data/information / monitoring reports.		l and Noted	

	The project authority should advertise at	A copy of clearance letter was marked to concern Panchayat. The advertisement was published in the local daily news papers "Tarun Bharat" & "Pudari" on 08/02/2007.
--	---	--

Annexure - 1

Speed Post

No. Z-11013/3/2018-IA-II (M)
Government of India
Ministry of Environment, Forest and Climate Change
IA-II (Non Coal Mining)

Vayu Wing, 3rd Floor, Indira Paryavaran Bhavan, Aliganj, Jor Bagh Road, New Delhi-110 003

Dated: 15th March, 2018

Sub.: Direction to the Unit under section 5 of the Environment (Protection) Act, 1986 – for keeping in abeyance the Environmental Clearance -regarding

Whereas, Environmental Clearance was granted vide letter No J-11015/239/2006-IA.II(M) dated 5.02.2007 for Durgaamanwadi Bauxite Mines Project of M/s Hindalco Industries Limited at village Durgmanwadi & Padsill, Taluka: Radhanagri in Kolhapur District in Maharashtra.

Whereas, as per direction of Hon'ble Supreme Court a team constituted by the Ministry visited the mining site of M/s Punthembekar Minerals limited during 10-11th October, 2017 and submitted its report to the Ministry. The matter was thereafter examined in the Ministry and it has found that Durgaamanwadi Bauxite Mines Project of M/s Hindalco Industries Limited is located within 1 KM of the Radhanagri Wildlife Sanctuary.

Whereas, the Hon'ble Supreme Court in its order dated 04.08.2006 in IA 1000 W.P. (c) 202 of 1995 (T.N Godavaram vs. Union of India) prohibited the mining activity around protected area as an interim measure and directed that 1 Km safety zone shall be maintained subject to the order that may be made in this I.A. regarding Jamua Ramgarh Sanctuary.

Whereas, as per Ministry O.M. No. J-11013/41/2006-IA (I) dated 02/12/2009, all the development projects/activities for which the environment clearance had been granted prior to 02/12/2009 and were located within 10km radius of National Park/Wildlife Sanctuary were required to obtain wildlife clearance from National Board for Wildlife. In this regard, a public notice was also inserted in newspapers by the Impact Assessment Division of the Ministry in January 2009 asking the Project Proponents to seek wildlife clearance from Standing Committee of National Board for Wildlife by 31st January 2009. But it has been observed that Durgaamanwadi Bauxite Mines Project of M/s Hindalco Industries Limited is operating without obtaining wildlife clearance from the Standing Committee of National Board for Wildlife.

Whereas, in exercise of powers vested under Section 5 of Environment (Protection) Act, 1986 you are directed to immediately stop all the mining activity within 1 KM of Radhanagri Wildlife Sanctuary pursuant to Hon'ble Supreme Court order dated 04.08.2006 in IA 1000 W.P. (c) 202 of 1995 (T.N Godavaram vs. Union of India) and to show cause as to why the Environmental Clearance granted vide letter No J-11015/239/2006-IA.II(M) dated 5.02.2007 for Durgaamanwadi Bauxite Mines Project of M/s Hindalco Industries Limited should not be revoked for carrying out mining activity since 1994 till 05.02.2007 without obtaining EC, within 1KM of Radhanagri Wildlife Sanctuary in contravention to Hon'ble Supreme Court in its order dated 04.08.2006 in IA 1000 W.P. (c) 202 of 1995 (T.N Godavaram vs. Union of India)and beyond 1KM but within 10 KM from Radhanagri Wildlife Sanctuary without obtaining the Wildlife Clearance from Standing Committee of National Board of Wildlife. You are requested to reply within 15 days of receipt of this letter, along with past production details since inception of mines duly authenticated by Department of Mines & Geology, copy of Consent to Establish (CTE) and Consent to Operate (CTO) issued by State Pollution Control Board from time to time, failing which your EC may be considered for revocation.

Lastly, it may be noted that violation of the direction under Section 5 of Environment (Protection) Act, 1986 shall attract penal action under section 15 of the Environment (Protection) Act, 1986.

This issues with the approval of the Competent Authority.

(Surender Kumar) Scientist – 'G'

Email: s.kumar1958@gov.in Phone/Fax: 011-24695340

To, M/s Hindalco Industries Limited P.O Radhanagri Kolhapur, Maharashtra-416212

Copy to:

- 1) **The Chief Secretary**, Government of Maharashtra, 6th Floor Main Building, Mantralaya, Dr. Madan Cama Road, Fort, Mumbai-400032
- 2) **The Chairman**, Maharashtra Pollution Control Board, Kalpataru Point, 3rd and 4th floor, Opp. Cine Planet, Sion Circle, Mumbai-400 022.
- 3) **The Controller General**, Indian Bureau of Mines 2nd Floor, Indira Bhawan, Civil Lines, Nagpur- 440 001 Phone: + 91 712 2560041, Fax: + 91 712 2565073 email: cq@ibm.gov.in
- 4) **The Director**, Directorate of Geology & Mining, Government of Maharashtra, "Khanij Bhawan", Plot No 27, Shivaji Nagar, Cement Road, Nagpur-440010
- 5) **The District Collector** (Kolhapur), District Collector Office, Kolhapur New Shahupuri, Kolhapur, Maharashtra 416003
- 6) The Additional Principal Chief Conservator of Forests (C), Ministry of Environment, Forest and Climate Change, Regional Office (WCZ), Ground Floor, East Wing, New Secretariat Building Civil Lines, Nagpur-440001 Tel.No.0712-2531318, Fax: 0712-2531318 Email: apccfcentral-ngp-mef@gov.in
- 7) Mr. Kumar Mangalam Birla, Chairman, Hindalco Industries Limited Birla Centurion, 7th floor Pandurang Budhkar Road Worli, Mumbai 400 030
- 8) MoEFCC Website
- 9) Guard File

Annexure - 2

By Speed Post/Online

F. No. J-11015/239/2005-IA-II (M) Government of India Ministry of Environment, Forest and Climate Change

Impact Assessment Division

**

Indira Paryavaran Bhavan, Vayu Wing, 3rd Floor, Aliganj, Jor Bagh Road, New Delhi-110 003

Dated: 6th March, 2019

Sub.: Direction to the Unit under section 5 of the Environment (Protection)

Act, 1986- for keeping in abeyance the Environmental Clearance –
regarding.

Whereas, Environmental Clearance was granted vide letter No J-11 015/239/2006-1A.II(M) dated 5.02.2007 for Durgaamanwadi Bauxite Mines Project of M/s Hindalco Industries Limited, located at Village Durgmanwadi & Padsill, Taluka: Radhanagri in Kolhapur District in Maharashtra.

Whereas, as per direction of Hon'ble Supreme Court a team constituted by the Ministry visited the mining site of M/s Punthembekar Minerals limited during 10^{-11} October, 2017 and submitted its report to the Ministry. The matter was thereafter examined in the Ministry and it has found that Durgaamanwadi Bauxite Mines Project of M/s Hindalco Industries Limited is located within 1 KM of the Radhanagri Wildlife Sanctuary.

Whereas, in exercise of powers vested under Section 5 of Environment (Protection) Act, 1986, directions was issued vide LR No Z -11013/3/2018 dated 15.03.2018 wherein it has mentioned that "you are directed to immediately stop all the mining activity within 7 KM of Radhanagri Wildlife Sanctuary pursuant to Hon'ble Supreme Court in its order dated 04.08.2006 in IA 7000 WP. (c) 202 of 7995 (T.N Godavaram vs. Union of India) and to showcause as why Environmental Clearance granted No J-11015/239/2006-IA.II(M) dated Durgaamanwadi Bauxite Mines Project of M/s Hindalco Industries Limited should not be revoked for carrying out mining activity since 1994 till 05.02.2007 without obtaining EC, within 7 KM of Radhanagri Wildlife Sanctuary in contravention to Hon'ble Supreme Court in its order dated 04.08.2006 in IA 1000 W.P. (c) 202 of 1995 (T.N Godavaram vs. Union of India) and for remaining area without obtaining the Wildlife Clearance from Standing Committee of National Board of Wildlife. You are requested to reply within 15 days of receipt of this letter, along with past production details since inspection of mines duly authenticated by Departmentof Mines & Geology, copy of Consent to Establish (CTE) and Consent to Operate (CTO)

issuedstate pollution control board from time to time, failing which your EC may be kept inabeyance."

Whereas, the Ministry vide OM No. J-11013/41/2006-IA (I), dated 02/12/2009, all the development projects/activities for which the environment clearance had been granted priorto 02/12/2009 and were located within 10 km radius of National Park/Wildlife Sanctuary were required to obtain wildlife clearance from National Board for Wildlife. In this regard, a public notice was also inserted in newspapers by the Impact Assessment Division of the Ministry in January 2009 asking the Project Proponents to seek wildlife clearance from Standing Committee of National Board for Wildlife by 31st January 2009. The reply submitted by you dated 30.03.2018 & KML file submitted by you on 31.10.2018 was examined in the Ministry and it has found that Durgaamanwadi Bauxite Mines Project of M/s Hindalco Industries Limited is falling within 10 KM of the of Radhanagri Wildlife Sanctuaryand operating without obtaining wildlife clearance from the Standing Committee of the National Board for Wildlife.

Whereas, the Hon'ble Supreme Court the in its order dated 02.11.2018 in W.P. 202/1995 in the matter of T.N. Goadvarman Thirumulpad vs Uol& Ors. in I.A 3949 inter-alia mentioned that 'The Chief Secretary has assured us that he will look into the matter and see whether any illegal mining has been going on, that is to say, mining without any environmental clearance or without any forest clearance or clearance from the Standing Committee of the National Board for Wildlife. If that is so, necessary steps be taken by the State of Maharashtra to recover the amounts due to illegal mining (if any) under Section 21(5) of the Mines and Minerals (Development and Regulation) Act, 1957."

Whereas, the Hon'ble NGT in its Judgment dated 25.09.2018 inter-alia mentioned that "It is clear from above that the order dated 04.08.2006 passed regarding TWPs in Jamuwa Ramgarh Wildlife Sanctuary in Rajasthan was the basis of the case of Goa Foundation (supra)wherein all the mining activities have been prohibited within 1km of the boundaries of National Parks and Sanctuaries. It is therefore amply clear that considering the sensitiveness ofthe National Parks and Sanctuaries no mining activity can be permitted up to 1 km from the boundaries of the National Parks and Sanctuaries anywhere in the country "

Whereas, the reply submitted by M/s Hindalco Industries Limited vide letter dated 30.03.2018, email dated 31.10.2018, 25.11.2018 and 12.12.2018 was examined in the Ministry and it has found the mining lease is falling within 10 KM of the Radhanagri Wildlife Sanctuary and mining has been carried out without obtaining the Clearance from the Standing Committee of the National Board of Wildlife.

Now, therefore, in exercise of powers vested under Section 5 of Environment (Protection) Act, 1986, the Environmental Clearance granted vide letter No J-11015/239/2006-1A. II(M) dated 5.02.2007 for Durgaamanwadi Bauxite Mines Project of M/s Hindalco Industries Limited, located at Village Durgmanwadi & Padsill, Taluka: Radhanagri in Kolhapur District in

Maharashtra is kept in abeyance with immediate effect and untilfurther orders.

Lastly, it may be noted that violation of the direction under Section 5 of Environment (Protection) Act, 1986 shall attract penal action under section 15 of the Environment (Protection) Act, 1986.

This issues with the approval of the Competent Authority.

(Dr. R.B. Lal) Addl. Director

To,

M/s Hindalco Industries Limited P.o Radhanagri, Kolhapur, Maharashtra-416212

Copy to:

- 1. **The Chief Secretary,** Government of Maharashtra, 6th Floor Main Building, Mantralaya, Dr. Madan Cama Road, Fort, Mumbai-400032- for necessary action.
- 2. **The Chairman**, Maharashtra Pollution Control Board, Kalpataru Point, 3rd and 4thfloor, Opp. Cine Planet, Sion Circle, Mumbai-400 022- for necessary action.
- 3. **The Controller General,** Indian Bureau of Mines2nd Floor, Indira Bhawan, Civil Lines, Nagpur- 440 001Phone: + 91 7122560041, Fax: + 91 7122565073email: cq@ibm.gov.in for necessary action.
- 4. **The Director,** Directorate of Geology & Mining, Government of Maharashtra, Khanij Bhawan", Plot No 27, Shivaji Nagar, Cement Road, Nagpur-440010-for necessary action.
- 5. **The District Collector** (Kolhapur), District Collector Office, Kolhapur New Shahupuri, Kolhapur, Maharashtra 416003- for necessary action.
- 6. The Additional Principal Chief Conservator of Forests (C), Ministry of Environment, Forest and Climate Change, Regional Office (WCZ), GroundFloor, East Wing, New Secretariat Building Civil Lines, Nagpur-440001TeI.No.0712-2531318, Fax: 0712-2531318Email: apccfcentral-ngp-mef@gov.in.
- 7. **Mr. Kumar Mangalam Birla**, Chairman, Hindalco Industries Limited Birla Centurion, 7th floor Pandurang Budhkar Road Worli, Mumbai 400 030.
- 8. PARIVESH Portal.
- 9. Guard File.

(Ør. R.B. Lal) Addl. Director

Page 3 of 3

RADHANAGARI TALUKA, KOLHAPUR DISTRICT MAHARASHTRA

M/S HINDALCO INDUSTRIES LIMITED

ENVIRONMENTAL QUALITY MONITORING REPORT

POST MONSOON 2018
(SEPTEMBER, OCTOBER, NOVEMBER)

IND.BH.41.17.0348/HSR

Bhagavathi Ana Labs Pvt. Ltd.,

7-2-C-14, Industrial Estate, Sanathnagar, Hyderabad 500 018

CONTENTS

TITLE	PAGE NO.
PREFACE	I
EXECUTIVE SUMMARY	II – III
MICRO-METEOROLOGY	1- 4
ENVIRONMENTAL QUALITY	5- 23
Ambient Air Quality	5 - 8
Ambient Noise Quality	9 –12
Water Quality	13 - 23
Stack Quality Monitoring	23 - 25
ANNEXURE	
Ambient Air Quality	
	raskannun manarararan ambundura kundu ilda kupulun manararan ana manarararararararararararararararararara

PREFACE

M/S Hindalco Industries Limited entrusted environmental quality monitoring at Durgmanwadi Bauxite Mine situated Radhanagari Taluka, Kolhapur district, Maharashtra to Bhagavathi Ana Labs Pvt. Limited, Hyderabad during Post Monsoon season of the year 2018.

The environmental monitoring was carried out in core zone and buffer zone during the months of September, October & November 2018 for the following environmental parameters.

- → Micro-meteorology
- → Ambient air quality
- → Ambient noise level quality
- → Water quality

The data obtained was compiled to assess the current environmental status of the mining as well as the surrounding villages in the study area.

Bhagavathi Ana Labs Pvt. Limited, Hyderabad gratefully acknowledges the cooperation extended by management and staff of M/S Hindalco Industries Limited and the village people to the field staff.

EXECUTIVE SUMMARY

Durgamanwadi Bauxite Mine environmental quality monitoring includes the monitoring of ambient air quality, noise level quality, water quality, & micrometeorology in core zone and buffer zone around the mine lease area.

AMBIENT AIR QUALITY

The scenario of the existing ambient air quality in the study region has been assessed through a network of selected ambient air quality locations. Precalibrated respirable and fine particulate dust sampler has been used for monitoring the existing AAQ status. Maximum, minimum, average and percentile values have been computed from the raw data collected at all individual sampling stations to represent the ambient air quality status.

AMBIENT NOISE LEVEL MONITORING

Mining and allied activities usually cause noise pollution. Excessive noise levels will cause adverse effects on human beings and associated environment including domestic animals, wild life, natural ecosystem and structures. To know the ambient noise levels in the study area, noise levels were recorded at mining area and nearby villages using noise level recorder.

WATER QUALITY MONITORING

Water quality monitoring consists of the study of surface and ground water sources and its quality in the core and buffer zone of the lease area. Assessment of water quality in the study area and in the mine area includes the quality assessment of parameters as per the Indian Standard IS 10500 (Drinking water standard). Water samples were collected from selected locations during study period and analyzed in the laboratory as per the standard IS&APHA procedures.

MICROMETEOROLOGY

Meteorological scenario helps to understand the trends of the climatic factors. It also helps in the identification of sampling stations in the study area. Meteorological scenario exerts a critical influence on air quality as the pollution arises from the interaction of atmospheric contaminants with adverse meteorological conditions

Ш

MICRO-METEOROLOGY

Meteorological data within the project area during the air quality survey period was assessed.

PRIMARY / BASIC METEOROLOGICAL PARAMETERS

- → Wind Velocity
- → Wind Direction

Since the dispersion and diffusion of pollutants mainly depend on the above factors these factors are considered as primary meteorological parameters.

SECONDARY METEOROLOGICAL PARAMETERS

→ Ambient Temperature

Post Monsoon 2018

		MICR	MICRO-METEOROLOGICAL DATA	OGICAL DAT	Ā		
	-	TEMPERATURE/HUN	IMIDITY	WIN	WIND SPEED Km/h	/h	WIND
	Z	MAX	AVERAGE HUMIDITY	M	MAX	AVERAGE	
04-09-2018	24	29	80	0	5	2.5	N,WNW
06-09-2018	25	30	80	0	9	3.0	SE-NE
10-09-2018	23	30	78	0	m	1.5	SE,NE
12-09-2018	23	30	82	0	2	2.5	NNE-E
18-09-2018	23.	32	65	0	4	2.0	NNN-N
20-09-2018	23	30	98	0	5	2.5	M-N
25-09-2018	24	32	77	0	12	6.0	N-SSE
27-09-2018	21	31	75	0	9	3.0	SW-NW

Post Monsoon 2018

Environmental Quality Monitoring Report

		MICR	SRO-METEOROLOGICAL DATA	OGICAL DAT	A		
DATE		TEMPERATURE/HUMIDITY	MIDITY	WIN	WIND SPEED Km/h	/h	WIND DIRECTION
	Z	MAX	AVERAGE HUMIDITY	NIN	MAX	AVERAGE	
03-10-2018	24	35	09	0	4	2.0	NNE-NE
05-10-2018	25	36	70	0	m	1.5	NE-W
10-10-2018	24	33	83	0	5	2.5	E-N
12-10-2018	26	34	29	0	4	2.0	N-N
15-10-2018	24	35	70	0	9	3.0	<u>-</u>
17-10-2018	23	32	89	0	2	1.0	SE-E
23-10-2018	24	33	71	0	1	0.5	N-SE
26-10-2018	24	37	80	0	4	2.0	E-NE

DATE MIN 02-11-2018 21 05-11-2018 24 09-11-2018 23						
	TEMPERATURE/HUMIDITY	MIDITY	WIN	WIND SPEED Km/h	/h	WIND
	MAX	AVERAGE HUMIDITY	MIN	MAX	AVERAGE	
	35	70	0 ,	2	1.0	SE-NE
	36	74	0	4	2.0	E-NE
	35	72	0	70	2.5	E-N
-	36	70	0	9	3.0	E-NW
16-11-2018 21	37	09	0	æ	1.5	E-NNE
20-11-2018 24	33	62	0	4	2.0	E-SE
22-11-2018 23	36	29	0	4	2.0	E-NE
26-11-2018 21	35	70	0	7	3.5	ENE-NNE

Post Monsoon 2018

En noz Ra

Dur

AΝ

The pol env

mo Am

in (ME

Am per

sea par Sul

4

SL.

