

Letter No: AAP/E&S/EC/2023/ 335

Date: 22/05/2023

The Director Eastern Regional Office Ministry of Environment & Forests A/3, Chandrashekharpur Bhubaneswar – 750 023 (Odisha)

Sub: Submission of Six-Monthly EC Compliance from October'22 to March'23.

Ref: Environmental Clearance Letter No: J-11011/136/2009-IA. I (I), dated 29/11/2012, J-11011/136/2009-IA. II (I), dated 14/06/2013, J-11011/136/2009-IA. II (I), dated 14/08/2018, J-11011/136/2009-IA. I (I) dated 20/07/2020 & J-11011/136/2009-IA. II (1) dated 12/08/2022.

Dear Sir,

As a part of the compliance to the Environmental Clearance accorded by MoEF&CC to Aditya Aluminium for 0.72 MTPA Smelter and 1650 MW CPP at Lapanga in Sambalpur district, please find enclosed herewith the six-monthly compliance reports of aluminium smelter and captive power plant for the period October'22 to March'23.

As per MoEF&CC office memorandum dated 14th June 2022, we are submitting the Six-monthly EC compliance report through Parivesh Portal.

This is for your kind information and record please.

Thanking You

Yours faithfully For Aditya Aluminium

Sameer Nayak (Sameer Nayak) President & Unit Head

Copy for kind information to:

- 1. The Member Secretary, SPCB, Bhubaneswar
- 2. The Regional Director, Zonal office of CPCB, Kolkata
- 3. The Regional Officer, SPCB, Sambalpur

Hindalco Industries Limited

Aditya Aluminium: At/P.O.: Lapanga - 768 212, District: Sambalpur, Odisha, India T: +91 663 2536 247 | Fax: +91 663 2536 499 | E: hindalco@adityabirla.com | W: www.hindalco.com Registered Office: Ahura Centre, 1st Floor, B-Wing, Mahakali Caves Road, Andheri (East), Mumbai 400 093 Tel: +91 22 6691 7000 | Fax: + 91 222 6691 7001 Corporate ID No.: L27020MH1958PLC011238

Name of the Project	1	M/s. Aditya Aluminium (A Division of Hindalco Industries Ltd.) at village: Lapanga, Tehsil: Rengali, District: Sambalpur (Odisha).
Environment Clearance Letter No and date	:	J-11011/136/2009-IA.II(1), Dated 29 th November 2012, EC amendment dated 14 th June 2013, 14 th Aug 2018, 20 th July 2020 & 12 th August 2022.
		For 7,20,000 TPA ALUMINIUM SMELTER & 1650 MW CAPTIVE POWER PLANT.
Period of Compliance Report	4	October 2022 to March 2023

Sr. No.	Specific Conditions		Complia	ince Status	
i)	The streams passing through the project site shall not be disturbed w.r.t their quantity and quality of flow.	The streams panot being distu		ough the	project site is
ii)	Alumina shall be obtained from those refineries, which have been accorded environmental clearance by the Ministry of Environment and Forests.	Alumina is beir have been acco Present, the A Utkal Alumina Rayagada Dist environmental	orded envi Alumina i a Interna t. and i	ironmental s being ol tional Lin t has be	clearance. At otained from nited (UAIL), en accorded
		We have kept a case of any sh source.			
πι)	 The gaseous emissions (PM, SO₂, NOx, PAH, HC, VOCs and Fluoride) from various process units in shall confirm to the standards prescribed by the reconcerned authorities from time to time. The expression of the relevant parameters keeping in view the nature of the Industry and its size and location. At no time the emissions level should go beyond the prescribed standards. In the event of failure of any pollution control system adopted by the unit, the respective unit should not be restarted until the control measures are rectified to achieve the desired efficiency. 		e outlet particulat online da of OSPCB a 21 & 2- 2 1 & 2- 2 0 6 - 6 ter emissi eed the summari e matter	of followin te matter ata has bee and CPCB. Nos. Nos. Nos. ion from th prescribed zed monit emission f	have been ng stacks for and gaseous en connected limit of 50 oring report rom October king Furnace
	plant shall not exceed 50 mg/Nm ³ .	Stack		mission (m	g/Nm3)
		attached to	(Min)	(Max)	(Avg)
		FTC # 1	4.2	7.5	5.5
		FTC # 2	3.4	7.7	5.2
		The monitoring stacks is attached	•		atment Plant