201

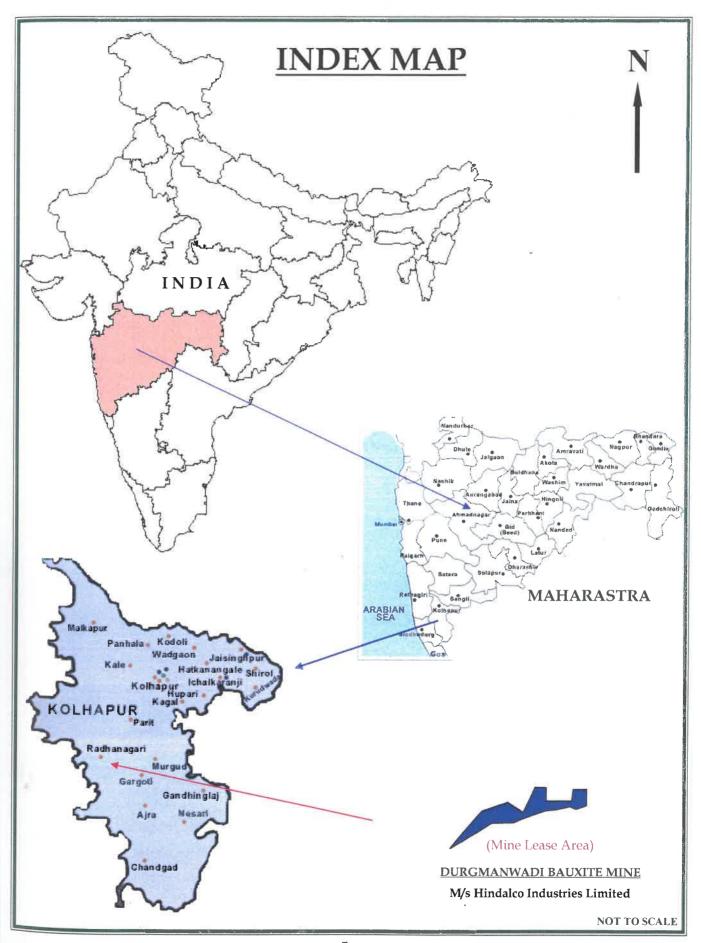
Post Monsoon

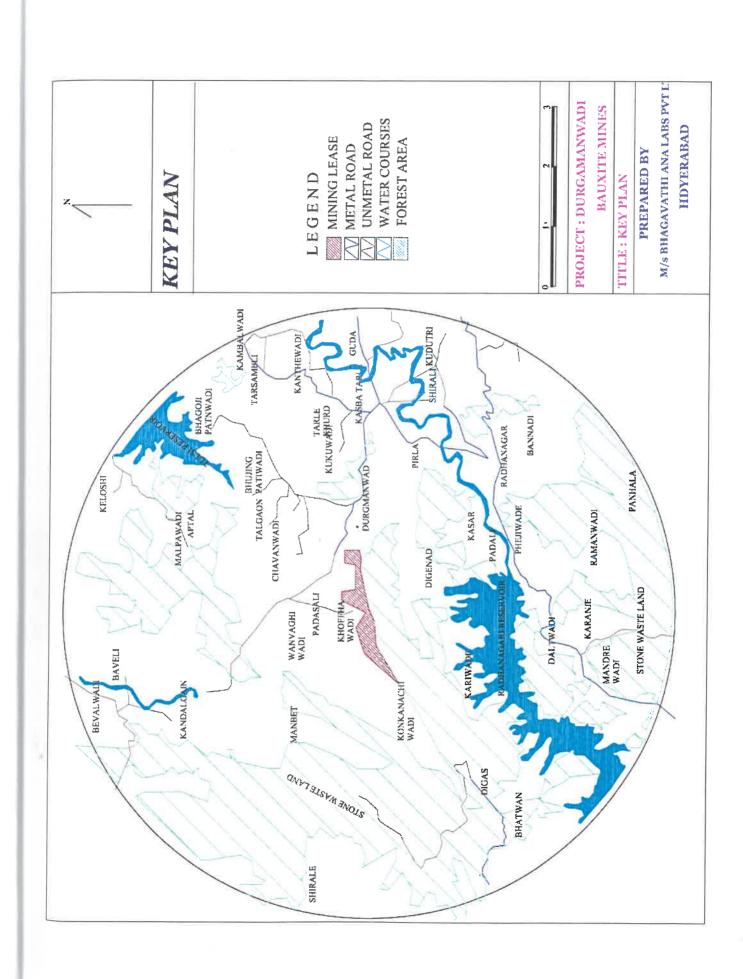
ENVIRONMENTAL QUALITY

Environmental monitoring includes air, noise, water quality status within core zone and buffer zone around the Durgmanwadi Bauxite Mines Lease area at Radhanagari Taluka, Kolhapur district, Maharashtra.

AMBIENT AIR QUALITY

The ambient air quality monitoring was to assess the existing levels of the air pollution. Air pollution forms an important and critical factor to study the environmental issues in the mining areas. Thus, air quality has to be frequently monitored to know the extent of pollution due to mining and allied activities.

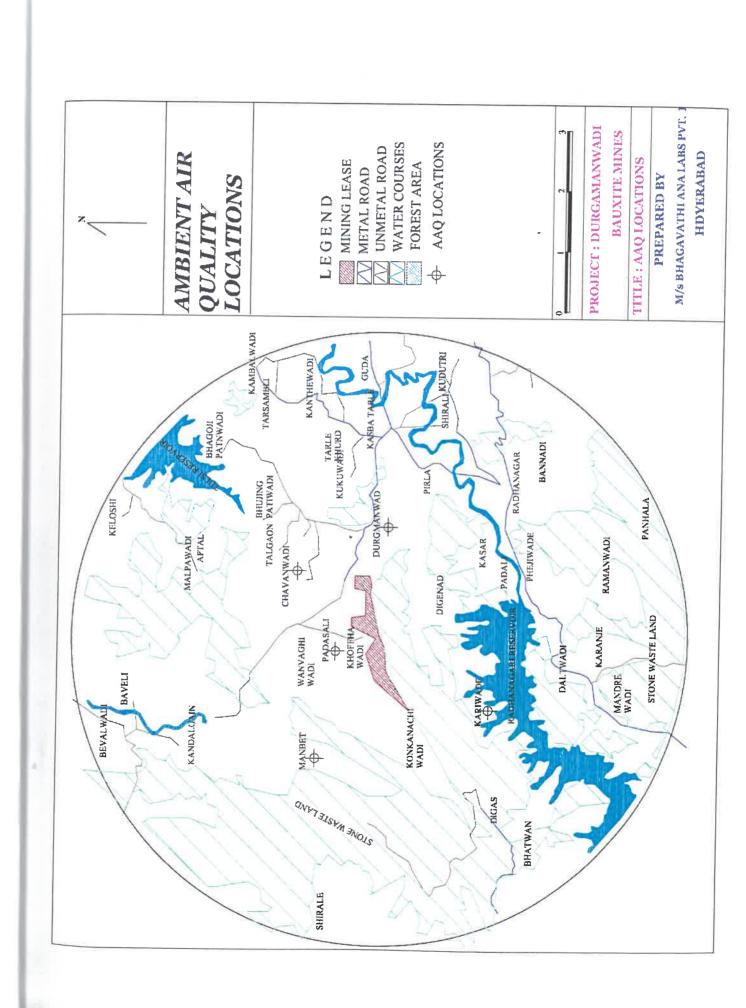

Ambient air quality monitoring stations were set up at eight selected locations, 4 in core zone and 4 in buffer zone.


METHOD OF SAMPLING

Ambient air quality monitoring has been carried out with a frequency of two days per week at eight locations for one season (i.e. 24 times at each location in a season). The Monitoring data for air environment is generated for the parameters like Particulate matter (PM10), Fine Particulate Matter (PM2.5) Sulphur Dioxide (SO₂) and Oxides of Nitrogen (NOx), and CO.

AMBIENT AIR QUALITY MONITORING STATIONS

SL. NO	STATION CODE	NAME OF SAMPLING LOCATION	DIRECTION w.r.t MINES		
1	A - 1	Core zone			
2	A - 2	Near Mines office			
3	A - 3	Near haulage road			
4	A - 4	Near Weigh Bridge			
5	A - 5	Padsali village N			
6	A – 6	Durgmanwadi village E			
7	A - 7	Kariwade village SW			
8	A - 8	Chavanwadi village	NE		



SUMMARY OF AMBIENT AIR QUALITY RESULTS

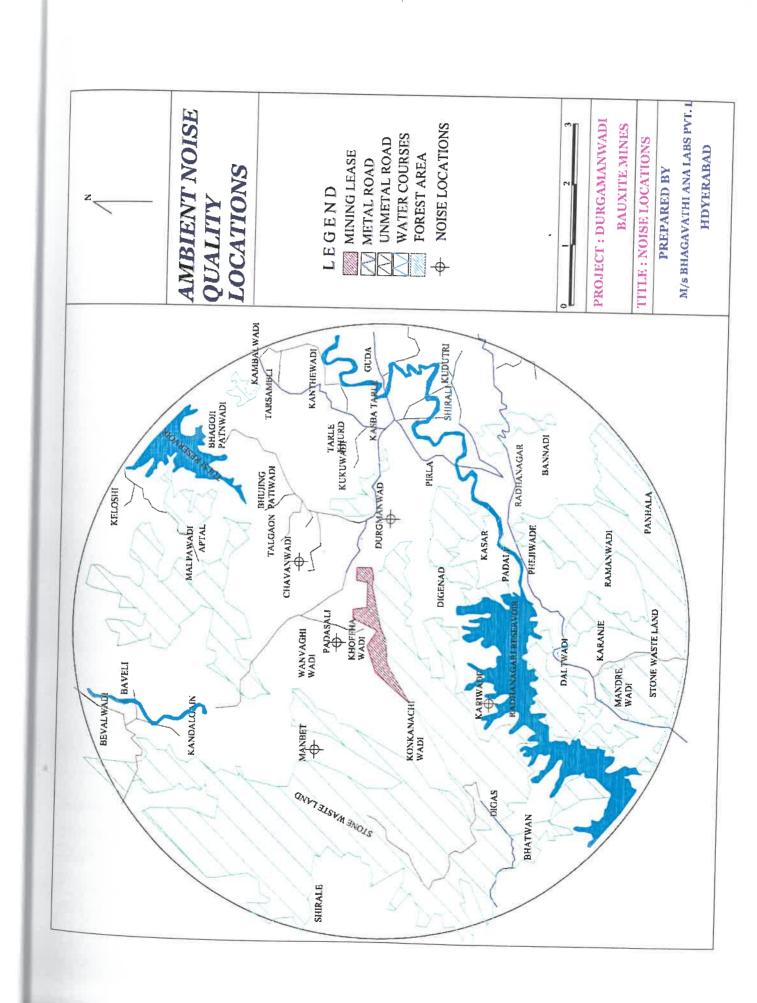
SI. No.	Location		PM 10 (μg/m³)	PM 2.5 (μg/m³)	SO ₂ (μg/m³)	NO ₂ (μg/m ³)	CO (Mg/m3) 24 hrs Average
		Min	30.5	10.0	4.5	9.3	<1
1	Core zone	Max	56.8	19.1	7.4	12.0	<1
_	Core zone	Average	45.6	14.6	5.9	10.5	<1
		98 th %tile	56.7	18.7	7.4	11.9	<1
		Min	23.0	8.0	4.4	9.5	<1
2	Near Mine	Max	56.5	18.3	7.4	12.1	<1
	Office	Average	44.9	14.1	6.0	10.6	<1
		98 th %tile	56.3	18.0	7.3	12.0	<1
	Newsli	Min	28.8	8.7	4.9	9.8	<1
3	Near Haulage	Max	56.2	18.2	8.1	12.4	<1
	Road	Average	46.1	14.2	6.4	10.9	<1
		98 th %tile	55.8	18.2	8.0	12.4	<1
	Niem w Minimi	Min	31.4	9.5	4.9	9.5	<1
4	Near Weigh	Max	57.3	19.9	8.2	12.1	<1
	Bridge	Average	44.8	14.5	6.1	10.6	<1
		98 th %tile	57.3	19.4	7.9	12.0	<1
		Min	24.6	8.9	4.9	9.2	<1
5	Padsali village	Max	54.3	17.3	8.0	12.3	<1
	, adsair village	Average	41.7	13.3	6.3	10.6	<1
		98 th %tile	52.5	17.2	8.0	12.1	<1
	Duranmanwadi	Min	26.3	7.9	4.7	8.9	<1
6	Durgamanwadi village	Max	53.0	17.1	7.8	12.0	<1
	village	Average	41.4	13.1	6.3	10.7	<1
		98 th %tile	52.1	16.7	7.8	12.0	<1
	Kariwade	Min	30.4	9.9	4.3	9.4	<1
7	village	Max	55.8	18.3	8.1	11.5	<1
		Average	43.1	13.9	6.5	10.3	<1
		98 th %tile	54.8	17.8	8.1	11.4	<1
	CI II	Min	27.7	8.9	4.4	9.3	<1
8	Chavanwadi	Max	53.5	17.2	7.2	11.6	<1
	village	Average	42.4	13.1	5.7	10.3	<1
		98 th %tile	53.3	16.7	7.1	11.5	<1

NOTE: The results relate only to the condition prevailing at the time of sampling Method of measurement: As per IS 5182

AMBIENT NOISE LEVEL QUALITY

Noise is nothing but unwanted sound produced due to various activities. As a part of occupational health and safety measures, certain safeguards have been incorporated to mitigate noise pollution in working environment. So noise level surveys were carried out at 8 selected locations in and around the mine lease area. Noise survey has been conducted in the study area for the period of 24 hr at each location. The noise level results are given below.

AMBIENT NOISE LEVEL MONITORING STATIONS


SL. NO	CODE	NAME OF SAMPLING LOCATION	DIRECTION w.r.t.	
1	N - 1	Core zone		
2	N - 2	Near Mines Office		
3	N - 3	Mines Haulage Road		
4	N - 4	Near Weigh Bridge		
5	N - 5	Padsali village	N	
6	N - 6	Durgmanwad village E		
7	N - 7	Kariwade village E		
8	N - 8	Chavanwadi village	NE	

NOISE AMBIENT STANDARDS

AREA CODE	CATEGORY OF AREA	LIMIT IN dB (A) Leq		
	CATEGORI OF AREA	DAY TIME	NIGHT TIME	
Α	Industrial Area	75	70	
В	Commercial Area	65	55	
С	Residential Area	55	45	
D	Silence Area	50	40	

Note:

- 1. Day time is reckoned in between 6 am and 9 pm.
- Night time is reckoned in between 9 pm and 6 am.
 Silence zone is defined as area upto 100 meters around such premises as hospitals, educational institutions and courts. The silence zones are to be declared by the Competent Authority.
- 4. Mixed categories of areas should be declared as "one of the four above mentioned categories by the Competent Authority and the corresponding standards shall apply.

CORE ZONE NOISE LEVEL MONITORING DATA

Location →	N - 1	N - 2	N - 3	N-4	
	CORE	NEAR	MINES	NEAR	
	ZONE	MINES	HAULAGE	WEIGH	
		OFFICE	ROAD	BRIDGE	
Time (Hrs) ↓		ď	B(A)		
06.00	35.4	36.6	39.1	39.4	
07.00	36.6	37.4	38.9	39.5	
08.00	37.9	39.3	40.5	40.4	
09.00	41.5	42.0	42.2	42.3	
10.00	44.2	44.5	43.9	45.6	
11.00	46.4	47.4	47.3	47.0	
12.00	46.5	47.1	46.9	48.1	
13.00	46.8	46.8	47.0	48.0	
14.00	46.7	47.6	49.0	48.7	
15.00	45.0	46.2	46.6		
16.00	50.5	51.0	50.0	45.8	
17.00	52.2	52.7		49.9	
18.00	47.5	49.0	46.9	50.6	
19.00	40.4		48.3	49.7	
20.00	38.9	43.1	43.4	44.4	
21.00	39.1	39.8	40.1	40.4	
22.00	38.4	39.9	39.0	39.9	
23.00		39.7	40.4	40.5	
24.00	38.6	39.1	39.2	40.0	
01.00	38.5	39.6	40.6	40.7	
02.00	38.0	38.1	38.3	39.3	
03.00	38.3	38.1	37.8	38.5	
04.00	37.9	38.2	38.8	39.6	
05.00	38.2	39.0	41.1	40.6	
	38.5	39.4	40.2	40.6	
Minimum Value: - (L _{Min})	0.5				
Maximum Value: - (L _{Max})	35.4	36.6	37.8	38.5	
NOTE: The results relate subst	52.2	52.7	50.0	50.6	

NOTE: The results relate only to the condition prevailing at the time of sampling

BUFFER ZONE NOISE LEVEL MONITORING DATA

Location →	N - 4	N - 5	N - 6	N-8
	PADSA	DURGAMA	KARIWADE	CHAVAN
	LI	NWADI	VILLAGE	WADI
	VILLAG	VILLAGE		VILLAGE
	E			
Time (Hrs)↓			dB(A)	
06.00	47.6	49.2	51.7	52.4
07.00	49.2	50.3	52.5	52.1
08.00	51.1	51.8	53.2	53.5
09.00	54.4	55.2	55.1	55.5
10.00	56.6	56.8	57.0	58.7
11.00	59.5	59.7	59.7	60.3
12.00	59.4	60.1	60.4	61.0
13.00	59.8	59.7	59.8	61.0
14.00	59.4	60.6	61.7	61.3
15.00	57.6	58.6	59.0	59.3
16.00	63.0	64.5	62.6	63.4
17.00	64.1	66.2	59.9	63.1
18.00	60.2	61.4	61.3	62.5
19.00	55.9	56.2	56.2	57.5
20.00	52.1	53.0	53.0	53.0
21.00	51.6	52.2	52.0	52.4
22.00	51.9	52.7	53.0	53.4
23.00	51.7	51.3	52.6	53.1
24.00	51.4	52.3	53.9	54.1
01.00	50.6	51.0	51.4	53.0
02.00	50.9	50.6	50.7	51.8
03.00	51.0	50.9	51.9	52.4
04.00	50.9	51.8	53.7	53.6
05.00	50.8	52.1	53.6	53.7
Minimum Value: - (L _{Min})	47.6	49.2	50.7	51.8
Maximum Value: - (L _{Max})	64.1	66.2	62.6	63.4

RESULT & DISCUSSION

The obtained Ld, Ln noise levels are compared with the ambient noise level standards and are found to be within the limit.

S

CC

W

CC

R

Bh

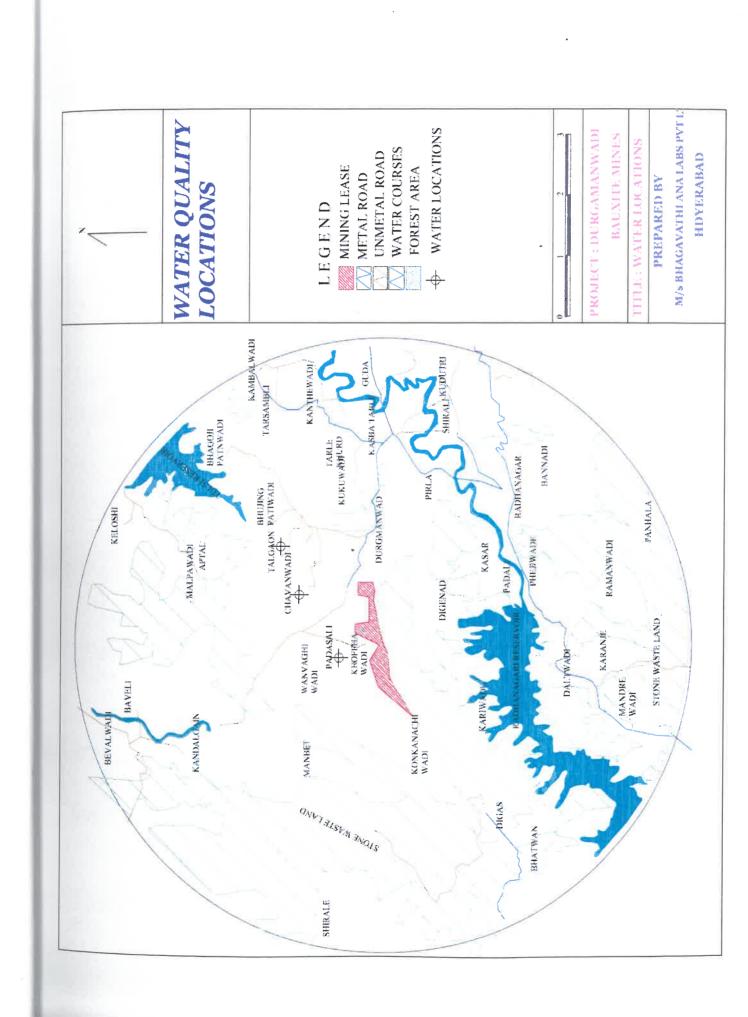
∌port

WATER QUALITY

Water quality monitoring consists of the study of water sources and its quality in the core and buffer zone of the lease area. Its study consists of following two important systems of water bodies:

- Surface water quality.
- Ground water quality.

The buffer zone is good in ground and surface water source. The rainwater regularly recharges this ground water during rainy season. There are two streams flowing in the study area, which are considered to be good source of water.


Assessment of water quality in the study area and in the mine area includes the quality assessment of parameters as per the IS 10500 (Drinking Water Standard). A total of 6 quality monitoring stations selected for sample collection in the study area. Location of water quality monitoring stations is given in Table.

WATER QUALITY MONITORING LOCATIONS

SI. No		Name of Sampling Station	Source of Water
		Þ	
1	W1	Talgaon village	Ground water
2	W2	Durgamanwadi village	Ground water
3	W3	Chavanwadi village	Ground water
4	W4	Padsali village	Surface water
5	W5	Tulsi stream	Surface water
5	W6	Mine Accumulated water	Surface water

SAMPLING DETAILS

The water samples were collected from selected sampling locations, which are coming under core zone and buffer zone around the mine lease area. Samples were collected in the Post Monsoon season as per the prescribed sample collecting methods and analyzed as per the IS & APHA standard procedures. Report of water samples are given below.

TALGAON VILLAGE

Location Name	:	Talgaon villag	ge		
Date		22.11.2018	Sample Type	•	Ground water

Sl. No.	Parameter	Unit	Result
1	Odour		Un-objectionable
2	Taste		Agreeable
3	Colour	Hazen Units	<5
4	pН		6.54
5	Turbidity	NTU	· <5
6	Dissolved Oxygen	mg/l	5
7	Total Dissolved Solids	mg/l	137
8	Total Suspended Solids	mg/l	12
9	Alkalinity as CaCO ₃	mg/l	28.0
10	Total Hardness as CaCO ₃	mg/l	122.0
11	Nitrates NO ₃	mg/l	0.12
12	Phosphates PO ₄	mg/l	2.22
13	Chlorides as Cl	mg/l	11.24
14	Sulphates as SO ₄ ²⁻	mg/l	3
15	Sodium as Na.	mg/l	2.67
16	Potassium as K	mg/l	0.09
17	Calcium as Ca	mg/l	36
18	Magnesium as Mg	mg/l	13
19	Lead (Pb)	mg/l	BDL
20	Manganese as Mn	· mg/l	0.03
21	Cadmium (Cd)	mg/l	BDL
22	Chromium (Cr)	mg/l	BDL
23	Copper (Cu)	mg/l	BDL
24	Zinc (Zn)	mg/l	BDL
25	Iron as Fe	mg/l	0.07
26	Fluoride as F	mg/l	0.59
27	Mercury as (Hg)	mg/l	BDL
28	Selenium as Se	mg/l	BDL
29	Arsenic as As	mg/l	BDL
30	Cyanide as CN	mg/l	BDL
31	Boron as B	mg/l	BDL
32	B.O.D (3 days 27°C)	mg/l	
I · Polovi	Detail II vi	0/-	3

BDL: Below Detectable Limit

mg/l: - Milligram per liter

DURGAMANWADI VILLAGE

Location Name	•	Durgamanwadi v	village		
Date	•	22.11.2018	Sample Type	•	Ground water

17 NT -	Parameter	Unit	Result
Sl. No.			Un-objectionable
1	Odour		Agreeable
2	Taste	Hazen Units	<5
3	Colour	110001	6.59
4	pH	NTU	<5
5	Turbidity	mg/l	4.78
6	Dissolved Oxygen	mg/l	123
7	Total Dissolved Solids	mg/l	27
8	Total Suspended Solids	mg/l	30
9	Alkalinity as CaCO ₃	mg/l	90
10	Total Hardness as CaCO ₃	mg/l	0.21
11	Nitrates NO ₃	mg/l	0.07
12	Phosphates PO ₄	mg/l	14.55
13	Chlorides as Cl	mg/l	2.47
14	Sulphates as SO ₄ ²⁻	mg/l	3
15	Sodium as Na.		0.11
16	Potassium as K	mg/l	29
17	Calcium as Ca	mg/l	9
18	Magnesium as Mg	mg/l	BDL
19	Lead (Pb)	mg/l	0.09
20	Manganese as Mn	mg/l	BDL
21	Cadmium (Cd)	mg/l	BDL
22	Chromium (Cr)	mg/l	BDL
23	Copper (Cu)	mg/l	BDL
24	Zinc (Zn)	mg/l	0.12
25	Iron as Fe	mg/l	0.12
26	Fluoride as F	mg/l	
27	Mercury as (Hg)	mg/l	BDL
28	Selenium as Se	mg/l	BDL
29	Arsenic as As	mg/l	BDL
30	Cyanide as CN	mg/l	BDL
31	Boron as B	mg/l	BDL
32	B.O.D (3 days 27°C)	mg/l	mg/l: - Milligram per

BDL: Below Detectable Limit

mg/l: - Milligram per liter

eport

CHAVANWADI VILLAGE

Location Name	:	Chavanwadi villa	age	
Date	•	22.11.2018	Sample Type	Ground water

Sl. No.	Parameter	Unit	Result
1	Odour		Un-objectionable
2	Taste		Agreeable
3	Colour	Hazen Units	<5
4	рН		6.67
5	Turbidity	NTU	<5
6	Dissolved Oxygen	mg/l	4.59
7	Total Dissolved Solids	mg/l	100
8	Total Suspended Solids	mg/l	17
9	Alkalinity as CaCO ₃	mg/l	19.0
10	Total Hardness as CaCO ₃	mg/l	49.0
11	Nitrates NO ₃	mg/l	0.16
12	Phosphates PO ₄	mg/l	0.03
13	Chlorides as Cl	mg/l	14.56
14	Sulphates as SO ₄ ²⁻	mg/l	2.11
15	Sodium as Na.	mg/l	0.59
16	Potassium as K	mg/l	0.09
17	Calcium as Ca	mg/l	16.7
18	Magnesium as Mg	mg/l	2.1
19	Lead (Pb)	mg/l	BDL
20	Manganese as Mn	mg/l	0.29
21	Cadmium (Cd)	mg/l	BDL
22	Chromium (Cr)	mg/l	BDL
23	Copper (Cu)	mg/l	BDL
24	Zinc (Zn)	mg/l	BDL
25	Iron as Fe	mg/l	0.16
26	Fluoride as F	mg/l	0.57
27	Mercury as (Hg)	mg/l	BDL
28	Selenium as Se	mg/l	BDL
29	Arsenic as As	mg/l	BDL
30	Cyanide as CN	mg/l	BDL
31	Boron as B	mg/l	BDL
32	B.O.D (3 days 27°C)	mg/l	4

BDL: Below Detectable Limit

liter

mg/l: - Milligram per liter

PADSALI VILLAGE

Location Name	:	Padsali village			
Date		22.11.2018	Sample Type	:	Surface water

Sl. No.	Parameter	Unit	
1	Odour		Un-objectionable
2	Taste		Agreeable
3	Colour	Hazen Units	<5
4	рН		6.5
5	Turbidity	NTU	· <5
6	Dissolved Oxygen	mg/l	7.00
7	Total Dissolved Solids	mg/l	144
8	Total Suspended Solids	mg/l	19
9	Alkalinity as CaCO ₃	mg/l	34
10	Total Hardness as CaCO ₃	mg/l	57.0
11	Nitrates NO ₃	mg/l	0.23
12	Phosphates PO ₄	mg/l	0.07
13	Chlorides as Cl	mg/l	14.3
14	Sulphates as SO ₄ ²⁻	mg/l	4.43
15	Sodium as Na.	mg/l	0.33
16	Potassium as K	mg/l	0.06
17	Calcium as Ca	mg/l	12
18	Magnesium as Mg	mg/l	4.6
19	Lead (Pb)	mg/l	BDL
20	Manganese as Mn	mg/l	0.07
21	Cadmium (Cd)	mg/l	BDL
22	Chromium (Cr)	mg/l	BDL
23	Copper (Cu)	mg/l	BDL
24	Zinc (Zn)	mg/l	BDL
25	Iron as Fe	mg/l	0.14
26	Fluoride as F	mg/l	0.12
27	Mercury as (Hg)	mg/l	BDL
28	Selenium as Se	mg/l	BDL
29	Arsenic as As	mg/l	BDL
30	Cyanide as CN	mg/l	BDL .
31	Boron as B	mg/l	BDL
32	B.O.D (3 days 27°C)	mg/l	. 5

BDL: Below Detectable Limit

mg/l: - Milligram per liter

18

TULSI STREAM

Location Name	:	Tulsi stream		
Value and a suit of su				
Date	<u>:</u>	22.11.2018	Sample Type :	Surface Water

Sl. No.	Parameter	Unit	Result
1	Odour		Un-objectionable
2	Taste		Agreeable
3	Colour	Hazen Units	- <5
4	рН		6.54
5	Turbidity	NTU	<5
6	Dissolved Oxygen	mg/l	8
7	Total Dissolved Solids	mg/l	150
8	Total Suspended Solids	mg/l	13
9	Alkalinity as CaCO ₃	mg/l	45
10	Total Hardness as CaCO ₃	mg/l	60
11	Nitrates NO ₃	mg/l	0.07
12	Phosphates PO ₄	mg/l	0.99
13	Chlorides as Cl	mg/l	12.3
14	Sulphates as SO ₄ ²⁻	mg/l	36
15	Sodium as Na.	mg/l	7
16	Potassium as K	mg/l	9
17	Calcium as Ca	mg/l	30
18	Magnesium as Mg	mg/l	10
19	Lead (Pb)	mg/l	BDL
20	Manganese as Mn	mg/l	0.13
21	Cadmium (Cd)	mg/l	BDL
22	Chromium (Cr)	mg/l	BDL
23	Copper (Cu)	mg/l	BDL
24	Zinc (Zn)	mg/l	BDL
25	Iron as Fe	mg/l	0.22
26	Fluoride as F	mg/l	0.01
27	Mercury as (Hg)	mg/l	BDL
28	Selenium as Se	mg/l	BDL
29	Arsenic as As	mg/l	BDL
30	Cyanide as CN	mg/l	BDL
31	Boron as B	mg/l	BDL
32	B.O.D (3 days 27°C)	mg/l	4.9

BDL: Below Detectable Limit

mg/l: - Milligram per liter

MINE ACCUMULATED WATER

Location Name	:	Mine Accumulat	ed Water		
. Ja amanining as annual and an annual and an					
Date	<u>:</u>	22.11.2018	Sample Type	:	Surface Water

Sl. No.	Parameter	Unit	Result
1	Odour		Un-objectionable
2	Taste		Agreeable
3	Colour	Hazen Units	<5
4	рН		6.50
5	Turbidity	NTU	. <5
6	Dissolved Oxygen	mg/l	6
7	Total Dissolved Solids	mg/l	58
8	Total Suspended Solids	mg/l	20
9	Alkalinity as CaCO ₃	mg/l	19
10	Total Hardness as CaCO ₃	mg/l	44.0
11	Nitrates NO ₃	mg/l	0.11
12	Phosphates PO ₄	mg/l	0.07
13	Chlorides as Cl	mg/l	13
14	Sulphates as SO ₄ ²⁻	mg/l	2.33
15	Sodium as Na.	mg/l	0.75
16	Potassium as K	mg/l	0.13
17	Calcium as Ca	mg/l	17
18	Magnesium as Mg	mg/l	3.9
19	Lead (Pb)	mg/l	BDL
20	Manganese as Mn	mg/l	0.09
21	Cadmium (Cd)	mg/l	BDL
22	Chromium (Cr)	mg/l	BDL
23	Copper (Cu)	mg/l	BDL
24	Zinc (Zn)	mg/l	BDL
25	Iron as Fe	mg/l	0.17
26	Fluoride as F	mg/l	0.11
27	Mercury as (Hg)	mg/l	BDL
28	Selenium as Se	mg/l	BDL
29	Arsenic as As	mg/l	BDL
30	Cyanide as CN	mg/l	BDL
31	Boron as B	mg/l	BDL
32	B.O.D (3 days 27°C)	mg/l	5

DOMESTIC EFFLUENT ANALYSIS

Sample Type:

Canteen waste water

Date of sampling: 22.11.2018

SI.No	Test	Result
1	Total Suspended Solids, mg/I	37
2	Total Dissolved Solids, mg/I	69
3	COD, mg/l	3.2
4	BOD for 3 days at 27°C, mg/l	5.8
5	Total Solids	18
6	Oil and Grease, mg/l	<5

Sample Type:

Canteen waste water

Date of sampling: 23.11.2018

SI.No	Test	Result
1	Total Suspended Solids, mg/I	44
2	Total Dissolved Solids, mg/I	78
3	COD, mg/l	4
4	BOD for 3 days at 27°C, mg/l	7
5	Total Solids	31
6	Oil and Grease, mg/l	<5

RESULTS & DISCUSSION

- → The pH of the study area varies from 6.50 to 6.67 in the study area. The permissible range of pH is 6.5 to 8.5.
- → Dissolved Oxygen content of the study area has been found to be in the range of 4.59 to 8.00.
- → Total Dissolved Solids found to be in the range of 58 to 150 mg/l in the water sample collected in study area. As per IS 10500 standard for drinking water, the desirable limit is 500 mg/l and maximum permissible limit is 2000 mg/l.
- → Alkalinity as CaCO₃ is found to be in the range of 19 to 190 in the water sample collected in study area. As per IS 10500 standard for drinking water, the desirable limit is 200 mg/l and maximum permissible limit is 600 mg/l.
- \rightarrow Total hardness as CaCO₃ of the water sample collected in the study area is found to in the range of 44 to 122 mg/l. As per IS 10500 standard for drinking water, the desirable limit is 300 mg/l and maximum permissible limit is 600 mg/l.
- → Chloride content of the water in the study area found to be in the range of 11.24 to 14.56 mg/l. As per IS 10500 standard for drinking water, the desirable limit 250 mg/l and maximum permissible limit is 1000 mg/l.
- → Calcium content of the water in the study area found to be in the range of 12 to 36 mg/l. As per IS 10500 standard for drinking water, the desirable limit 75 mg/l and maximum permissible limit is 200 mg/l.
- → Magnesium content of the water in the study area found to be in the range of 2.1 to 13 mg/l.
- → Iron content of the water in the study area found to be in the range of 0.07 to 0.22 mg/l. As per IS 10500 standard for drinking water, the desirable limit 0.3 mg/l and maximum permissible limit is 1.0 mg/l.