Page 1 of 13

iv)	Particulate fluoride emissions should not be more than 0.65 mg/Nm3 and fugitive particulate fluoride emissions from pot room should not be more than 1.85 mg/Nm ³ .	Online monitor Centre (GTC) an installed for m (HF), Particulat fluoride emission is within the summarized re 2023 is stated	nd Fume nonitoring te Matter on from t ne prese port from	Treatment g of Hydro r (PM). Th he gas trea cribed st	: Centre (FTC) ogen Fluoride ne particulate atment system andard. The	
		Stack attached to	Particu	Particulate Fluoride Emission (mg/Nm3)		
			(Min)	(Max)	(Avg)	
		GTC # 1	0.10	0.11	0.10	
		GTC # 2	0.10	0.11	0.11	
		The average emission from to March 2023 The monitorin stacks is attack	g reports	ms during g/ton of m of Gas Tre	October 2022	
v	The poly aromatic hydrocarbons (PAH) from the carbon plant (anode bake oven) should no exceed 2 mg/Nm ³ . The data on PAH should be monitored quarterly and report submittee regularly to the Ministry/Regional Office a Bhubaneswar and SPCB.	t carbon plant e monitored on d the standard.	(anode quarteri	bake ove y basis and	(PAH) from the en) are being d found within	
3	 In plant, control measures like fume extraction and dust extraction system for controlling fugitive emissions from all the materia handling/transfer points shall be provided to control dust emissions. Fugitive Fluoride emissions from the pot room and in the forage around the smelter complete and the data submitted regularly to the Minister Regional Office at Bhubaneswar and SPCB. 	 g furnace, Gas and bag filte Anode Bakin carbon recyc cathode seali m coal handing x power plant 	Treatmer rs in raw g, Rodin cling are ing shop g, ash h	nt Plant (G v material g areas, a, butts etc in sm andling pl	Anode Baking GTC) in potlines handling, GAP, bath recycling, recycling area, helter area and ant in captive rol fugitive dust	
	Further dry scrubbing system to control the emissions from the pot lines should be provided	for Fugitive potrooms, fluoride (HF) 0.258 mg/m during Octob average emit attached as A	e fluorid the con varies to 3 and a per 2022 ssion rep Annexure	le (HF) centration between 0 average is to March ort during - 3 .	halyzer installed monitoring in of hydrogen .206 mg/m3 to 0.232 mg/m3 2023. The daily these period is the smelter is	
		being carrie	dout on	quarterly	basis and the ride (analysed in	

	Location	Species	Fluoride (in ppm)
	Bomaloi	Aegle marmelos, Oryza Sativa,	1.9
	Gurupali	Cynodon dactylon, Azadirachta Indica	1.3
	Plant Site	Dalbergia Sissoo, Cynodon dactylon	2,6
	Thelkolai	Pongame oil tree, Cynodon dactylon	1.9
	Gumukarma	Bambuso ideade, Oryza Sativa	2.2
	Ghichamura	Mimusops elengi, Oryza Sativa	1.5
	Tileimal	Oryza Sativa, Cynodon dactylon	1,4
	Lapanga	Azadirachta Indica Oryza Sativa	2,3
	Jangala	Cynodon dactylon, Oryza Sativa,	1.3
	Bhadrapali	Pongame oil tree ; Oryza Sativa;	1.1
Power Plant (CPP) to contro	treatment c pot room to Electrostation efficiency in (CPP) to res	ing system is being entre (GTC) to each o control fugitive emi c Precipitators (ESI s installed in Capti strict particulate emi	of the pots in t ssion. P) of adequa ve Power Pla
	treatment c pot room to Electrostatio	entre (GTC) to each o control fugitive emi c Precipitators (ESI	of the pots in t ssion. P) of adequa
Captive Power Plant (CPP) to contro- culate emissions below 50 mg/Nm3. company shall provide bag filters, dry obing system and dust suppression system to rol all the emissions including fluoride sions from all melting and casting units. Tar, and fluoride in the fumes shall be	treatment of pot room to Electrostation efficiency in (CPP) to resummer mg/Nm ³ . Two nos. provided a Besides, Ba handling &	entre (GTC) to each o control fugitive emi c Precipitators (ESI s installed in Capti	of the pots in t ssion. P) of adequa ive Power Pla issions within t Centre (GT each 180 po all the mater
ectrostatic Precipitators (ESP) will be provided Captive Power Plant (CPP) to contro orticulate emissions below 50 mg/Nm3. The company shall provide bag filters, dry rubbing system and dust suppression system to ntrol all the emissions including fluoride nissions from all melting and casting units. Tar, just and fluoride in the fumes shall be ntrolled in baking furnace by providing dry rubber.	treatment of pot room to Electrostation efficiency in (CPP) to res- mg/Nm ³ . Two nos. provided a Besides, Ba handling & treatment of Baking Furr	entre (GTC) to each of control fugitive emit c Precipitators (ESF s installed in Capti strict particulate emit of Gas Treatment nd connected to g filters installed in transfer points in centre (FTC) provided	of the pots in t ssion. P) of adequa ive Power Pla issions within t Centre (GT each 180 po all the mater Smelter. Fur d to each Anoi tar fumes, du
ve Power Plant (CPP) to contro- te emissions below 50 mg/Nm3. Apany shall provide bag filters, dry system and dust suppression system to all the emissions including fluoride of from all melting and casting units. Tar, d fluoride in the fumes shall be	treatment of pot room to Electrostatio efficiency i (CPP) to res mg/Nm ³ . Two nos. provided a Besides, Ba handling & treatment of Baking Furr gaseous ar during Anoo	entre (GTC) to each of control fugitive emit c Precipitators (ESI s installed in Capti strict particulate emit of Gas Treatment nd connected to g filters installed in transfer points in tentre (FTC) provided naces to treat the filter	of the pots in t ssion. P) of adequa ive Power Pla issions within t Centre (GT each 180 po all the mater Smelter, Fun d to each Anon tar fumes, du
Power Plant (CPP) to contro missions below 50 mg/Nm3. ny shall provide bag filters, dry stem and dust suppression system to the emissions including fluoride om all melting and casting units. Tar, fluoride in the fumes shall be n baking furnace by providing dry ns shall conform to the standards	treatment of pot room to Electrostation efficiency in (CPP) to resempt/Nm ³ . Two nos. provided a Besides, Bachandling & treatment of Baking Furres gaseous and during Anoo	entre (GTC) to each of control fugitive emit c Precipitators (ESI s installed in Capti strict particulate emit of Gas Treatment nd connected to g filters installed in transfer points in tentre (FTC) provided naces to treat the t nd particulate fluor de Baking.	of the pots in t ssion. P) of adequa ive Power Pla issions within t Centre (GT each 180 po all the mater Smelter, Fun d to each Anou tar fumes, dua rides generation