DRINKING WATER STANDARDS AS PER IS: 10500

	DARAMETER	UNIT	DESIRABLI LIMIT AS PE IS: 10500	R PERMISSIBLE
_	1 Odour		Un-c	bjectionable
-	2 Taste			greeable
3		Hazen Units	5	25
4			6	5.5 -8.5
5	Jidicy	NTU	5	
6	- issured Oxygen	mg /l		10
7	Solids	mg /l	500	2000
8	Alkalinity as CaCo	3 mg /l	200	
9	Total hardness as CaCo3	mg /I	300	600
10	Nitrates NO3	mg /l	45	
11	Phosphates PO4	mg /I	73	100
12	Chlorides as Cl	mg /I	250	
13	Sulphates, SO42-	mg /l	200	1000
14	Sodium as Na	mg /I	200	400
15	Potassium as K	mg /l		
16	Calcium as Ca	mg /I	75	
17	Magnesium, Mg	mg /l	30	200
18	Lead (Pb)	mg /l	0.05	100
19	Manganese	mg /l	0.1	0.05
20	Cadmium (Cd)	mg /I	0.01	0.3
21	Chromium (Cr)	mg /I	0.05	0.01
22	Copper (Cu)	mg /l	0.05	0.05
23	Zinc (Zn)	mg /I	5	1.5
24	Iron as Fe	mg /l	0.3	15
25	Fluoride as F	mg /I	1	1.0
26	Mercury as Hg	mg /l	0.001	1.5
27	Selenium as se	mg /l	0.01	0.001
28	Arsenic as As	mg /I	0.05	0.01
29	Cyanide as CN	mg/l	0.05	0.05
30	Boron as B	mg/l	1	0.05 5

Name of the unit	DURGAMAN	Stack An	alysis Report		
Address			UXITE MINE		
	VILLAGE DU	JRGAMN	WADI DIST KOLHA	DLID	
Date	22-11-2018			KF U K	
	12 11 2018				
Sack - I attached to	DG (1000KVA	Stack	details		
	[-1]	I. D. Of stack at port (mtr) D			
crossection of the stack					
rieight of stack above ground (mtr)		-	Stack crossectional		0.03
Fuel used			Consumption of fu		0.03
	HSD Load on the ssystem		מ		
					Approx. 85
	EM	MISSIO	N DETAILS		
Particulars	Value	* Permissible	T		
emperature (°C)		limit	Method of analysis		
elocity of flue gas (m/sec)		:	200.00	NA	As per IS:11255 (Par
		:	11.82	INA	3)-2008 As per IS:11255 (Par
as flow rate at stack condition (m ³ /ho	ur)	:		NA	3)-2008
as flow rate at NTP (Nm³/hour)			1336	NA	As per IS:11255 (P ar 3)-2008
articulate matter		<u> </u>	833	NA	As per IS:11255 (Pari
) ₂ (Kg/Hr)		:	14.00		3)-2008 As per IS:11255 (Part
Permissible Limits		:	0.4	150 Highlay	1)- 1985
cimissible Limits		As per th	e PCB consent	10 kg/day	As per IS:11255 (Part 2)-1985
			ob consent		
Name of instrument	of instrument u	sed - Poll	utech model,PEM-SI	#IC 10	
PEM-SMK 10		F	rom		
oville 10		31-0	1-2018	Validi	
			140	30-01-2	019
ognised by Ministry of Environment & Fores results relate only to the condition prevailing			}		
results relate only to the condition	ts, as "Environment	tal Laborato	ty" vide Na+'C		

lame of the unit	DURGAMNWAD	11 12 /1 1 1 1 1			
		I BAUA	HEMINE		
ddress	VILLAGE DURG.	AMNWA	DI DIST KOLHA	\PUR	
Vata	22-11-2018				
)ate	St	ack detai	ls		
Stack - 2 attached to	DG (1000KVA) [-II-]		I. D. Of stack at p		0.2
rossection of the stack	Round		Stack crossection	al area m2	0.0314
Height of stack above ground (mtr)	.17		Consumption of	fuel (lit/hr)	. 55
	HSD		Load on the syste	em	Approx. 85 %
Fuel used	H3D				-
	EMMIS	SION D	ETAILS		
Particulars	8		Value	* Permissible	Method of analysis
			155.00	NA	As per IS:11255 (Part 3)-2008
Temperature (°C)		:	8.99	NA	As per IS:11255 (Part 3)-2008
Velocity of flue gas (m/sec)					As per IS:11255 (Part
Gas flow rate at stack condition (m ³ /l	nour)	:	1017	NA	3)-2008 As per IS:11255 (Par
Gas flow rate at NTP (Nm³/hour)		:	702	NA	3)-2008 As per IS:11255 (Par
Particulate matter			10.0	150 mg/day	1)- 1985
			0.3	10 kg/day	As per IS:11255 (Par 2)-1985
SO ₂ (Kg/Hr)			the PCB consent	10 Mg My	
* Permissible Limits		As per t	mor ob constant		
D wil	s of instrument us	sed - Poll	utech model,PEN	1-SMK 10	
Name of instrument	or instrument us	Calibra	ation date	V C	lidity
PEM-SMK10		3.1-0	1-2018•	30-0	1-2019
L DAVA STARTS				Charles and the second	egenne 7 d allegeland manufacture person ma
*Recognised by Ministry of Environment &					

S.No.

BDL: BELO

			PM 10 (µg/m³)	PM 2.5 (μg/m³)	SO ₂ (μg/m ³)	NO _x (μg/m³)	CO (Mg/m³)
S.No.	、Month	Date	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average	
			24 IIIS Average	24 III's Average	24 firs Average	24 firs Average	24 hrs Average
1	C== 10	04.00.0040	33.7	11.5	4.5	10.3	<1
2	Sep-18	04-09-2018	38.1	12.9	5.6	9.8	
3	-	06-09-2018					<1
4	-	10-09-2018	49.9	15.0	BDL	BDL	<1
		12-09-2018	44.1	13.5	5.2	9.3	<1
5		18-09-2018	46.5	14.0	5.4	9.4	<1
6		20-09-2018	51.6	16.1	6.0	11.8	<1
7	- 1	25-09-2018	53.4	17.0	BDL	BDL	<1
8		27-09-2018	30.5	10.0	6.3	11.3	<1
1	Oct-18	03-10-2018	41.6	12.7	BDL	BDL	<1
2		05-10-2018	47.1	14.8	5.9	10.3	<1
3		10-10-2018	50.1	15.6	4.9	9.5	<1
4		12-10-2018	53.8	17.4	5.5	9.4	<1
5		15-10-2018	45.3	13.5	BDL	BDL	<1
6		17-10-2018	56.8	18.1	6.2	11.0	<1
7		23-10-2018	37.9	11.9	7.3	12.0	<1
8		26-10-2018	31.2	10.9	6.7	11.6	<1
1	Nov-18	02-11-2018	51.2	17.1	7.4	11.4	<1
2	1	05-11-2018	44.3	14.0	BDL	BDL	<1
3		09-11-2018	56.6	19.1	5.9	9.9	<1
4	İ	13-11-2018	40.2	12.2	BDL	BDL	<1
5		16-11-2018	42.5	13.9	6.5	10.8	<1
6		20-11-2018	46.0	15.1	7.0	11.2	<1
7		22-11-2018	49.3	16.0	5.1	10.7	<1
8		26-11-2018	53.6	18.0	5.4	10.1	<1
			Y	L)			
	Min		30.5	10.0	4.5	9.3	
	Max		56.8	19.1	7.4		4
	Mean		45.6	14.6	5.9	10.5	
	10th percentile	M	35.0	11.6	5.0	9.4	
8	30th percentile	e in to	42.4	13.5	5.4	9.9	
	50th percentile		46.3	14.4	5.9	10.5	
	95th percentile		56.2	18.1	7.3	11.8	
	98th percentile		56.7	18.7	7.4	11.9	

BDL: BELOW DETECTABLE LIMIT

_		Sta	tion: A2, NEA	R MINES OFF	ICE		
			PM 10 (µg/m³)	PM 2.5 (µg/m³)	SO ₂ (μg/m ³)	NO _x (μg/m³)	CO (Mg/m³)
No.	Month	Date	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average
-					BDL	BDL	<1
1		04-09-2018	54.7	17.0		11.5	<1
2		06-09-2018	46.2	14.6	5.0	BDL	<1
3		10-09-2018	35.6	10.8	BDL		
4		12-09-2018	23.0	8.0	5.8	10.1	<1
5	Sep-18	18-09-2018	43.3	13.8	6.9	12.1	<1
6		20-09-2018	52.9	16.7	7.1	11.9	<1
7		25-09-2018	50.9	15.3	5.2	10.4	<1
			30.2	9.8	6.5	10.3	<1
8		27-09-2018	54.5	16.4	5.5	10.5	<1
1		03-10-2018	42.4	13.3	BDL	BDL	<1
2		05-10-2018		14.8	5.9	10.1	<1
3		10-10-2018	48.9		BDL	BDL	<1
4	Oct-18	12-10-2018	56.5	17.6	7.4	10.9	<1
5	OCI-18	15-10-2018	35.2	11.3		10.4	.<1
6		17-10-2018	52.9	15.9	6.3		<1
7		23-10-2018	40.4	12.9	6.7	9.5	
8		26-10-2018	31.8	10.2	5.0	10.5	<1
1		02-11-2018	51.3	16.0	5.6	10.1	<1
2	+	05-11-2018	54.2	17.1	7.2	10.7	<1
3	-	09-11-2018	47.9	15.8	4.4	9.9	<1
4	-		38.9	11.8	BDL	BDL	<1
	Nov-18	13-11-2018	56.1	18.3	5.8	10.7	<1
5		16-11-2018	43.4	13.4	6.3	10.9	<1
6		20-11-2018		12.6	BDL	BDL	<1
7		22-11-2018	41.0	14.8	4.9	10.6	<1
8		26-11-2018	45.8	14.0	1.0		

Min		23.0	8.0	4.4	9.5
Max		56.5	18.3	7.4	12.1
Mean		44.9	14.1	6.0	10.6
10th percentile	M.	32.8	10.3	5.0	10.1
30th percentile		41.0	12.9	5.5	10.3
50th percentile		46.0	14.7	5.9	10.5
95th percentile		55.8	17.5	7.2	11.9
98th percentile		56.3	18.0	7.3	12.0

			PM 10 (µg/m³)	R HAULAGE R			
S.No.	✓ Month	Date	24 hrs Average	PM 2.5 (μg/m³)	SO ₂ (μg/m ³)	NO _x (μg/m³)	CO (Mg/m³)
			24 firs Average	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Averag
1		04-09-2018	51.1	16.1	8.1	10.1	
2			49.2	15.2		12.4	<1
3		06-09-2018	47.7		6.3	11.0	< 1
4		10-09-2018		14.4	BDL	BDL	<1
5	Sep-18	12-09-2018	46.2	13.9	BDL	BDL	<1
		18-09-2018	28.8	8.7	7.0	12.4	<1
6		20-09-2018	52.4	18.1	7.8	11.4	<1
7		25-09-2018	38.0	11.6	5.4	10.1	<1
8		27-09-2018	35.0	10.7	5.1	11.2	<1
1		03-10-2018	51.6	15.5	7.7	11.5	<1
2		05-10-2018	42.4	12.8	5.6	10.9	<1
3		10-10-2018	44.0	13.5	4.9	9.8	<1
4	0.445	12-10-2018	52.1	16.4	5.8	10.1	<1
5	Oct-18	15-10-2018	36.1	10.9	BDL	BDL	<1
6		17-10-2018	49.3	14.9	6.4	10.1	
7		23-10-2018	54.1	17.4	7.0	11.0	<1
8		26-10-2018	38.6	11.8	BDL		<1
1			55.2			BDL	<1
2		02-11-2018		17.4	7.3	11.3	<1
3		05-11-2018	41.1	12.4	BDL	BDL	<1
4		09-11-2018	56.2	18.2	5.0	9.9	<1
	Nov-18	13-11-2018	48.7	14.7	6.9	10.4	<1
5		16-11-2018	53.4	16.3	6.2	11.0	<1
5		20-11-2018	50.6	15.2	6.4	11.1	<1
		22-11-2018	38.3	11.5	BDL	BDL	<1
3		26-11-2018	46.3	13.9	5.6	10.1	<1

Min		28.8	8.7	4.9	9.8
Max		56.2	18.2	8.1	12.4
Mean	1, 1	46.1	14.2	6.4	10.9
10th percentile 30th percentile	Miles	36.6	11.1	5.1	10.0
		42.2	12.8	5.6	10.2
50th percentile		48.2	14.5	6.3	11.0
95th percentile		55.1	18.0	7.8	12.4
98th percentile		55.8	18.2	8.0	12,4

		S	tation: A4, Ne	ar Weigh Brid	ge		
			PM 10 (μg/m³)	PM 2.5 (μg/m³)	SO ₂ (µg/m³)	NO _x (μg/m³)	CO (Mg/m ³)
S.No.	Month	Date	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average
1		04.00.2048	39.2	13.0	BDL	BDL	<1
2		04-09-2018	46.0	15.2	5.6	9.6	<1
3		06-09-2018	31.4	10.9	6.7	11.1	<1
4		10-09-2018	33.9	11.6	4.9	9.5	<1
	Sep-18	12-09-2018	48.2	16.6	8.2	12.1	<1
5		18-09-2018		: 12.1	BDL	BDL	<1
6		20-09-2018	35.5		5.9	10.0	<1
7		25-09-2018	57.3	18.8			
8		27-09-2018	44.3	14.1	6.1	10.3	
1		03-10-2018	46.9	14.6	6.0	10.5	<1
2		05-10-2018	35.0	11.9	5.0	11.0	<1
3		10-10-2018	53.9	16.4	7.3	11.9	<1
4		12-10-2018	55.4	19.9	6.5	9.8	<1
5	Oct-18	15-10-2018	32.8	10.1	BDL	BDL	<1
6		17-10-2018	49.2	15.4	6.6	10.9	<1
7		23-10-2018	57.2	18.5	5.4	9.9	<1
8		26-10-2018	31.6	9.5	BDL	BDL	<1
1		02-11-2018	54.5	17.5	4.9	10.0	<1
2		05-11-2018	40.3	12.4	BDL	BDL	<1
3		09-11-2018	51.5	16.3	6.3	10.9	<1
4		13-11-2018	44.8	13.7	5.8	10.6	<1
5	Nov-18		47.0	14.9	5.5	10.8	<1
6		16-11-2018	32.5	10.6	6.8	11.2	<1
7		20-11-2018	49.9	15.6	BDL.	BDL	<1
		22-11-2018		18.7	7.1	11.3	<1
8		26-11-2018	57.0	10.7	7.1	11.0	

Min		31.4	9.5	4.9	9.5	_
Max		57.3	19.9	8.2	12.1	
Mean		44.8	14.5	6.1	10.6	
10th percentile		32.6	10.7	5.0	9.7	
30th percentile	A. Frien.	38.8	12.4	5.6	10.1	_
50th percentile		46.4	14.7	6.0	10.7	
95th percentile		57.2	18.8	7.4	12.0	_
98th percentile		57.3	19.4	7.9	12.0	

3

		S	tation: A 5, PA	ADSALI VILLA	3E		
			PM 10 (μg/m³)	PM 2.5 (µg/m³)	SO ₂ (µg/m³)	NO _x (μg/m³)	CO (Mg/m ³)
S.No.	< Month	Date	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average
1		Y	20.0	11.0	6.7		
		04-09-2018	39.8	11.9		9.2	<1
2		06-09-2018	33.6	10.7	BDL	BDL	<1
3		10-09-2018	50.4	16.1	6.1	11.3	<1
4	Con 10	12-09-2018	44.6	14.0	6.7	11.0	<1
5	Sep-18	18-09-2018	37.5	12.1	8.0	11.8	<1
6		20-09-2018	46.0	15.5	BDL	BDL	<1
7		25-09-2018	24.6	8.9	5.7	12.3	<1
8		27-09-2018	31.4	9.5	BDL	BDL	<1
1		03-10-2018	45.5	15.3	6.8	10.3	<1
2		05-10-2018	40.2	13.3	BDL	BDL	<1
3		10-10-2018	33.9	10.5	6.4	11.1	<1
4	0	12-10-2018	48.7	16.3	7.8	11.5	<1
5	Oct-18	15-10-2018	42.5	14.0	5.8	9.5	<1
6		17-10-2018	50.3	17.0	5.4	10.1	<1
7		23-10-2018	39.4	12.0	BDL	BDL	<1
8		26-10-2018	35.6	11.0	BDL	BDL	<1
1		02-11-2018	42.9	13.7	5.6	11.4	<1
2		05-11-2018	50.4	16.5	4.9	9.6	<1
3		09-11-2018	49.0	15.7	5.9	10.4	<1
4		13-11-2018	47.6	14.8	6.6	10.2	<1
5	Nov-18	16-11-2018	54.3	17.3	6.8	9.9	<1
6		20-11-2018	35.0	10.4	BDL	BDL	<1
7		22-11-2018	40.2	12.3	5.3	10.6	<1
8		26-11-2018	37.4	11.3	BDL	BDL	<1

Min		24.6	8.9	4.9	9.2
Max		54.3	17.3	8.0	12.3
Mean	11.	41.7	13.3	6.3	10.6
10th percentile		33.7	10.5	5.4	9.5
30th percentile		37.5	11.8	5.8	10.1
50th percentile		41.4	13.5	6.2	10.5
95th percentile		50.4	16.9	7.9	11.9
 98th percentile		52.5	17.2	8.0	12.1

		Statio	n: A6, DURGA	IIV IDAWNAMA	LAGE		
			PM 10 (μg/m³)	PM 2.5 (µg/m³)	SO ₂ (µg/m³)	NO _x (μg/m³)	CO (Mg/m ³)
S.No.	Month	Date	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average
1		04-09-2018	26.3	7.9	7.4	10.0	<1
2		06-09-2018	33.6	10.9	BDL	BDL	<1
3		10-09-2018	49.8	16.1	6.2	11.5	<1
4		12-09-2018	44.6	15.6	6.8	11.2	<1
5	Sep-18	18-09-2018	37.5	12.1	7.8	11.6	<1
6		20-09-2018	40.5	13.2	BDL	BDL	<1
7		25-09-2018	42.5	14.3	5.6	11.9	<1
8		27-09-2018	31.4	9.5	BDL	BDL	<1
1		03-10-2018	47.8	14.7	5.7	10.9	<1
2		05-10-2018	43.2	12.9	4.7	8.9	<1
3		10-10-2018	32.0	11.8	6.9	11.3	<1
4		×12-10-2018	30.6	9.5	BDL	BDL	<1
5	Oct-18	15-10-2018	49.4	15.5	7.1	12.0	<1
6		17-10-2018	34.7	10.6	BDL	BDL	<1
7 =		23-10-2018	45.2	13.6	5.4	10.6	<1
8		26-10-2018	51.1	16.0	4.8	10.1	<1
1		02-11-2018	45.2	14.4	6.1	10.7	<1
2		05-11-2018	32.4	10.3	* BDL	BDL	<1
3		09-11-2018	53.0	17.1	6.5	10.3	<1
4		13-11-2018	43.6	13.1	7.7	11.3	<1
5	Nov-18	16-11-2018	50.9	16.3	6.8	10.2	<1
6		20-11-2018	47.8	15.6	5.5	10.0	<1
7		22-11-2018	39.6	11.9	BDL	BDL	<1
8		26-11-2018	41.6	12.7	6.2	10.1	<1

Min		26.3	7.9	4.7	8.9
Max		53.0	17.1	7.8	12.0
Mean		41.4	13.1	6.3	10.7
10th percen	ntile	31.6	9.8	5.2	10.0
30th percen	itile	37.2	11.9	5.7	10.2
50th percen	ntile	42.8	13.2	6.2	10.7
95th percen	itile	51.1	16.3	7.7	11.9
98th percen	itile	52.1	16.7	7.8	12.0

		St	ation: A7, KAI	RIWADE VILLA	GE		
S.No.	B.5 4 l-	В.	PM 10 (µg/m³)	PM 2.5 (µg/m³)	SO ₂ (μg/m³)	NO _x (μg/m³)	CO (Mg/m³)
5.No.	Month	Date	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average
1		04-09-2018	36.1	10.9	7.1	10.1	<1
2		06-09-2018	41.1	13.5	6.7	9.8	<1
3		10-09-2018	30.9	9.9	6.2	9.5 -	<1
4		12-09-2018	38.1	12.4	BDL	BDL	<1
5	Sep-18	18-09-2018	53.7	17.1	8.1	11.2	<1
6		20-09-2018	50.6	16.5	6.9	10.8	<1
7		25-09-2018	33.5	11.2	BDL	BDL	<1
8		27-09-2018	43.8	14.2	7.5	11.5	<1
1		03-10-2018	41.3	12.4	BDL	BDL	<1
2		05-10-2018	48.6	16.6	5.5	10.5	<1
3		10-10-2018	43.1	14.0	6.0	10.0	<1
4		12-10-2018	46.2	15.5	7.3	10.0	<1
5	Oct-18	15-10-2018	50.6	17.1	8.0	11.0	<1
6		17-10-2018	52.6	18.3	6.7	10.1	<1
7		23-10-2018	30.4	13.3	5.3	9.4	<1
8		26-10-2018	33.0	10.8	BDL	BDL	<1
1		02-11-2018	36.6	11.1	BDL	BDL	<1
2		05-11-2018	39.4	12.2	6.1	10.4	<1
3		09-11-2018	53.6	16.0	5.4	10.3	<1
4		13-11-2018	51.8	15.2	4.3	9.8	<1
5	Nov-18	16-11-2018	55.8	17.2	7.4	11.1	<1
6		20-11-2018	44.5	13.7	6.7	10.6	<1
7		22-11-2018	33.6	9.9	BDL	BDL	<1
8		26-11-2018	46.7	14.4	6.6	10.1	<1

Min		30.4	9.9	4.3	9.4
Max		55.8	18.3	8.1	11.5
Mean		43.1	13.9	6.5	10.3
10th percentile	100	33.1	10.8	5.4	9.7
30th percentile		38.0	12.3	6.1	10.0
50th percentile		43.5	13.8	6.7	10.2
95th percentile		53.7	17.2	8.0	11.2
98th percentile		54.8	17.8	8.1	11.4

S.No.	Month	Date	PM 10 (µg/m³)	PM 2.5 (μg/m³)	SO ₂ (μg/m ³)	$NO_x (\mu g/m^3)$	CO (Mg/m ³)
0.110.	MOREI	Date	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average
	4						
1		04-09-2018	41.4	13.1	4.7	9.7	<1
2		06-09-2018	46.8	14.9	7.2	11.6	<1
3		10-09-2018	29.2	9.5	BDL	BDL	<1
4	C== 40	12-09-2018	27.7	8.9	BDL	BDL.	<1
5	Sep-18	18-09-2018	50.7	16.2	5.1	10.1	<1
6		20-09-2018	47.9	15.4	5.3	10.0	<1
7		25-09-2018	40.0	12.8	6.9	11.3	<1
8		27-09-2018	30.0	9.1	BDL	BDL	<1
1		03-10-2018	32.9	9.9	4.8	9.9	, <1
2		05-10-2018	39.9	12.6	BDL	BDL	<1
3		10-10-2018	46.0	14.0	6.8	11.2	<1
4	0-1.40	12-10-2018	42.3	13.0	5.8	10.5	<1
5	Oct-18	15-10-2018	37.6	11.5	5.5	9.9	<1
6		17-10-2018	53.5	16.2	5.0	9.7	<1
7		23-10-2018	36.3	10.9	BDL	BDL	<1
8		26-10-2018	49.2	15.3	6.4	10,4	<1
1		02-11 ₋ 2018	42.7	12.9	5.7	10.3	<1
2		05-11-2018	47.8	14.8	6.2	10.9	<1
3		09-11-2018	39.4	11.8	BDL	BDL	<1
4	11111110	13-11-2018	49.7	15.2	6.1	10.2	<1
5	Nov-18	16-11-2018	51.2	16.3	6.8	10.6	<1
6		20-11-2018	53.2	17.2	4.8	9.3	<1
7		22-11-2018	37.5	9.4	BDL	BDL	<1
8		26-11-2018	45.6	13.7	4.4	9.8	<1

Min		27.7	8.9	4.4	9.3
Max		53.5	17.2	7.2	11.6
Mean		42.4	13.1	5.7	10.3
10th percentile		30.9	9.4	4.8	9.7
30th percentile		39.2	11.8	5.1	9.9
50th percentile	H 5	42.5	13.0	5.7	10.2
95th percentile		52.9	16.3	6.9	11,4
98th percentile		53.3	16.7	7.1	11.5

BDL for SOx-2.0 & NOx-4.5

NOTE: The results relate only to the conditions prevailing at the time of sampling

Method of measurement: As per CPCB manual & IS $5182\,$

DURGAMANWADI MINES WELL DEPTHS OF VILLAGES S.NO. LOCATION NAME OF THE **TOTAL DEPTH** MINE AREA IN MTS WATER LEVEL FROM **SURFACE IN MTS** 23.11.2018 PADSALI VILLAGE DMW 1 4.1 0.50 CHAVANWADI VILLAGE 2 DMW 2.80 2.00

RADHANAGARI TALUKA, KOLHAPUR DISTRICT MAHARASHTRA

M/S HINDALCO INDUSTRIES LIMITED

ENVIRONMENTAL QUALITY MONITORING REPORT

WINTER 2018-19
(DECEMBER2018.JANAUARY.FEBRUARY 2019)

IND.BH.41.17.0348/HSR

Bhagavathi Ana Labs Pvt. Ltd.,

7-2-C-14, Industrial Estate, Sanathnagar, Hyderabad 500 018

CONTENTS

TITLE	PAGE NO.
PREFACE	I
	-
EXECUTIVE SUMMARY	II – III
MICRO-METEOROLOGY	1- 4
ENVIRONMENTAL QUALITY	5- 23
Ambient Air Quality	5 - 8
Ambient Noise Quality	9 -12
Water Quality	13 - 23
Stack Quality Monitoring •	23 - 25
ANNEXURE	
Ambient Air Quality	

PREFACE

M/S Hindalco Industries Limited entrusted environmental quality monitoring at Durgmanwadi Bauxite Mine situated Radhanagari Taluka, Kolhapur district, Maharashtra to Bhagavathi Ana Labs Pvt. Limited, Hyderabad during Winter season of the year 2018-19.

The environmental monitoring was carried out in core zone and buffer zone during the months of December2018, January & February 2019 for the following environmental parameters.

- → Micro-meteorology
- → Ambient air quality
- → Ambient noise level quality
- → Water quality

The data obtained was compiled to assess the current environmental status of the mining as well as the surrounding villages in the study area.

Bhagavathi Ana Labs Pvt. Limited, Hyderabad gratefully acknowledges the cooperation extended by management and staff of M/S Hindalco Industries Limited and the village people to the field staff.

EXECUTIVE SUMMARY

Durgamanwadi Bauxite Mine environmental quality monitoring includes the monitoring of ambient air quality, noise level quality, water quality, & micrometeorology in core zone and buffer zone around the mine lease area.

AMBIENT AIR QUALITY

The scenario of the existing ambient air quality in the study region has been assessed through a network of selected ambient air quality locations. Precalibrated respirable and fine particulate dust sampler has been used for monitoring the existing AAQ status. Maximum, minimum, average and percentile values have been computed from the raw data collected at all individual sampling stations to represent the ambient air quality status.

AMBIENT NOISE LEVEL MONITORING

Mining and allied activities usually cause noise pollution. Excessive noise levels will cause adverse effects on human beings and associated environment including domestic animals, wild life, natural ecosystem and structures. To know the ambient noise levels in the study area, noise levels were recorded at mining area and nearby villages using noise level Meter.

WATER QUALITY MONITORING

Water quality monitoring consists of the study of surface and ground water sources and its quality in the core and buffer zone of the lease area. Assessment of water quality in the study area and in the mine area includes the quality assessment of parameters as per the Indian Standard IS 10500 (Drinking water standard). Water samples were collected from selected locations during study period and analyzed in the laboratory as per the standard IS&APHA procedures.

MICROMETEOROLOGY

Meteorological scenario helps to understand the trends of the climatic factors. It also helps in the identification of sampling stations in the study area. Meteorological scenario exerts a critical influence on air quality as the pollution arises from the interaction of atmospheric contaminants with adverse meteorological conditions

MICRO-METEOROLOGY

Meteorological data within the project area during the air quality survey period was assessed.

PRIMARY / BASIC METEOROLOGICAL PARAMETERS

- → Wind Velocity
- → Wind Direction

Since the dispersion and diffusion of pollutants mainly depend on the above factors these factors are considered as primary meteorological parameters.

SECONDARY METEOROLOGICAL PARAMETERS

→ Ambient Temperature

Winter 2018-19

		MICF	MICRO-METEOROLOGICAL DATA	OGICAL DA	TA		
DATE		TEMPERATURE/HUI	MIDITY	M	WIND SPEED Km/h	η/h	WIND
	N	MAX	AVERAGE HUMIDITY	Z	XAN	AVEDAGE	
04-12-2018	21	34	99	0	3	1.5	SSE, SSW
06-12-2018	23	31	29	0	9	3.0	N,N
11-12-2018	16	59	62	0	5	2.5	NW,E
13-12-2018	19	31	58	0	4	2.0	ENE, ESE
18-12-2018	19	32	56	0	က	1.5	WNW.N
20-12-2018	20	30	09	0	2	2.5	NNW,N
26-12-2018	21	29	62	0	е	1.5	N/WNN
28-12-2018	18	32	09	0	9	3.0	ESE, NE

Durgamanwadi Bauxite mine

		MICE	MICRO-METEOROLOGICAL DATA	OGICAL DA	ΓA		
DATE		TEMPERATURE/HUMIDITY	WIDITY	IM	WIND SPEED Km/h	ı/h	WIND
	MIN	MAX	AVERAGE HUMIDITY	Z	MAX	AVERAGE	
02-01-2019	16	32	55	0	5	2.5	NW,N
04-01-2019	18	32	57	0	7	3.5	W,E
09-01-2019	17	32	54	0	9	3.0	WNW,N
11-01-2019	18	30	56	0	7	3.5	N,WNW
16-01-2019	20	32	51	0	6	4.5	N,W
18-01-2019	19	32	52	0	4	2.0	N,W
23-01-2019	19	29	50	0	т	1.5	WNW,N
25-01-2019	16	28	48	0	5	2.5	N,WNN

Winter 2018-19

MAX AVERAGE HUMIDITY MIN MAX AVERAGE AVERAGE MIN MAX AVERAGE AVERAGE MINDITY MIN MAX AVERAGE AVERAGE MINDIDITY MIN MAX AVERAGE MINNINE 27 65 0 4 2.0 W,NNN 30 65 0 5 2.5 W,FNE 30 65 0 3 1.5 W,NNN 33 65 0 3 1.5 W,NNN 29 65 0 6 3.0 NW,NNW 29 65 0 7 3.5 NE,NN		MICF	MICRO-METEOROLOGICAL DATA	OGICAL DA	ΤA		
AVERAGE HUMIDITY MIN MAX AVERAGE 65 0 4 2.0 65 0 6 3.0 65 0 5 2.5 65 0 4 2.0 65 0 4 2.0 65 0 5 2.5 65 0 3 1.5 65 0 6 3.0 65 0 6 3.0 65 0 6 3.0	TEMPE	:RATURE/HUI	MIDITY	M	ND SPEED Kr	n/h	WIND
65 0 4 2.0 65 0 6 3.0 65 0 5 2.5 65 0 4 2.0 65 0 5 2.5 65 0 5 2.5 65 0 6 3.0 65 0 6 3.0 65 0 6 3.0 65 0 6 3.0		MAX	AVERAGE HUMIDITY		MAX	AVFRAGE	
65 0 6 3.0 65 0 5 2.5 65 0 4 2.0 65 0 5 2.5 65 0 3 1.5 65 0 6 3.0 65 0 6 3.0 65 0 6 3.5		32	65	0	4	2.0	W,NNE
65 0 5 2.5 65 0 4 2.0 65 0 5 2.5 65 0 3 1.5 65 0 6 3.0 65 0 6 3.0 65 0 6 3.0 65 0 7 3.5		27	65	0	9	3.0	NNW,NW
65 0 4 2.0 65 0 5 2.5 65 0 3 1.5 65 0 6 3.0 65 0 6 3.0 65 0 6 3.0		31	65	0	5	2.5	W,ENE
65 0 5 2.5 65 0 3 1.5 65 0 6 3.0 65 0 6 3.0 65 0 7 3.5	£	0	65	0	4	2.0	N,WN
65 0 3 1.5 65 0 6 3.0 65 0 6 3.0 65 0 7 3.5	8	0	65	0	ις	2.5	NW,N
65 0 6 3.0 65 0 7 3.5	(4)	0	65	0	ю	1.5	W,NNW
65 0 7 3.5	(4)	63	65	0	9	3.0	NW,NNW
		63	65	0	7	3.5	NE,NW

Winter 2018-19

Bhagavathi Ana Labs Pvt. Ltd., Hyderabad

4

p s

p S

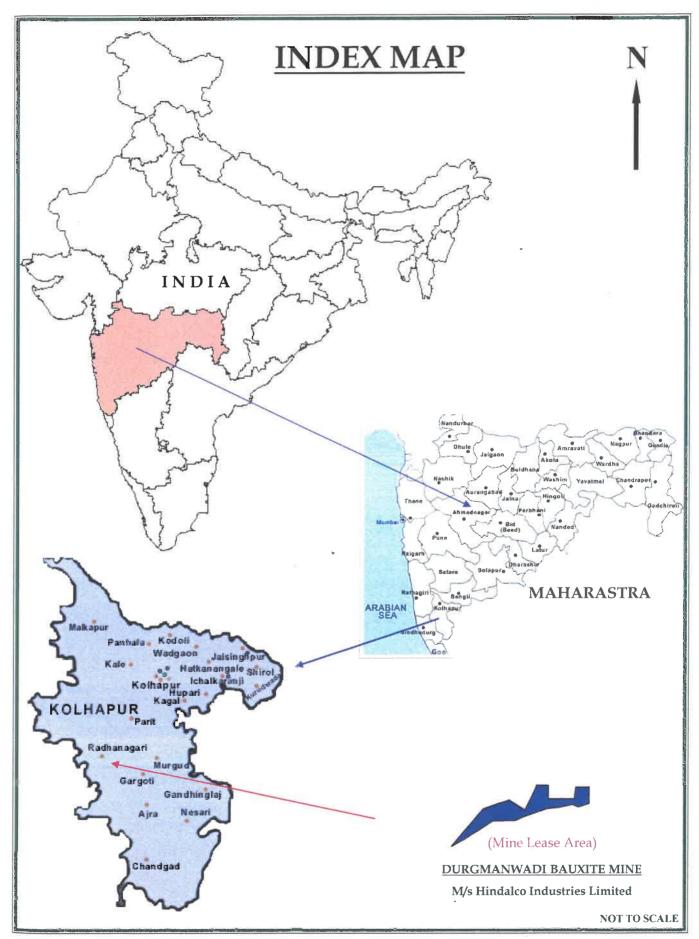
__ Bh 2018-19

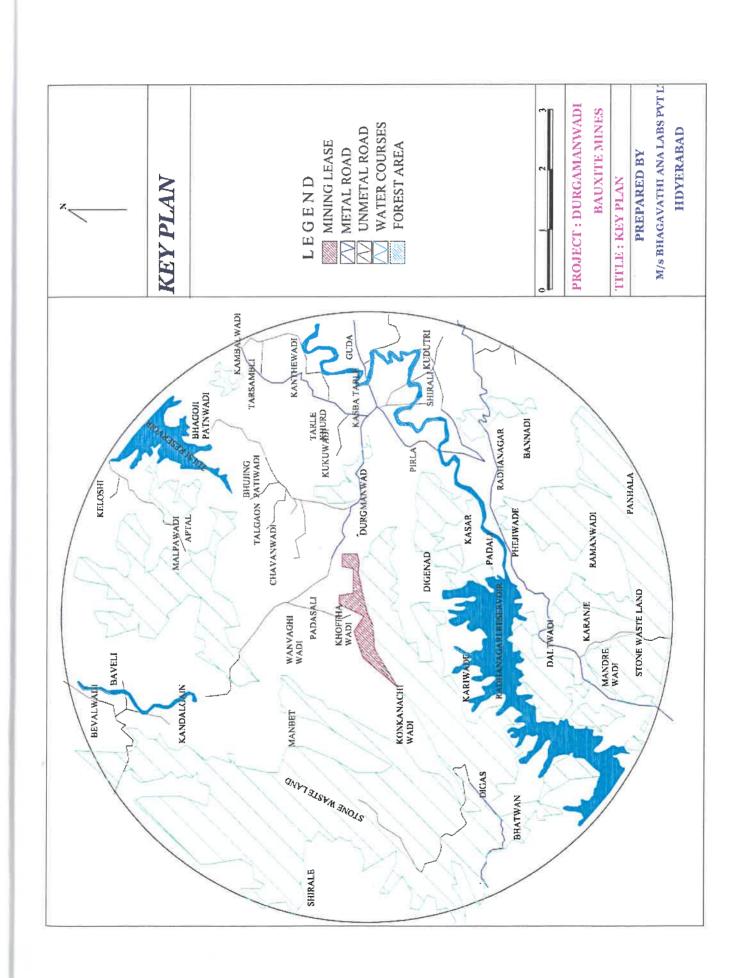
ENVIRONMENTAL QUALITY

Environmental monitoring includes air, noise, water quality status within core zone and buffer zone around the Durgmanwadi Bauxite Mines Lease area at Radhanagari Taluka, Kolhapur district, Maharashtra.