		CPP Stack	PM Emission (mg/Nm3)		
			(Min)	(Max)	(Avg)
		CPP 1	41.5	44.2	43.0
		CPP 2	42.6	44.3	43.6
		CPP 3	41.8	45.0	42.7
		CPP 4	40.1	46.2	43.4
		CPP 5	40.2	43.2	42.1
		CPP 6	41.2	44.6	43.2
viii)	Provision for installation of FGD shall be provided for future use.	completed activities und	in CPP U der progres	nit-6 and s.	tem has bee Commissionii
x)	Three tri-flue and one bi-flue stack of 275 m				icks of 275
	height with flue gas velocity not less than 22 m/s		height is installed in phase-l, another two nos.		
	shall be installed and provided with continuous	stacks will be installed during Phase-II.			
	online monitoring equipment's for SO ₂ , NO _x , and	Continuous	emission	monitoring	system (CEM
	PM ₁₀ .				Ox, and PM
				-	city of the e
		flue gas is b			
x)	Adequate dust extraction system such as				Dry fog di
~1	cyclones/ bag filters and water spray system in				ater sprinkli
	dusty areas such as in coal handling and ash				
	handling points, transfer areas and other		systems are installed in coal handling plant a ash handling system of Captive Power Plant.		
	vulnerable dusty areas shall be provided.				
×i)	Utilization of 100% fly ash generated shall be made from 4 th year of operation. Status of implementation shall be reported to the Regional Office of the Ministry from time to time.	means of s Jharsuguda, Rajgangpur are supplyi used in ow developme the plant p SPCB, Odis filled-up w Reclamatio Quarries wi The status October 20 October 20 October 21 Total ash Total Ash Utilization	upplying t M/s ACC for ceme ng Ash to in fly ash nt of low premises w tha. The with Ash of s of ash util 22 to Marc generated Utilised n (%)	to M/s Ultra C, Bargarh nt manufacto the brick brick unit a lying areas with the pri- low-lying and as per the ng Areas a SPCB, Odisha ization for t ch 2023 is st ch' 23	he period fro tated below: Quantity in M 800860.0 808463.5 100.95 %
		to March 2	023 is atta	ched as Anr	
xii)	Fly ash shall be collected in dry form and storage facility (silos) shall be provided. Unutilized ash shall be disposed-off in the ash pond in the form	and 3x250	O MT Fly	ash silo a	ited in dry fo ind 1x3000 stalled. We