AMBIENT AIR QUALITY

The ambient air quality monitoring was to assess the existing levels of the air pollution. Air pollution forms an important and critical factor to study the environmental issues in the mining areas. Thus, air quality has to be frequently monitored to know the extent of pollution due to mining and allied activities.

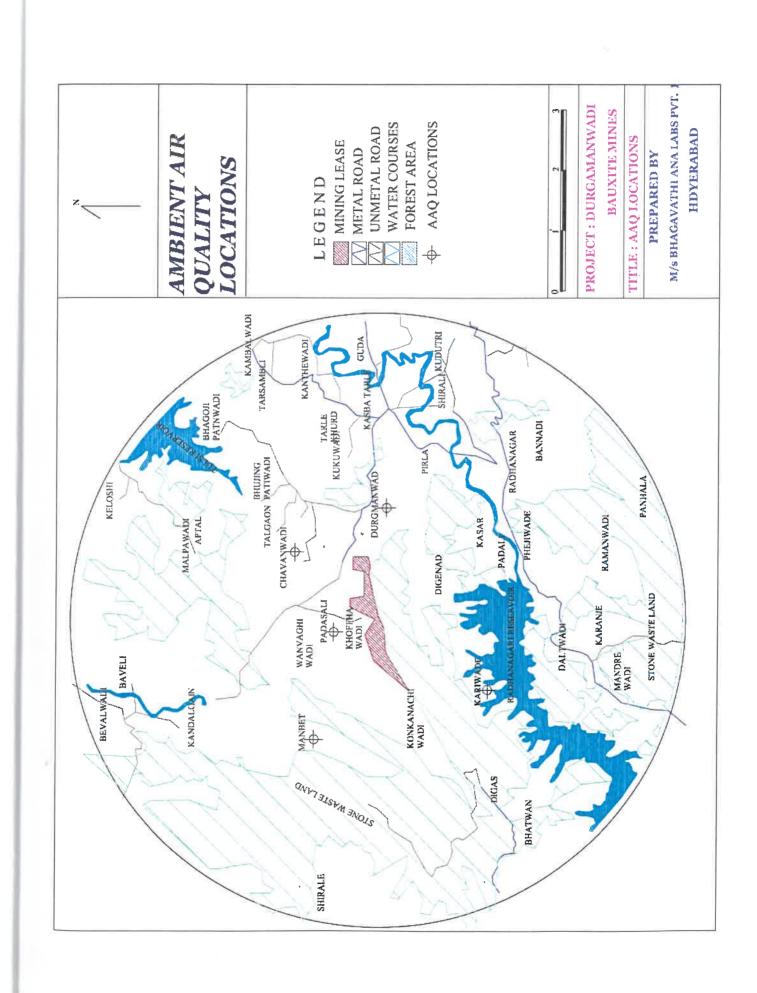

Ambient air quality monitoring stations were set up at eight selected locations, 4 in core zone and 4 in buffer zone.


METHOD OF SAMPLING

Ambient air quality monitoring has been carried out with a frequency of two days per week at eight locations for one season (i.e. 24 times at each location in a season). The Monitoring data for air environment is generated for the parameters like Particulate matter (PM10), Fine Particulate Matter (PM2.5) Sulphur Dioxide (SO_2) and Oxides of Nitrogen (NOx), and CO.

AMBIENT AIR QUALITY MONITORING STATIONS

SL. NO	STATION CODE	NAME OF SAMPLING LOCATION	DIRECTION w.r.t MINES
1	A - 1	Core zone	
2	A - 2	Near Mines office	
3	A - 3	Near haulage road	
4	A - 4	Near Weigh Bridge	
5	A - 5	Padsali village	N
6	A - 6	Durgmanwadi village	E
7	A - 7	Kariwade village	SW
8	A - 8	Chavanwadi village	NE



SUMMARY OF AMBIENT AIR QUALITY RESULTS

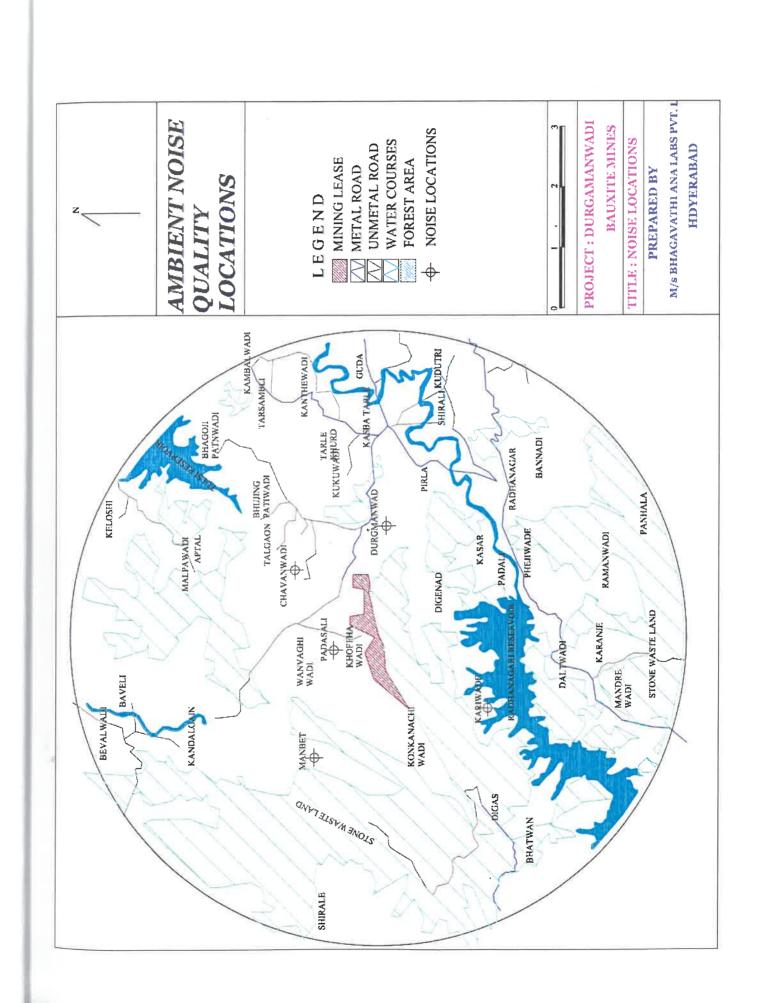
SI. No.	Location		PM 10 (μg/m³)	PM 2.5 (μg/m³)	SO ₂ (μg/m³)	NO ₂ (μg/m ³)	CO (Mg/m3) 24 hrs Average
		Min	38.2	11.6	5.0	9.2	<1
4	Core zone	Max	59.8	19.0	7.7	12.3	<1
1	Core zone	Average	47.7	15.1	6.2	10.8	<1
	×6	98 th %tile	58.7	18.8	7.6	12.2	<1
		Min	34.4	10.0	5.0	9.4	<1
2	Near Mine	Max	57.4	18.4	8.8	11.9	<1
2	Office	Average	46.0	14.4	6.3	10.6-	<1
		98 th %tile	56.3	18.3	8.4	11.8	<1
		Min	36.0	10.7	4.9	9.8	<1
3	Near Haulage	Max	57.2	18.4	7.7	12.0	<1
	Road	Average	47.5	14.5	6.3	11.2	<1
		98 th %tile	56.8	18.4	7.7	12.0	<1
		Min	31.0	9.5	5.0	9.4	<1
4	Near Weigh Bridge	Max	58.3	19.6	8.0	12.1	<1
		Average	47.0	14.7	6.4	11.0	<1
		98 th %tile	57.0	19.2	7.9	12.1	<1
		Min	32.7	9.4	8.8	9.2	<1
5	Padsali village	Max	56.7	18.0	12.7	12.3	<1
	r dusan vinage	Average	46.5	14.2	10.8	10.6	<1
		98 th %tile	56.3	17.8	12.5	12.1	<1
		Min	30.3	9.5	4.6	9.1	<1
6	Durgamanwadi village	Max	58.2	18.5	6.9	12.0	<1
	village	Average	47.0	14.3	5.6	10.7	<1
		98 th %tile	57.9	18.3	6.8	12.0	<1
	Kariwade	Min	31.9	9.3	5.0	9.3	<1
7	village	Max	58.3	18.6	7.2	11.8	<1
,		Average	46.1	14.2	6.1	10.3	<1
		98 th %tile	56.9	18.6	7.2	11.8	<1
		Min	31.5	9.1	5.0	9.2	<1
8	Chavanwadi	Max	60.0	19.0	7.2	12.0	<1
	village	Average	46.8	14.5	6.0	10.5	<1
		98 th %tile	58.0	18.8	7.2	12.0	<1

NOTE: The results relate only to the condition prevailing at the time of sampling Method of measurement: As per IS 5182

AMBIENT NOISE LEVEL QUALITY

Noise is nothing but unwanted sound produced due to various activities. As a part of occupational health and safety measures, certain safeguards have been incorporated to mitigate noise pollution in working environment. So noise level surveys were carried out at 8 selected locations in and around the mine lease area. Noise survey has been conducted in the study area for the period of 24 hr at each location. The noise level results are given below.

AMBIENT NOISE LEVEL MONITORING STATIONS


SL. NO	CODE	NAME OF SAMPLING LOCATION	DIRECTION w.r.t.	
1	N - 1	Core zone		
2	N - 2	Near Mines Office		
3	N - 3	Mines Haulage Road		
4	N - 4	Near Weigh Bridge		
5	N - 5	Padsali village	N	
6	N - 6	Durgmanwad village	Е	
7	N - 7	Kariwade village	SW	
8	N - 8	Chavanwadi village	NE	

NOISE AMBIENT STANDARDS

ADEA CODE	CATECORY OF AREA	LIMIT IN dB	(A) Leq
AREA CODE	CATEGORY OF AREA	DAY TIME	NIGHT TIME
А	Industrial Area	75	70
В	Commercial Area	65	55
С	Residential Area	55	45
D	Silence Area	50	40

Note:

- 1. Day time is reckoned in between 6 am and 9 pm.
- 2. Night time is reckoned in between 9 pm and 6 am.
- 3. Silence zone is defined as area upto 100 meters around such premises as hospitals, educational institutions and courts. The silence zones are to be declared by the Competent Authority.
- 4. Mixed categories of areas should be declared as "one of the four above mentioned categories by the Competent Authority and the corresponding standards shall apply.

CORE ZONE NOISE LEVEL MONITORING DATA

Location →	N - 1	N - 2	N - 3	N-4
	CORE	NEAR	MINES	NEAR
	ZONE	MINES	HAULAGE	WEIGH
		OFFICE	ROAD	BRIDGE
Time (Hrs)↓		ď	B(A)	
06.00	42.1	43.0	43.6	43.9
07.00	49.3	50.4	50.4	51.3
08.00	50.8	52.3	52.9	53.6
09.00	53.4	54.8	55.0	55.9
10.00	55.4	56.8	57.0	57.8
11.00	62.8	63.7	64.2	65.0
12.00	63.5	64.5	65.3	66.1
13.00	62.0	63.1	63.8	64.9
14.00	62.1	63.2	63.3	64.6
15.00	60.2	61.7	62.1	62.7
16.00	59.3	60.3	60.9	61.3
17.00	58.5	58.8	59.5	60.0
18.00	57.3	57.6	58.7	58.9
19.00	56.6	57.2	58.1	58.5
20.00	51.9	52.3	53.6	53.9
21.00	50.6	51.5	52.7	52.9
22.00	45.3	46.1	47.2	47.2
23.00	44.3	45.6	46.4	46.5
24.00	44.3	45.4	46.1	46.2
01.00	44.6	46.0	46.3	46.2
02.00	45.2	46.9	46.9	46.9
03.00	45.9	47.3	47.9	47.6
04.00	41.3	42.2	42.6	42.5
05.00	41.2	41.5	42.3	42.5
Minimum Value: - (L _{Min})	41.2	41.5	42.3	42.5
Maximum Value: - (L _{Max})	63.5	64.5	65.3	66.1

NOTE: The results relate only to the condition prevailing at the time of sampling

BUFFER ZONE NOISE LEVEL MONITORING DATA

Location →	N - 4	N - 5	N - 6	N-8
	PADSA	DURGAMA	KARIWADE	CHAVAN
	LI	NWADI	VILLAGE	WADI
	VILLAG	VILLAGE		VILLAGE
	E			
Time (Hrs)↓			dB(A)	
06.00	45.3	47.0	48.0	49.0
07.00	46.8	47.3	48.7	48.8
08.00	48.3	48.5	50.0	50.4
09.00	51.5	51.7	50.5	51.3
10.00	53.6	54.2	53.9	54.7
11.00	56.1	57.4	56.0	56.4
12.00	56.5	57.1	55.8	57.0
13.00	57.3	56.8	56.7	57.5
14.00	56.1	57.6	57.8	58.0
15.00	55.7	56.0	55.2	55.8
16.00	60.9	60.9	59.0	59.5
17.00	62.0	62.8	55.9	59.7
18.00	57.3	58.7	58.0	59.6
19.00	53.3	53.1	52.4	54.4
20.00	49.3	49.7	49.1	50.1
21.00	48.6	49.4	48.3	48.9
22.00	48.4	49.5	49.7	49.5
23.00	49.0	48.8	48.4	49.3
24.00	48.6	48.9	50.3	50.8
01.00	47.6	47.9	47.9	48.7
02.00	47.6	47.6	47.4	47.8
03.00	48.5	48.0	48.1	49.0
04.00	47.9	49.0	50.3	50.1
05.00	47.8	48.5	49.6	50.6
Minimum Value: - (L _{Min})	45.3	47.0	47.4	47.8
Maximum Value: - (L _{Max})				

RESULT & DISCUSSION

The obtained Ld, Ln noise levels are compared with the ambient noise level standards and are found to be within the limit.

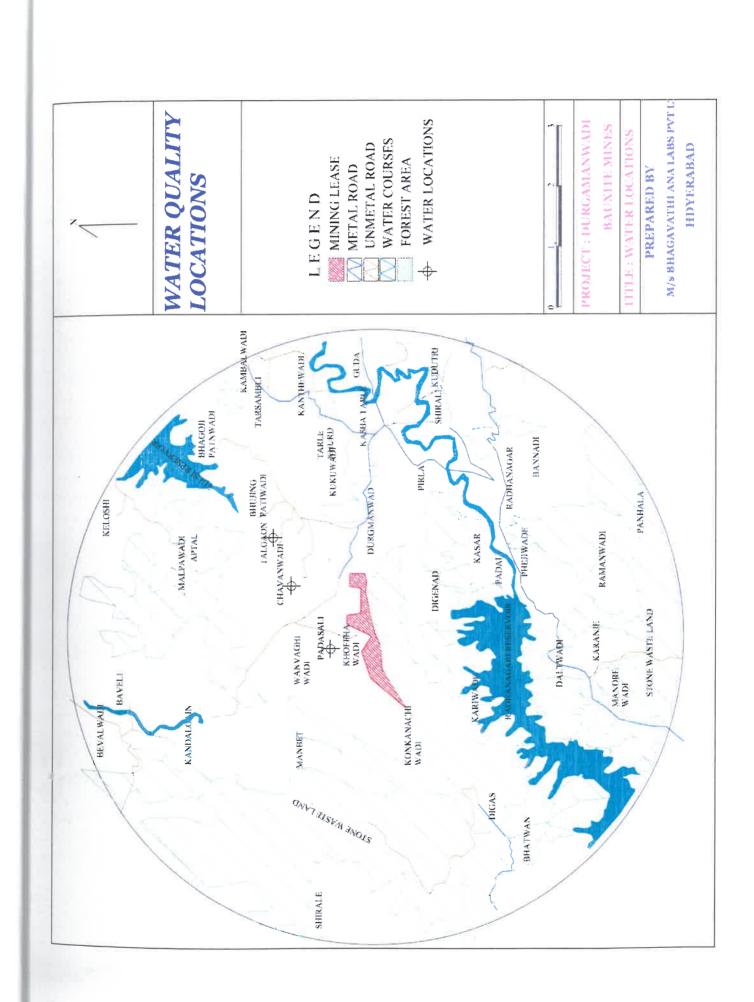
WATER QUALITY

Water quality monitoring consists of the study of water sources and its quality in the core and buffer zone of the lease area. Its study consists of following two important systems of water bodies:

- Surface water quality.
- Ground water quality.

The buffer zone is good in ground and surface water source. The rainwater regularly recharges this ground water during rainy season. There are two and more streams flowing in the study area, which are considered to be good source of water.

Assessment of water quality in the study area and in the mine area includes the quality assessment of parameters as per the IS 10500 (Drinking Water Standard). A total of 6 quality monitoring stations selected for sample collection in the study area. Location of water quality monitoring stations is given in Table.


WATER QUALITY MONITORING LOCATIONS

SI. No		Name of Sampling Station	Source of Water
		¥	
1	W1	Talgaon village	Ground water
2	W2	Durgamanwadi village	Ground water
3	W3	Chavanwadi village	Ground water
4	W4	Padsali village	Surface water
5	W5	Tulsi stream	Surface water
6	W6	Mine Accumulated water	Surface water

SAMPLING DETAILS

el

The water samples were collected from selected sampling locations, which are coming under core zone and buffer zone around the mine lease area. Samples were collected in the winter season as per the prescribed sample collecting methods and analyzed as per the IS & APHA standard procedures. Report of water samples are given below.