	of slurry. Mercury and other heavy metals (Ag, Hg, Cr, Pb etc) will be monitored in the bottom ash and also in the effluent emanating from the existing ash pond. No ash shall be disposed-off in low laying area.	exploring maximum utilization of Ash and unutilized ash is being discharged to the Ash pond through High Concentration Slurry Disposal (HCSD) system, which is the most environment friendly conveying system at present. Monitoring of Mercury and other heavy metals (Ag, Hg, Cr, Pb etc) is being done for the fly ash and bottom ash. The analysis report is enclosed as Annexure-5 .
		The ash filling in the low lying area inside the plant premises is being carried out in line with the guideline for disposal/utilization of fly ash for reclamation of Low Lying Areas and in stowing of Abandoned mines/Quarries. (Ref: CPCB guideline published in March 2019).
xiii)	Fluoride (as F) consumption shall be less than 10 kg/ton of Aluminium produced as specified by the CREP.	The specific fluoride (as F) consumption for the period October 2022 to March 2023 is 7.82 kg/ton of Aluminium produced.
xiv)	Anode butts generated from the pots shall be cleaned and recycled to the Anode Plant. The spent pot lining generated from the smelter	Anode butts generated from the pots is being cleaned and recycled completely for making green anode in green anode plant.
	shall be properly treated in spent pot lining treatment plant to remove fluoride and cyanide and disposed-off in secured landfill.	The Carbon part of SPL is being supplied to M/s Green Energy Limited, Sambalpur for reprocessing/detoxification and in this way the
	The location and design of the land fill site shall be approved by the SPCB as per the Hazardous Waste (Management, Handling and Trans- boundary Movement) Rules, 2008. Leachate collection facilities shall be provided to the secured land fill facilities (SLF).	carbon part is completely recycled. Permission has been received from SPCB for SPL refractory/fine mix dust supplied to authorized cement plants for co-processing in cement kiln. we are exploring for disposal of SPL fine mix dust/refractory to cement plants for coprocessing in cement kiln.
	The dross shall be recycled in the cast house. STP sludge shall be utilized as manure for	M/s Re Sustainability Ltd has established the facility for detoxification and disposal of SPL
	greenbelt development.	refractory as per the protocol given by CPCB in its CHW-TSDF at kanchichuhan, Dist- Jajpur site.
	All the used oil and batteries shall be sold to the authorized recyclers/ re-processors.	SPCB has issued the permission to Re Sustainability Ltd for disposal of SPL refractory in CHWTSDF. Around 14815 MT SPL Refractory part and 1535 MT Carbon part is in stock till end of March- 2023 and kept inside the well-ventilated permanent covered sheds for disposal to CHW- TSDF/Actual users.
		The location and design of the land fill site has been prepared as per the Hazardous Waste

		(Management, Handling and Trans-boundary Movement) Rules, 2008 and approved from SPCB.
		The dross recycling is being done in the inhouse dross processing unit /partly selling to authorized recyclers and the residue generated from dross processing unit is being sent to OSPCB authorized recyclers for Alum/synthetic slag making.
		STP is in operation at township & Plant area separately, the sludge generated is being used for gardening/greenbelt development.
		The used oil and batteries are being sold/supplied to authorized recyclers/reprocessors only.
xv)	As proposed, spent pot lining waste shall also be provided to cement and steel industries for further utilization.	The Carbon part of SPL is being supplied to the OSPCB authorized recycler M/s Green Energy Resources, Sambalpur.
		Permission has been received from SPCB for SPL refractory/fine mix dust supplied to authorized cement plants for co-processing in cement kiln. we are exploring for disposal of SPL fine mix dust/refractory to cement plants for coprocessing in cement kiln. SPL refractory/fine mix dust disposal to cement plants will be started soon.
xvi)	Ash pond shall be lined with HDP/LDPE lining or any other suitable impermeable media such that no leachate takes place at any point of time. Adequate safety measures shall also be implemented to protect the ash dyke from getting breached. Ash pond water shall be recirculated and reused.	The ash pond is provided with HDPE liner and adequate safety measures have been taken to minimize the risk to the ash dyke. The ash disposal through HCSD system to the ash pond started from January 2017. The decanted water from the ash pond is being completely recycled and reused for ash disposal.
		The ash pond and water decantation system is constructed in line with the design & drawings provided by NIT-Rourkela. The assessment of safety, strength and stability of ash dyke has been checked by Dr. CR Patra of NIT Rourkela and at present condition it is found, the dyke is stable, safe and has sufficient material strength.
xvii)	Cycle of concentration (CoC) of 5.0 shall be	We are maintaing the average CoC of cooling tower above 5.
xviii)	adopted. Regular monitoring of ground water shall be carried out by establishing a network of existing wells and constructing new piezometers.	Regular monitoring of ground water is being

	Monitoring pround the ask need and the	piezometer wells near ash pond areas and the analysis report is enclosed as Annexure-6.
	Monitoring around the ash pond area shall be carried out particularly for heavy metals (Hg, Cr, As, Pb) and records maintained and submitted to the regional office of this Ministry. The data so obtained should be compared with the baseline data so as to ensure that the ground water quality is not adversely affected due to the project.	Monitoring of heavy metals (Hg, Cr, As, Pb) around the Ash pond area is being carried and record maintained. Please refer annexure-5 for the analysis report.
xix)	Regular ground water monitoring shall be carried out by installing peizometers all around the secured land fill site in consultation with the SPCB, Central Ground Water Authority and State Ground Water Board and data submitted to the Ministry's Regional Office and SPCB.	Secured landfill (SLF) has not yet been established inside the plant. Therefore, ground water quality monitoring shall be carried out after establishment of the SLF.
xx)	Total water requirement for the expansion from Hirakud Reservoir shall not exceed 5,200 m3/hr and prior permission for the existing and proposed expansion shall be obtained from the concerned department before commissioning of	No additional fresh water will be sourced from Hirakud Reservoir for the proposed expansion. The water requirement estimated for the expansion is within 52.73 cusec, as approved.
	the plant.	The Effluent from the cooling towers and de- mineralization plant is being treated in Double
	All the effluent including from the cooling tower and de-mineralization plant shall be treated in the effluent treatment plant and treated effluent	Stage RO based effluent treatment plant and is being reused/reutilized in the process of CPP.
	shall be recycled/reutilized in the process in smelter and CPP and also for fire protection, dust suppression, greenbelt development etc.	Separate Sewage Treatment Plant (STP) is installed @ capacity 25 m ³ /hr for Smelter & Captive Power Plant, STP of 300 KLD capacity is installed at Township area and the treated water
	Domestic effluent shall be treated in sewage treatment plant (STP) and treated domestic waste water will be used for greenbelt development.	being used for greenbelt development.
xxi)	No effluent shall be discharged outside the premises of smelter during non-monsoon period and shall be discharged during the monsoon period only after treatment and meeting the norms of the OSPCB/CPCB.	We are operating a Double Stage Reverse Osmosis based effluent treatment plant (ETP) of 300 m ³ /hr capacity and therefore no effluent water is being discharged to outside without treatment from Smelter.
xxii)	Greenbelt of adequate width and density around the project site shall be developed in 33% area in consultation with the DFO as per the CPCB guidelines having density of 2,000 trees/Ha.	Aditya Aluminium has developed 33% Greenbelt over an area of 1098 acres inside the plant, ash pond area and township areas. Around 7,01,930 saplings planted till March 2023.
xxiii)	Occupational Health Surveillance of the workers should be done on a regular basis and records maintained as per the Factories Act.	Occupational Health Surveillance of the workers is being done as per the Odisha Factories Act.
xxiv)	The company shall develop rain water structures in the township area for recharge of ground	Rain water recharging arrangement is being made in the township buildings, besides a rain

	water in consultation with the Central Ground Water Authority/Board.	water harvesting pond (60,000 cum capacity)has been developed inside the township area. A rain water harvesting scheme has been submitted to CGWA for approval vide our letter no. AA/E&F/EC/2016/131, dated 09/04/2016.
xxv)	Rehabilitation and Resettlement Action Plan as prepared and submitted to the State Govt. shall be implemented as per the R & R Policy of the State Government.	Rehabilitation and Resettlement Action Plan is being implemented as per the R & R policy, 2006 of the State Govt.
	All the recommendations mentioned in the R&R Plan shall be strictly followed including suitable employment and other facilities to all the oustees.	All the recommendations mentioned in the R&R plan are being followed/complied.
xxvi)	All the recommendations made in the Charter on Corporate Responsibility for Environment Protection (CREP) for the Aluminium Sector shall be strictly implemented.	All the conditions of CREP guideline for Aluminium sector is being followed. The point wise compliance to the CREP guideline is attached as Annexure-7.
xxvii)	The company shall adopt well laid down corporate policy and identified and designate responsible officers at all levels of its hierarchy for ensuring adherence to the policy and compliance with environmental clearance, environmental laws and regulations.	The company has adopted a well laid down Corporate Environment Policy. The Environment policy has been revised and approved by the Board on 30 th June 2020. The copy of the revised environment policy is attached as Annexure-8 .
xxviii)	All the commitments made to the public during public hearing /public consultation meeting held on 2 nd march 2012 should be satisfactorily implemented and a separate budget for implementing the same should be allocated and information submitted to the Ministry's Regional Office at Bhubaneswar.	All the commitments made to the public during public hearing/public consultation meeting held on 2 nd march 2012 is being complied. (Status of implementation is enclosed as Annexure-9).
xxix)	At least 5% of the total cost of the project shall be earmarked for towards the Enterprise Social Commitment and item-wise details along with time bound action plan should be prepared and submitted to the Ministry's office at Bhubaneswar. Implementation of such program should be ensured accordingly in a time bound manner.	The expenses under Enterprise Social Commitment (ESC) till March-2023 is Rs 65.61 Crores. The details of the expenditure made under Enterprise Social Commitment (ESC) till March- 2023 is attached as Annexure-10 .
xxx)	The company shall provide housing for construction labour within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP, safe drinking water, medical health care, crèche etc. the housing may be in the form of temporary structures to be ensured accordingly in a time bound manner.	The construction activities are completed after the plant is installed & commissioned. However, in case of any construction & maintenance activities from time to time we are providing all necessary infrastructure and facilities to the workers as per rules & guidelines.