MINE ACCUMULATED WATER

Location Name	:	Mine Accumul	ated Water		
Date	:	26.2.2019	Sample Type	:	Surface Water

Sl. No.	Parameter	Unit	Result
1	Odour	3	Un-objectionable
2	Taste		Agreeable
3	Colour	Hazen Units	<5
4	pH		6.84
5	Turbidity	NTU	<5
6	Dissolved Oxygen	mg/l	6.80
7	Total Dissolved Solids	mg/l	80
8	Total Suspended Solids	mg/l	7
9	Alkalinity as CaCO ₃	mg/l	13
10	Total Hardness as CaCO ₃	mg/l	74.0
11	Nitrates NO ₃	mg/l	0.26
12	Phosphates PO ₄	mg/l	0.01
13	Chlorides as Cl	mg/l	14.5
14	Sulphates as SO ₄ ²⁻	mg/l	7.2
15	Sodium as Na.	mg/l	6.62
16	Potașsium as K	mg/l	5.12
17	Calcium as Ca	mg/l	17.6
18	Magnesium as Mg	mg/l	7.2
19	Lead (Pb)	mg/l	BDL
20	Manganese as Mn	mg/l	0.03
21	Cadmium (Cd)	mg/l	BDL
22	Chromium (Cr)	mg/l	BDL
23	Copper (Cu)	mg/l	BDL
24	Zinc (Zn)	mg/l	BDL
25	Iron as Fe	mg/l	0.13
26	Fluoride as F	mg/l	0.14
27	Mercury as (Hg)	mg/l	BDL
28	Selenium as Se	mg/l	BÒL
29	Arsenic as As	mg/l	BDL
30	Cyanide as CN	mg/l	BDL
31	Boron as B	mg/l	BDL
32	B.O.D (3 days 27°C)	mg/l	1.6

Dι

 \mathbf{P}_{I}

Lo

Da

2

Bhagav

TULSI STREAM

Location Name	: Tulsi stream	
Date	,	•
	: 26.2.2019	Sample Type : Surface Water

	Parameter	Unit	Result
1	Odour		
2	Taste		Un-objectionab
3	Colour	Hazen Units	Agreeable
4	pH	Hazen Omes	<5
5	Turbidity	NTU	6.92
6	Dissolved Oxygen	mg/l	<5
7	Total Dissolved Solids		6.70
8	Total Suspended Solids	mg/l	104
9	Alkalinity as CaCO ₃	mg/l	11
10	Total Hardness as CaCO ₃	mg/l	33
11	Nitrates NO ₃	mg/l	82.0
12	Phosphates PO ₄	mg/l	0.29
13	Chlorides as Cl	mg/l	0.03
14	Sulphates as SO ₄ ²⁻	mg/l	9.67
15	Sodium as Na.	mg/l	0.85
16	Potassium as K	mg/l	2.32
17	Calcium as Ca	mg/l	4.26
18	Magnesium as Mg	mg/l	24.8
19	Lead (Pb)	mg/l	4.84
20	Manganese as Mn	mg/l	BDL
21	Cadmium (Cd)	mg/l	0.03
22	Chromium (Cr)	mg/l	BDL
23	Copper (Cu)	mg/l	BDL
24	Zinc (Zn)	mg/l	BDL
25	Iron as Fe	mg/l	BDL
26	Fluoride as F	mg/l	0.10
27	Mercury as (Hg)	mg/l	0.33
28	Selepium as Se	mg/l	BDL
29	Arsenic as As	mg/l	BDL
	Cyanide as CN	mg/l	BDL
	Boron as B	· mg/l	BDL
		mg/l	BDL
<i>)</i> ←	B.O.D (3 days 27°C)	` mg/l	1

PADSALI VILLAGE

Location Name	:	Padsali village			
Date	: 26.2.2019	Sample Type :	Surface water		
Duce					

Sl. No.	Parameter	Unit	
1	Odour		Un-objectionable
2	Taste		Agreeable
3	Colour	Hazen Units	<5
4	pH		- 6.77
5	Turbidity	NTU	<5
6	Dissolved Oxygen	mg/l	4.60
7	Total Dissolved Solids	mg/l	30
8	Total Suspended Solids	mg/l	7
9	Alkalinity as CaCO ₃	mg/l	8
10	Total Hardness as CaCO ₃	mg/l	8.0
11	Nitrates NO ₃	mg/l	0.15
12	Phosphates PO ₄	mg/l	0.02
13	Chlorides as Cl	mg/l	9.36
14	Sulphates as SO ₄ ²⁻	mg/l	3.29
15	Sodium as Na.	mg/l	2.62
16	Potašsium as K	mg/l	9
17	Calcium as Ca	mg/l	1.6
18	Magnesium as Mg	mg/l	0.92
19	Lead (Pb)	mg/l	BDL
20	Manganese as Mn	mg/l	0.27
21	Cadmium (Cd)	mg/l	BDL
. 22	Chromium (Cr)	mg/l	BDL
23	Copper (Cu)	mg/l	BDL
24	Zinc (Zn)	mg/l	BDL
25	Iron as Fe	mg/l	0.17
26	Fluoride as F	mg/l	0.10
27	Mercury as (Hg)	mg/l	BDL
28	Selenium as Se	mg/l	BDL
29	Arsenic as As	mg/l	BDL
30	Cyanide as CN	mg/l	BDL
31	Boron as B	mg/l	BDL .
32.	B.O.D (3 days 27°C)	mg/l	1.1

BDL: Below Detectable Limit

CHAVANWADI VILLAGE

Location Name	:		Chavanwadi village			
	······································				······································	
Date	<u> </u>	26.2.2019	Sample Type	:		Ground water

Sl. No.	Parameter	Unit	Result
1	Odour		Un-objectionable
2	Taste		Agreeable
3	Colour	Hazen Units	<5
4	pH		6.63
5	Turbidity	NTU	<5
6	Dissolved Oxygen	mg/l	5.00
7	Total Dissolved Solids	mg/l	3.00
8	Total Suspended Solids	mg/l	7
9	Alkalinity as CaCO ₃	mg/l	· · · · · · · · · · · · · · · · · · ·
10	Total Hardness as CaCO ₃	mg/l	16.0
11	Nitrates NO ₃	mg/l	24.0
12	Phosphates PO ₄	mg/l	0.25
13	Chlorides as Cl	mg/l	0.02
14	Sulphates as SO ₄ ²⁻	mg/l	19.34
15	Sodium as Na.	mg/l	1.91
16	Potassium as K	mg/l	0.48
17	Calcium as Ca	mg/l	0.08
18	Magnesium as Mg	mg/l	7.2
19	Lead (Pb)	mg/l	1.4
20	Manganese as Mn	mg/l	BDL
21	Cadmium (Cd)	mg/l	0.12
22	Chromium (Cr)	mg/l	BDL
23	Copper (Cu)	mg/l	BDL
24	Zinc (Zn)	mg/l	BDL
25	Iron as Fe	mg/l	BDL
26	Fluoride as F		0.13
27	Mercury as (Hg)	mg/l	0.38
28	Selenium as Se	mg/l	BDL
29	Arsenic as As	mg/l	BDL
30	Cyanide as CN	mg/l	BDL
31	Boron as B	mg/l	BDL
32		mg/l	BDL
32	B.O.D (3 days 27°C)	mg/l	1.3

BDL: Below Detectable Limit

DURGAMANWADI VILLAGE

Location Name	:	Durgamanwa	di vi	llage		
Date	•	26.2.2019		Sample Type	:	Ground water

Sl. No.	Parameter	Unit	Result
1	Odour		Un-objectionable
2	Taste		Agreeable
3	Colour	Hazen Units	<5
4	pH		6.60
5	Turbidity	NTU	<5
6	Dissolved Oxygen	mg/l	4.80
7	Total Dissolved Solids	mg/l	82
8	Total Suspended Solids	mg/l	5
9	Alkalinity as CaCO ₃	mg/l	24
10	Total Hardness as CaCO ₃	mg/l	62.0
11	Nitrates NO ₃	mg/l	0.18
12	Phosphates PO ₄	mg/l	0.02
13	Chlorides as Cl	mg/l	10.63
14	Sulphates as SO ₄ ²⁻	mg/l	0.64
15	Sodium as Na.	mg/l	12.65
16	Potassium as K	mg/l	2.86
17	Calcium as Ca	mg/l	16.8
18	Magnesium as Mg	mg/l	. 4.9
19	Lead (Pb)	mg/l	BDL
20	Manganese as Mn	mg/l	0.03
21	Cadmium (Cd)	mg/l	BDL
22	Chromium (Cr)	mg/l	BDL
23	Copper (Cu)	mg/l	BDL
24	Zinc (Zn)	mg/l	BDL
25	Iron as Fe	mg/l	0.06
26	Fluoride as F	mg/l	0.20
27	Mercury as (Hg)	mg/l	BDĹ
28	Selenium as Se	mg/l	BDL
29	Arsenic as As	mg/l	BDL
30	Cyanide as CN	mg/l	BDL
31	Boron as B	i mg/l	BDL
32	B.O.D (3 days 27°C)	mg/l	. 1.9

BDL: Below Detectable Limit

TALGAON VILLAGE

Location Name	:	Talgaon village	2		
Date	•	26.2.2019	Sample Type	:	Ground water

Sl. No.	Parameter	Unit	Result
1	Odour		Un-objectionable
2	Taste		Agreeable
3	Colour	Hazen Units	<5
4	pH		- 6.58
5	Turbidity	NTU	<5
6	Dissolved Oxygen	mg/l	4.6
7 '	Total Dissolved Solids	mg/l	122
8	Total Suspended Solids	mg/l	7
9	Alkalinity as CaCO ₃	mg/l	29.0
10	Total Hardness as CaCO ₃	mg/l	80.0
. 11	Nitrates NO ₃	mg/l	0.66
12	Phosphates PO ₄	mg/l	2.39
13	Chlorides as Cl	mg/l	17
14	Sulphates as SO ₄ ²⁻	mg/l	4
15	Sodium as Na.	mg/l	5
16	Potassium as K	mg/l	0.17
17	Calcium as Ca	mg/l	27
18	Magnesium as Mg	mg/l	. 7
. 19	Lead (Pb)	mg/l	BDL
20	Manganese as Mn	mg/l	0.01
21	Cadmium (Cd)	mg/l	BDL
22	Chromium (Cr)	mg/l	BDL
23	Copper (Cu)	mg/l	BDL
24	Zinc (Zn)	mg/l	BDL
25	Iron as Fe	mg/l	0.06
26	Fluoride as F	mg/l	0.34
27	Mercury as (Hg)	mg/l	BDL
28	Selenium as Se	mg/l	BDL
29	Arsenic as As	mg/l	BDL
30	Cyanide as CN	mg/l	BDL
31	Boron as B	mg/l	BDL
32	B.O.D (3 days 27°C)	mg/l	20
I. Polovis	Detectable Limit	<u> </u>	2.1

BDL: Below Detectable Limit

DOMESTIC EFFLUENT ANALYSIS

Sample Type: Canteen waste water

Date of sampling: 26.2.2019

SI.No	Test	Result
1	Total Suspended Solids, mg/l	24
2	Total Dissolved Solids, mg/l	50
3	COD, mg/l	4
4	BOD for 3 days at 27°C, mg/l	2.6
5	Total Solids	16
6	Oil and Grease, mg/l	<5

Sample Type: Canteen waste water

Date of sampling: 27.2.2019

SI.No	Test	Result
1	Total Suspended Solids, mg/l	33
2	Total Dissolved Solids, mg/l	45
3	COD, mg/l	3.6
4	BOD for 3 days at 27°C, mg/l	5
5	Total Solids	19
6	Oil and Grease, mg/l	< 5

RESULTS & DISCUSSION

- → The pH of the study area varies from 6.58 to 6.92 in the study area. The permissible range of pH is 6.5 to 8.5.
- → Dissolved Oxygen content of the study area has been found to be in the range of 4.55 to 6.80.
- → Total Dissolved Solids found to be in the range of 30 to 122 mg/l in the water sample collected in study area. As per IS 10500 standard for drinking water, the desirable limit is 500 mg/l and maximum permissible limit is 2000 mg/l.
- → Alkalinity as CaCO₃ is found to be in the range of 8 to 33 in the water sample collected in study area. As per IS 10500 standard for drinking water, the desirable limit is 200 mg/l and maximum permissible limit is 600 mg/l.
- → Total hardness as CaCO₃ of the water sample collected in the study area is found to in the range of 8 to 82 mg/l. As per IS 10500 standard for drinking water, the desirable limit is 300 mg/l and maximum permissible limit is 600 mg/l.
- → Chloride content of the water in the study area found to be in the range of 9.36 to 19.34 mg/l. As per IS 10500 standard for drinking water, the desirable limit 250 mg/l and maximum permissible limit is 1000 mg/l.
- → Calcium content of the water in the study area found to be in the range of 6 to 27 mg/l. As per IS 10500 standard for drinking water, the desirable limit 75 mg/l and maximum permissible limit is 200 mg/l.
- → Magnesium content of the water in the study area found to be in the range of .92 to 7.20 mg/l.
- → Iron content of the water in the study area found to be in the range of 0.06 to 0.17 mg/l. As per IS 10500 standard for drinking water, the desirable limit 0.3 mg/l and maximum permissible limit is 1.0 mg/l.

eport

rea.

the

the for

um

ter ing

is

ea for

ım

ge ne

je ie

ıe

of e

DRINKING WATER STANDARDS AS PER IS: 10500

SI. NO	PARAMETER	UNIT	DESIRABLE LIMIT AS PER IS: 10500	MAXIMUM PERMISSIBLE LIMIT AS PER IS: 10500	
1	Odour		Un-obje	ctionable	
2	Taste		Agre	eable	
3	Colour	Hazen Units	5	. 25	
4	рН		6.5	-8.5	
5	Turbidity	NTU	, 5	10	
6	Dissolved Oxygen	mg /l	W. 199	one the test.	
7	Total Dissolved Solids	mg /l	500	2000	
8	Alkalinity as CaCo3	mg /l	200	600	
9	Total hardness as CaCo3	mg /l	300	600	
10	Nitrates NO3	mg /l	45	100	
11	Phosphates PO4	mg /l			
12	Chlorides as Cl	mg /l	250	1000	
13	Sulphates, SO42-	mg /l	200	400	
14	Sodium as Na	mg /l			
15	Potassium as K	mg /l	सर्व कर ।	en. en. en.	
16	Calcium as Ca	mg /l	75	200	
17	Magnesium, Mg	mg /l	30	100	
18	Lead (Pb)	mg /l	0.05	0.05	
19	Manganese	mg /l	0.1	0.3	
20	Cadmium (Cd)	mg /l	0.01	0.01	
21	Chromium (Cr)	mg /l	0.05	0.05	
22	Copper (Cu)	mg /l	0.05	1.5	
23	Zinc (Zn)	mg /l	5	1 5	
24	Iron as Fe	mg /l	0.3	1.0	
25	Fluoride as F	mg /l	1	1.5	
26	Mercury as Hg	mg /l	0.001	0.001	
27	Selenium as se	mg /l	0.01	0.01	
28	Arsenic as As	mg /l	0.05	0.05	
29	Cyanide as CN	mg/l	0.05	0.05	
30	Boron as B	mg/l	1	5	

Name of the unit	DURGAMNWA	DI BAU	XITE MINE			
Address	VILLAGE DURGAMNWADI DIST KOLHAPUR					
Date	26-02-2019					
	*	Stack	letails			
Sack - I attached to	DG (1000KVA) [-I]		I. D. Of stack at por	t (mtr) D	0.2	
crossection of the stack	Round		Stack crossectional a	rea m2	0.0314	
Height of stack above ground (mtr)	17	1	Consumption of fue	l (lit/hr)	55	
Fuel used	HSD		Load on the ssystem	1	Approx. 85 %	
300				•		
	EMN	MISSIO1	N DETAILS			
Particulars			Value	* Permissible limit	Method of analysis	
Temperature (°C)		:	173.00	NA	As per IS:11255 (Part 3)-2008	
Velocity of flue gas (m/sec)		:	12.23	NA	As per IS:11255 (Part 3)-2008	
Gas flow rate at stack condition (m ³ /	hour)	:	1383	NA	As per IS:11255 (Part 3)-2008	
Gas flow rate at NTP (Nm³/hour)		:	914	NA	As per IS:11255 (Part 3)-2008	
Particulate matter		:	30.17	150 mg/day	As per IS:11255 (Part 1)- 1985	
SO ₂ (Kg/Hr)		:	0.9	10 kg/day	As per IS:11255 (Part 2)-1985	
* Permissible Limits		As per	the MPCB consent			
Deta	ils of instrument	used - P	ollutech model,PEM-	SMK 10		

Details of instrument used - Pollutech model, PEM-SMK 10						

^{*}Recognised by Ministry of Environment & Forests, as "Environmental Laboratory" vide Notification S. O. 428 (E) valid upto Jan, 2019
*The results relate only to the condition prevailing at the time of sampling

			is Report				
Name of the unit	DURGAMNWADI BAUXITE MINE						
Address VILLAGE DURGAMNWADI DIST KOLHAPUR							
Date	26-02-2019						
		Stack de	tails				
Stack - 2 attached to	DG (1000KVA) [-II-]	152	I. D. Of stack at	port (mtr) D	0.3		
crossection of the stack	Round		Stack crossection	nal area m2	0.0314		
Height of stack above ground (mtr)	17		Consumption of	fuel (lit/hr)	55		
Fuel used	HSD		Load on the syst	tem	Approx. 85 %		
	in the second				***		
	EMMI	SSION	DETAILS				
Particulars			Value	* Permissible limit	Method of analysis		
Temperature (°C)		:	150.00	NA	As per IS:11255 (Part 3)-2008		
Velocity of flue gas (m/sec)		:	7.88	NA	As per IS:11255 (Part 3)-2008		
Gas flow rate at stack condition (m ³ /h	nour)	:	891	NA	As per IS:11255 (Part 3)-2008		
Gas flow rate at NTP (Nm³/hour)		:	622	NA	As per IS:11255 (Part 3)-2008		
Particulate matter		:	23.7	150 mg/day	As per IS:11255 (Part 1)- 1985		
O ₂ (Kg/Hr)		:	0.5	10 kg/day	As per IS:11255 (Part 2)-1985		
Permissible Limits		As per the PCB consent					
Dotoile	of:	1 10 11					
Detans	of instrument use	ed - Polli	itech model,PEM-	SMK 10			
				•	0.00		
THE PROPERTY OF THE PROPERTY O	**************************************	······································	***************************************	**************************************	······································		
Recognised by Ministry of Environment & F	orests as "Environme	ntallahor	ntow" wide NexiC	- 0 0 100 (F) 111 ·	Y 0040		

DURGAMANWADI MINES WELL DEPTHS OF VILLAGES LOCATION NAME OF THE MINE AREA TOTAL DEPTH IN MTS WATER LEVEL FROM SURFACE IN MTS

4.1

2.80

DMW

DMW

27.2.2019

0.50

2.10

S.NO.