xxxi)	The company shall submit within three months their policy towards Corporate Environment Responsibility which should inter-alia address (i) standard operating process/procedure to being into focus any infringement/deviation/violation of environmental or forests norms/ conditions (ii) Hierarchical system or administrative order of the company to deal with environmental issues and ensuring compliance to the environmental clearance and (iii) system of reporting of non- compliance/violation environmental norms to the Board of Directors of the company and/or stakeholders or shareholders.	The Corporate Environment Policy prepared and approved by the company Board of Directors, Organizational Structure for Hindalco Corporate Environment, Deployment of Corporate Policy in manufacturing Plants & communication of Policy as regards Corporate Environment is already submitted to MoEF. The organizational structure of Corporate Sustainability cell is being revised and the modified one will be submitted after the formal structure is published by Hindalco Management.
	GENERAL CONDITIONS	
1)	The project authorities must strictly adhere to the stipulations made by the OSPCB and the State Government.	We have been following the stipulations made by OSPCB and the State Government. The compliance to CTO conditions is being submitted to OSPCB as per requirement.
ii)	No further expansion or modification in the plant shall be carried out without prior approval of the Ministry of Environment and Forests.	We will not carry out any expansion or modification in the plant without prior approval of MoEFCC.
111)	The gaseous emissions from various process units shall conform to the load/mass based standards notified by this Ministry on 19 th May, 1993 and standards prescribed from time to time. The SPCB may specify more stringent standards for the relevant parameters keeping in view the nature of the industry and its size and location.	We have noted and accepted the stipulated condition.
i∨)	At least four number of ambient air quality monitoring stations shall be established in the downward direction as well as where maximum ground level concentration of SPM, SO ₂ and NO _x are anticipated in consultation with the OSPCB. Data on ambient air quality and stack emission should be regularly submitted to this Ministry including its Regional Office at Bhubaneswar and Orissa State Pollution Control Board once in Six months.	Installation of four (04) CAAQM Stations completed and commissioned. Data connectivity established with the servers of OSPCB and CPCB. Installation of the continuous stack emission monitoring system in all the major stacks completed. All the CAAQMS & CEMS synchronized with the webserver of the SPCB & CPCB. Six-monthly compliance along with the monitoring data is being submitted to the concerned authorities regularly.
v)	The overall noise levels in and around the plant area should be kept well within the standards (85 dBA) by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels should conform to the standards prescribed under EPA Rules, 1989 viz 75 dBA (daytime) and 70 dBA (nighttime).	The overall noise levels in and around the plant area is within the prescribed standards and it is being made possible by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The overall noise level is within the standard, regular monitoring is being done. All necessary

	The start water water and second at the	PPEs are provided to the workers and engineers working in the factory.
vi)	Occupational Health Surveillance of the workers should be done on a regular basis and records maintained as per the Factories Act.	Occupational Health Surveillance of the workers is being done as per the Factories Act.
vii)	The company shall develop surface water harvesting structures to harvest the rain water for utilization in the lean season besides recharging the ground water table.	The company has developed surface water harvesting structures to the tune of 22 lakhs cum to store water in the lean season and it will harvest the rain water during rainy season in the same reservoirs.
viii)	The project proponent shall also comply with all the environmental protection measures and safeguards recommended in the EIA report. Further the company must undertake socio- economic development activities in the surrounding villages like community development programmes; drinking water supply and health care etc.	We have noted and accepted all the conditions and will comply in a time bound manner. The economic development activities are going on regularly as a part of our corporate social responsibility. A team of personnel working dedicatedly for peripheral development work like conducting health camps, community developed programmes, formation SHG groups, supply of drinking water and other common infrastructural development works. Details of the CSR, R&R activities undertaken is attached as Annexure- 11.
ix)	Requisite fund shall be earmarked towards capital cost and recurring cost/annum for environment pollution control measures to implement the conditions stipulated by the Ministry of Environment & Forests as well the State Government. An implementation schedule for implementing all the conditions stipulated herein shall be submitted to Regional Office of the Ministry at Bhubaneswar. The funds so provided shall not be diverted for any other purpose.	Requisite fund was allocated and has been spent towards capital cost and recurring cost/annum is also allotted & spent for environment pollution control measures & environmental management in each year.
x)	A copy of the clearance letter shall be send by the proponent to concerned Panchayat, Zillaparishad/Municipality corporation, urban local boby and the local NGO, if any from whom suggestions/representations, if any, were received while processing the proposal. The clearance letter also be put on the web site of the company by the proponent.	Copy of the clearance letter has already been communicated to all concerned as mentioned in the condition. Scanned copy of the letter is also displayed in our official website.
×i)	The project proponent shall upload the status of compliance of the stipulated environment clearance conditions, including results of monitoring data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Office of	The status of compliance to the EC conditions is being submitted to the Regional office of the MOEF regularly on 1 st June and 1 st Dec respectively with a copy to CPCB & OSPCB and the same is being uploaded into the Company website.

	office of CPCB and SPCB. The criteria pollutant levels namely' PM10, SO2, NOx (ambient levels as well as stack emissions) or critical sectoral parameters, indicated for the project shall be	ory-compliances). All the stack emission and ambient air
	monitored and displayed at a convenient location near the main gate of the company in the public domain.	monitoring stations are synchronized with the webserver of the SPCB & CPCB. The online monitoring data w.r.t. stack emission, ambient air quality and effluent water quality is being digitally displayed at main entrance gate for information to the public.
xii)	The project proponent shall also submit six monthly reports on the status of the compliance of the stipulated environmental conditions including results of monitoring data (both in hard & soft copies as well as by e-mail) to the Regional Office of MOEF, the respective Zonal Offices of CPCP, and the SPCP. The Previously offices of	We are submitting the six monthly compliance reports of the stipulated environmental conditions (both in hard & soft copies as well as by e-mail) to the Regional Office of MOEF, the respective Zonal Offices of CPCB and the SPCB. Before 1 st June and 1 st December every year.
	CPCB and the SPCB. The Regional office of this Ministry at Bhubaneswar. CPCB/SPCB shall monitor the stipulated conditions.	Further, we are also submitting the EC compliance reports through Parivesh Portal accordance to MoEFCC office memorandum dated-14 th June 2022.
		The monitoring data carried out through NABL Accredited Laboratory in respect of AAQ, water, soil, noise etc is enclosed as Annexure-12.
xiii)	The environmental statement for each financial year ending 31 st March in Form-V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of environmental conditions and shall also be sent to the respective Regional Office at Bhubaneswar by e-mail.	The environmental statement for each financial year ending 31 st March in Form-V is being submitted to the concerned authorities of SPCB and MoEF. Last environmental statement report has been submitted vide our letter no. AA/E&S/EC/2022/840, dated 15.09.2022.
xiv)	The project proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the SPCB and may also be seen at website of the Ministry of Environment & Forest at http/www.envfor.nic.in. This shall be advertised	Information to Public has been made through advertisement of the environmental clearance in two widely circulated daily newspapers i.e. "The New Indian Express" on 04-12-2012 & "The Samaja" on 05-12-2012, within seven days of receiving the clearance letter.
	within seven days from the date of issue of the clearance letter, at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same should be forwarded to the Regional office at Bhubaneswar.	The copy of the advertisement was submitted to the Ministry's Regional Office at Bhubaneswar vide our office letter no. AAP/E&F/786, dated 07-12-2012.

xv)	The authorities shall inform the regional office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of commencing the land development work.	Financial closure for Phase-1 of completed on 17 th Septem Construction activities for Phase operating 360 pots out of 360 and 6 units (6x150 MW) in CPP.	ber 2012 and -I completed and pots in Smelter
Sr.N	EC Amendmnet Additional Conditions	Compliance Stat	JS
i}	The project proponent shall develop in-house facilities for treatment of Spent Pot Lining (SPL) generated in the Aluminium smelter. Meanwhile, Refractory part may be sent to CHWTSDF as per the provisions of Hazardous and Other Waste Amendment Rules, 2016.	We have applied for issue of Establish (CTE) for the proposed Screening Unit at Aditya A crushed SPL will be supplied Cement Plants for co-processing	I SPL Crushing & Aluminium. The I to authorized
11)	The PP shall ensure 100% utilization of Fly ash generated.	Ash generated is being utilize supplying to M/s Ultrat Jharsuguda, M/s ACC, Bargarh Rajgangpur for cement manufa are supplying Ash to the brid using in own fly ash brick units development of low lying areas premises with the prior app Odisha. The low-lying areas is with Ash as per the Guideline Low Lying Areas and Abandon Ash of SPCB, Odisha. Beside exploring other modes/areas utilization. Please refer to Anno ash utilization from October 2023.	tech Cements, and M/s OCL, cturing. Also we k manufactures, and utilizing for inside the Plant proval of SPCB, s being filled-up for Reclamation ed Quarries with es, we are also for more ash exure-4 for detail
		The status of ash utilization for	
		October 2022 to March 2023 is	P10000
		October 2022 to March 2023	
		Total ash generated	800860.0
		Total Ash Utilised	808463.5
		Utilization (%)	100.95 %
iii)	All the measures proposed during the presentation and application shall be implemented.	We have noted and will be impl	emented.
iv)	Sale of baked anodes; sale of bath material; and sale of molten metal is permitted following the provisions of Hazardous and Other Waste Management Rules, 2016, applicable if any.	We have noted and accepted.	
V)	The project proponent shall develop in-house facilities for treatment of SPL in 2 to 3 years.	Carbon part is being supple Energy Resureces for detoxifica carbon fuel.	
		We are in process to ex technologies for treatment utilization (co-processing in	and area of

		Permission has been received from SPCB for SPL refractory/fine mix dust supplied to authorized Cement Plants for co-processing in cement kiln. SPL refractory/fine mix dust disposal to cement plants will be started soon.
		SPCB has issued the permission to Re Sustainability Ltd for disposal of SPL refractory in its CHWTSDF. Around 14815 MT SPL Refractory part and 1535 MT Carbon part is in stock till end of March- 2023 and kept inside the well- ventilated permanent covered sheds for disposal to CHW-TSDF/Actual users.
vi)	All the conditions prescribed in the environmental clearance letter No.J-11011/136/2009-IA-II(I) dated 29.11.2012 shall be strictly complied with.	It is being Complied.
vii)	The Project Proponent shall take fresh environment clearance in case of any change in the scope of the project.	There is no change in the scope of the project.