1

2

PADSALI VILLAGE

CHAVANWADI VILLAGE

Station: A1, CORE ZONE PM 10 (μg/m³) PM 2.5 (μg/m³) SO₂ (μg/m³) NO₂ (μg/m³) CO (Mg/m³)									
S.No.	Month Date								
			24 hrs Average						
1	Dec-18	12/4/2018	39.0	11.8	7.7	11.4	<1		
2		12/6/2018	55.5	18.3	6.2	10.8	<1		
3		12/11/2018	43.7	13.6	BDL	BDL	<1		
4		12/13/2018	48.9	15.4	5.8	10.7	<1		
5		12/18/2018	46.6	14.3	6.9	10.5	<1		
6	1 [12/20/2018	52.1	17.2	7.1	12.1	<1		
7	1 [12/26/2018	41.4	12.8	BDL	BDL	<1		
8		12/28/2018	50.4	16.2	6.4	11.6	<1		
1	Jan-19	1/2/2019	57.2	18.6	5.1	9.7	<1		
2		1/4/2019	52.5	16.4	6.2	10.9	<1		
3		1/9/2019	54.4	17.0	6.7	10.3	<1		
4		1/11/2019	46.8	14.2	7.4	12.3	<1		
5	1 1	1/16/2019	42.5	12.5	BDL	BDL	<1		
6	1 1	1/18/2019	44.0	13.4	5.0	9.2	<1		
7	†	1/23/2019	40.1	12.8	BDL	BDL	<1		
8		1/25/2019	59.8	19.0	5.5	9.9	<1		
1	Feb-19	2/5/2019	38.2	11.6	6.0	10.5	<1		
2		2/7/2019	47.7	15.6	7.1	12.1	<1		
3	1 1	2/12/2019	55.4	16.9	BDL	BDL	<1		
4	1 1	2/14/2019	40.8	12.6	5.1	9.6	<1		
5	1 1	2/19/2019	44.8	14.9	6.5	11.2	<1		
6	1	2/21/2019	51.2	17.1	BDL	BDL	<1		
7	1	2/26/2019	42.6	13.3	5.6	10.4	<1		
8	1	2/28/2019	49.2	16.5	5.0	10.5	<1		
		2/20/2013	4						
	Min		20.2	44.5	5.0	0.2			
	Min		38.2	11.6	5.0	9.2			
	Max		59.8	19.0	7.7				
	Mean		47.7	15.1	6.2	10.8			
	10th percentile		40.3	12.5	5.1	9.7			
	30th percentile		43.6	13.4	5.6	10.4			
-	50th percentile		47.2	15.2	6.2	10.6			
	95th percentile		57.0	18.5	7.4	12.1			
			1		1				

18.8

58.7

7.6

12.2

98th percentile

BDL: BELOW DETECTABLE LIMIT

Station: A2, NEAR MINES OFFICE							
S.No.	Month	onth Date	PM 10 (μg/m³)	/m³) PM 2.5 (µg/m³)	SO ₂ (μg/m ³)	NO _x (μg/m³)	CO (Mg/m³)
	inont,	Date	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average
1		10110-1-	42.2	12.2	200		
2		12/4/2018		13.3	BDL	BDL	<1
3		12/6/2018	50.8	15.5	8.8	11.2	<1
		12/11/2018	52.9	17.5	5.5	10.6	<1
4	Dec-18	12/13/2018	46.3	18.4	6.3	10.4	<1
5		12/18/2018	39.4	11.2	BDL	BDL	<1
6		12/20/2018	47.9	14.1	7.7	11.7	<1
7		12/26/2018	53.7	16.2	5.9	11.0	<1
8		12/28/2018	40.4	12.9	6.6	10.1	<1
1		1/2/2019	48.4	15.0	5.6	10.2	<1
2		1/4/2019	41.9	12.5	BDL	BDL	<1
3		1/9/2019	52.0	16.4	6.2	10.0	<1
4	Jan-19	1/11/2019	46.2	13.4	5.0	9.4	<1
5	Jan-19	1/16/2019	35.6	10.3	BDL	BDL	<1
6		1/18/2019	47.8	14.0	6.7	10.6	<1
7		1/23/2019	57.4	18.1	5.5	10.8	<1
8		1/25/2019	54.9	17.4	5.1	10.7	<1
1		2/5/2019	34.4	10.0	6.5	11.9	<1
2		2/7/2019	52.2	17.0	5.8	10.0	<1
3		2/12/2019	35.2	11.1	7.2	11.1	<1
4		2/14/2019	48.4	15.0	BDL	BDL	<1
5	Feb-19	2/19/2019	43.9	14.1	5.0	9.7	<1
6		2/21/2019	51.0	16.3	6.7	11.4	
7		2/26/2019	39.0	12.6	7.7	9.6	<1
8		2/28/2019	41.9	13.1	BDL		<1
	Ļ	212012019	.1.5	13.1	DDL	BDL	<1

Min	34.4	10.0	5.0	9.4
Max	57.4	18.4	8.8	11.9
Mean	46.0	14.4	6.3	10.6
10th percentile	36.6	11.1	5.1	9.7
30th percentile	41.9	13.1	5.7	10.1
50th percentile	47.1	14.1	6.2	10.6
95th percentile	54.8	18.0	7.9	11.8
98th percentile	56.3	18.3	8,4	11.8

Station: A3,NEAR HAULAGE ROAD							
			PM 10 (µg/m³) PM	PM 2.5 (μg/m³)	SO ₂ (µg/m ³)	NO _x (μg/m³)	CO (Mg/m³)
S.No.	Month	Date	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average
		36				P.	
1		04-12-2018	43.2	13.0	BDL	BDL	<1
2		06-12-2018	46.9	14.5	7.7	12.0	<1
3		11-12-2018	52.7	16.0	6.2	11.5	<1
4		13-12-2018	56.2	18.4	7.0	11.4	<1
5	Dec-18	18-12-2018	56.5	17.3	5.7	10.6	<1
6		20-12-2018	38.6	11.7	6.1	9.8	<1
7		26-12-2018	50.7	15.1	6.6	10.3	<1
8		28-12-2018	41.3	12.6	BDL	BDL	<1
1		02-01-2019	48.4	15.6	5.5	11.1	<1
2		04-01-2019	40.7	12.7	BDL	BDL	<1
3		09-01-2019	38.7	11.7	5.1	10.5	<1
4		11-01-2019	52.5	16.3	6.1	11.6	<1
5	Jan-19	16-01-2019	56.2	18.3	6.7	10.8	<1
6		18-01-2019	56.1	17.1	7.7	12.0	<1
7		23-01-2019	45.7	14.3	7.0	11.4	<1
8		25-01-2019	42.7	13.3	BDL	BDL	<1
1		05-02-2019	43.4	12.3	5.0	10.6	<1
2		07-02-2019	44.6	13.4	6.0	11.7	<1
3		12-02-2019	55.9	16.0	6.7	11.5	<1
4		14-02-2019	46.5	14.9	BDL	BDL	<1
5	Feb-19	19-02-2019	57.2	17.2	7.3	11.9	<1
6		21-02-2019	36.0	10.7	5.5	10.8	<1
7		26-02-2019	37.7	11.2	4.9	12.0	<1
8		28-02-2019	51.4	15.2	BDL	BDL	<1

	Min	36.0	10.7	4.9	9.8
	Max	57.2	18.4	7.7	12.0
	Mean	47.5	14.5	6.3	11.2
	10th percentile	38.6	11.7	5.1	10.4
+	30th percentile	43.1	12.9	5.7	10.8
	50th percentile	46.7	14.7	6.2	11.4
	95th percentile	56.4	18.1	7.7	12.0
	98th percentile	56.8	18.4	7.7	12.0

			PM 10 (μg/m³)	PM 2.5 (µg/m³)	SO ₂ (μg/m ³)	NO _x (μg/m³)	CO (Mg/m³)
S.No.	Month	Date	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average
1		04-12-2018	44.4	14.0	6.0	10.6	<1
2		06-12-2018	40.6	12.3	BDL	BDL	<1
3		11-12-2018	50.1	16.0	7.1	11.3	<1
4		13-12-2018	55.1	19.6	7.6	11.9	<1
5	Dec-18	18-12-2018	38.0	10.9	BDL	BDL	<1
6		20-12-2018	49.2	15.8	8.0	10.8	<1
7		26-12-2018	54.3	17.3	7.8	12.1	<1
8		28-12-2018	52.4	18.7	5.6	9.6	<1
1		02-01-2019	42.6	12.7	BDL	BDL	<1
2		04-01-2019	55.6	17.3	5.6	10.1	<1
3		09-01-2019	47.9	15.4	7.0	11.7	<1
4	1	11-01-2019	58.3	18.5	7.5	11.5	<1
5	Jan-19	16-01-2019	54.4	16.0	5.1	9.8	<1
6		18-01-2019	40.1	12.1	6.2	9.4	<1
7		23-01-2019	45.7	14.0	BDL	BDL	<1
8		25-01-2019	38.6	11.2	7.1	11.9	<1
1		05-02-2019	53.6	17.0	5.1	11.0	<1
2		07-02-2019	50.7	15.3	BDL	BDL	<1
3		12-02-2019	41.8	12.7°	6.5	10.6	<1
4	F-5-40	14-02-2019	45.4	13.9	7.1	11.3	<1
5	Feb-19	19-02-2019	51.3	16.2	5.2	10.6	<1
6		21-02-2019	48.6	14.4	BDL	BDL	<1
7		26-02-2019	31.0	9.5	6.4	11.2	<1
8		28-02-2019	39.0	11.5	5.0	12.1	<1
		4					
	Min		31.0	9.5	5.0	9.4	

Min	31.0	9.5	5.0	9.4
Max.	58.3	19.6	8.0	12.1
Mean	47.0	14.7	6.4	11.0
10th percentile	38.7	11.3	5.1	9.7
30th percentile	42.5	12.7	5.7	10.6
50th percentile	48.2	14.9	6.5	11.1
95th percentile	55.5	18.7	7.8	12.1
98th percentile	57.0	19.2	7.9	12.1

			PM 10 (μg/m³)	PM 2.5 (µg/m³)	SO ₂ (µg/m ³)	NO _x (μg/m³)	CO (Mg/m ³)
S.No.	Month	Date	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average
1		12/4/2018	38.3	11.9	BDL	9.2	<1
2		12/6/2018	43.9	12.8	10.1	BDL	<1
3		12/11/2018	54.9	17.6	10.5	11.3	<1
4		12/13/2018	45.9	13.3	11.2	11.0 -	<1
5	Dec-18	12/18/2018	53.3	16.3	11.5	11.8	<1
6		12/20/2018	47.3	14.0	9.1	BDL	<1
7		12/26/2018	50.7	15.5	8.8	12.3	<1
8		12/28/2018	36.7	10.6	BDL	BDL	<1
1		1/2/2019	49.8	16.0	9.9	10.3	<1
2		1/4/2019	38.8	11.4	BDL	BDL	<1
3		1/9/2019	50.1	15.0	11.4	11.1	<1
4		1/11/2019	51.0	17.1	11.7	11.5	<1
5	Jan-19	1/16/2019	43.3	13.2	BDL	9.5	<1
6		1/18/2019	41.5	12.1	11.3	10.1	<1
7		1/23/2019	46.4	14.0	10.9	BDL	<1
8		1/25/2019	54.8	18.0	10.6	BDL	<1
1		2/5/2019	40.5	12.6	10.1	11.4	<1
2		2/7/2019	56.7	17.7	11.2	9.6	<1
3		2/12/2019	47.1	14.3	12.1	10.4	<1
4	Feb-19	2/14/2019	45.6	13.6	BDL	10.2	<1
5		2/19/2019	32.7	9.4	10.4	9.9	<1
6		2/21/2019	37.6	11,7	BDL	BDL	<1
7		2/26/2019	55.8	16.2	11.6	10.6	<1
8		2/28/2019	52.4	15.5	12.7	BDL	<1

Min	32.7	9.4	8.8	9.2
Max	56.7	18.0	12.7	12.3
Mean	46.5	14.2	10.8	10.6
10th percentile	37.8	11.5_	9.7	9.5
30th percentile	43.1	12.8	10.4	10.1
50th percentile	46.8	14.0	11.1	10.5
95th percentile	55.6	17.7	12.2	11.9
98th percentile	56.3	17.8	12.5	12.1

			PM 10 (μg/m³)	PM 2.5 (µg/m³)	SO ₂ (µg/m ³)	NO _x (μg/m³)	CO (Mg/m³)
S.No.	Month	Date	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average
							7
1		12/4/2018	39.3	12.2	5.5	10.6	<1
2		12/6/2018	51.5	15.1	4.6	9.9	<1
3		12/11/2018	38.4	11.7	BDL	BDL	<1
4		12/13/2018	58.2	17.1	6.1	12.0	<1
5	Dec-18	12/18/2018	31.8	9.5	BDL	BDL	<1
6		12/20/2018	46.8	13.3	5.0	9.4	<1
7		12/26/2018	57.5	16.1	4.7	9.1	<1
8		12/28/2018	49.8	14.8	6.5	10.3	<1
1		1/2/2019	55.1	18.0	5.6	10.2	<1
2		1/4/2019	50.0	15.3	5.0	9.4	<1
3		1/9/2019	56.1	17.0	6.1	10.6	<1
4		1/11/2019	48.2	14.4	BDL	BDL	<1
5	Jan-19	1/16/2019	55.7	16.2	5.7	12.0	<1
6		1/18/2019	36.4	10.3	4.6	11.6	<1
7		1/23/2019	44.1	12.2	5.3	9.6	<1
8		1/25/2019	42.7	13.2	BDL	BDL	<1
1		2/5/2019	48.2	14.7	BDL	BDL	<1
2		2/7/2019	55.5	18.5	6.9	10.7	<1
3		2/12/2019	51.2	16.5	5.6	11.6	<1
4	Feb-19	2/14/2019	30.3	9.8	6.0	12.0	<1
5		2/19/2019	53.5	17.6	BDL	BDL	<1
6		2/21/2019	38.0	11.4	6.5	10.3	<1
7		2/26/2019	49.5	15.0	5.5	11.1	<1
8		2/28/2019	40.8	12.3	6.1	11.9	<1

Min	30.3	9.5	4.6	9.1
Max	58.2	18.5	6.9	12.0
Mean	47.0	14.3	5.6	10.7
10th percentile	36.9	10.6	4.6	9.4
30th percentile	42.5	12.3	5.3	10.2
50th percentile	48.9	14.7	5.6	10.6
95th percentile	57.3	18.0	6.6	12.0
98th percentile	57.9	18.3	6.8	12.0

Bhi

		St	ation: A7, KAF	RIWADE VILLA	GE		
			PM 10 (μg/m³)	PM 2.5 (μg/m³)	SO ₂ (µg/m³)	NO _x (μg/m³)	CO (Mg/m³)
S.No.	Month	Date	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average
1		12/4/2018	50.4	14.8	6.2	9.3	<1
2		12/6/2018	36.7	10.7	BDL	BDL	<1
3	Dec-18	12/11/2018	49.1	14.4	5.5	9.3	<1
4		12/13/2018	44.2	13.6	6.5	9.4	<1
5		12/18/2018	55.3	16.4	7.2	10.5	<1
6		12/20/2018	43.4	12.7	BDL	BDL	<1
7		12/26/2018	31.9	9.3	6.6	10.0	<1
8		12/28/2018	47.8	13.7	5.2	9.7	<1
1		1/2/2019	42.9	13.2	BDŁ	BDL	<1
2		1/4/2019	39.7	11.6	5.1	9.6	<1
3		1/9/2019	50.5	16.7	5.5	10.2	<1
4		1/11/2019	38.3	11.3	6.1	9.5	<1
5	Jan-19	1/16/2019	44.8	14.3	BDL	BDL	<1
6		1/18/2019	49.9	15.1	6.8	11.0	<1
7		1/23/2019	53.7	17.4	7.2	10.2	<1
8		1/25/2019	58.3	18.6	6.8	9.8	<1
1		2/5/2019	36.7	11.4	BDL	BDL	<1
2		2/7/2019	54.7	18.5	5.1	10.4	<1
3		2/12/2019	48.0	14.0	5.6	11.6	<1
4		2/14/2019	52.5	17.1	6.1	10.7	<1
5	Feb-19	2/19/2019	49.1	15.3	5.0	11.0	<1
6		2/21/2019	43.7	13.6	BDL	BDL.	<1
7		2/26/2019	50.9	16.8	6.9	10.9	<1
8		2/28/2019	34.7	10.7	6.4	11.8	<1

Min	31.9	9.3	5.0	9.3
Max	58.3	18.6	7.2	11.8
Mean	46.1	14.2	6.1	10.3
10th percentile	36.7	10.9	5.1	9.4
30th percentile	43.4	13.1	5.5	9.7
50th percentile	47.9	14.1	6.1	10.2
95th percentile	55.2	18.4	7.2	11.7
98th percentile	56.9	18.6	7.2	11.8

		Stat	ion: A 8, CHA	VANWADI VILI	_AGE		
S.No.	Month	Date	PM 10 (μg/m³)	PM 2.5 (μg/m³)	SO ₂ (µg/m³)	NO _x (µg/m³)	CO (Mg/m³)
0.,10.	Month	Date	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average	24 hrs Average
1		-r					
		12/4/2018	49.2	14.7	5.5	11.0	<1
2		12/6/2018	44.8	13.2	6.2	11.2	<1
3	Dec-18	12/11/2018	39.5	11.5	BDL	BDL	<1
4		12/13/2018	43.1	12.5	BDL	BDL -	<1
5	Dec-16	12/18/2018	48.7	14.2	7.1	10.7	<1
6		12/20/2018	54.4	16.2	6.9	10.5	<1
7		12/26/2018	49.7	15.2	7.2	12.0	<1
8		12/28/2018	55.7	18.1	6.1	10.3	<1
1		1/2/2019	55.6	19:0	6.1	10.0	<1
2		1/4/2019	55.7	18.5	5.7	9.4	<1
3		1/9/2019	43.3	15.8	5.0	9.6	<1
4	1 40	1/11/2019	36.7	12.0	BDL	BDL	<1
5	Jan-19	1/16/2019	47.4	14.3	6.2	12.0	<1
6		1/18/2019	52.0	17.1	6.7	11.8	<1
7		1/23/2019	49.6	16.4	5.2	9.7	<1
8		1/25/2019	41.7	13.2	BDL	BDL	<1
1		2/5/2019	60.0	17.4	5.5	10.6	<1
2		2/7/2019	35.2	10.4	5.0	9.9	<1
3		2/12/2019	42.4	12.8	6.4	9.2	<1
4	0_	2/14/2019	49.3	14.9	BDL	BDL	<1
5	Feb-19	2/19/2019	55.7	16.6	5.2	9.7	<1
6		2/21/2019	44.8	13.3	6.3	11.3	<1
7		2/26/2019	31.5	9.1	6.0	10.3	<1
8		2/28/2019	37.0	11,1	BDL	BDL	<1

Min	31.5	9.1	5.0	9.2
Max	60.0	19.0	7.2	12.0
Mean	46.8	14.5	6.0	10.5
10th percentile	36.8	11.2	5.1	9.6
30th percentile	43.0	13.2	5.5	9.9
50th percentile	48.0	14.5	6.1	10.4
95th percentile	55.7	18.4	7.1	12.0
98th percentile	58.0	18.8	7.2	12.0

BDL for SOx-2.0 & NOx-4.5

NOTE: The results relate only to the conditions prevailing at the time of sampling Method of measurement: As per CPCB Manual & IS 5182