Encl: As above

Samen Nayak (Authorised Signatory)

MINISTRY OF ENVIRONMENT & FORESTS EASTERN REGIONAL OFFICE, A/3, CHANDRASEKHARPUR, BHUBANESWAR-751023

FORMAT FOR PROVIDING PARTICULARS ON GREENBELT /PLANTATION UNDER F(C) ACT 1980 AND E(P) ACT 1986.

1	a) Name of the Project	Aditya Aluminium (A Unit of Hindalco Industries Limited)
	b) Envt. /Forest Clearance Nos.	i. Env Clearance vide letter No: J-11011/136/2009-IA-II(I), Dated 29/11/2012, amendment dated 14 June 2013, 14 Aug 2018, 20 July 2020 & 12 Aug 2022 ii. Forest Clearance vide letter No: 8-27/2009-FC, 10.02.2011
2	Location/ Block/ Sub-Divn./ Dist/ State	Aditya Aluminium (A Div. of Hindalco Industries Limited) At/Po- Lapanga, Dist Sambalpur Pin - 768 212, Odisha
3	Address for communication	Aditya Aluminium (A Div. of Hindalco Industries Limited) At/Po- Lapanga, Dist Sambalpur Pin - 768 212, Odisha
4	Existing vegetation in the area/ region	At present several types of vegetation available in the area, however some of the names mentioned as follows- Aegle marmelo, Albizia lebbeck, Albizia procera, Alstonia scholaris, Annona squamosa, Artocarpus heterophyllus, Azadirachta indica, Bauhinia alba, Butea monosperma, Bauhinia purpurea, Cassia fistula, Dalbergia sissoo, Delonix regia, Ficus benghalensis, Ficus religiosa, Madhuca indica, Mangifera indica, Peltophorum ferrugineum, Pongamia pinnata, Syzygium cumini, Tectona grandis, Terminalia arjuna, Terminalia bellirica, Terminalia bellirica, Termanilia catappa, Thevetia peruviana, Mimusops elangi, Psidium gujava, Samanea saman, Anthocephalus kadamba, Casia seamea, Acasia , Neerium oleander, Anacardium occidentale, etc
5	a) Species: (trees/shrubs/grasses/climbers)	Aegle marmelo, Albizia lebbeck, Albizia procera, Alstonia scholaris, Annona squamosa, Artocarpus heterophyllus, Azadirachta indica, Bauhinia alba, Butea monosperma, Bauhinia purpurea, Cassia fistula, Dalbergia sissoo, Delonix regia, Ficus benghalensis, Ficus religiosa, Madhuca indica, Mangifera indica, Peltophorum ferrugineum, Pongamia pinnata, Syzygium cumini, Tectona grandis, Terminalia arjuna, Terminalia bellirica, Terminalia bellirica, Termanilia catappa, Thevetia peruviana, Mimusops elangi, Psidium gujava, Samanea saman, Anthocephalus kadamba, Casia seamea, Acasia , Neerium oleander, Anacardium occidentale , Butea monosperma, Dalbergia latifolia, etc species available.
	 b) Major prevalent species of each type: 	Anthocephallus cadambaTerminalia arjuna, Peltoferrumferrugenium, Gmelina arboria, AlberziaLebbeck, Delonix regiaetc are the prevalent species found. Butea monosperma, Madhuca indica etc

6	Land coverage by the project:	1347 35 Ha
	a.Name and number of tree/species felled	
	b.Name and number of plant species still available in the area	Plant species and number will be counted after completion of all the project activities and will be submitted to your good office
- #	c. By protecting the area will indigenous stock come up	Nil
	d.Extent of greenbelt developed	1098 acres covered under greenbelt.
7	Plantations required to be carried of	out as per
	a) Conditions of Environmental Clearance in Ha/Nos.	33% of total project area
1	b) Conditions of Forest Act (c) Clearance in Ha/Nos.	25 % of total project area
	c. Voluntarily in Ha/Nos.	NA

8. Details of plantation

a) Total area available for plantation in each category

GreenbeltDumpsBack filled areaRoad sidesBlock plantationThe 33% of the project area will be covered under greenbelt/green cover and the plant. The phase- I facilities
completed and Phase-II construction work not started. Till date 1098 acres of land has been covered under
greenbelt.

b) Plantation details (category wise &methodology used)

Year of plantation	Species Planted		Height attained(feet)		Area still available	
2010-11 & 2011-12	Aegle marmelo, Albizia lebbeck, Albizia procera,	2*2	32'-36'	14.7 Ha	33% of the project area	
2012-13	Alstonia scholaris, Annona	3*3	25'-27'	38.2 Ha	covered	
2012-13	squamosa, Artocarpus heterophyllus, Azadirachta indica, Bauhinia alba, Butea monosperma, Bauhinia purpurea, Cassia fistula,	3*3	22'-25'	11.2 Ha	under Greer	
2013-14		3*3	20'-22'	16.8 Ha	Belt.	
2014-13		4*4	18'-20'	24.36 Ha		
2015-10		2*2	17'-20'	20.0 Ha		
2010-17		2*2	14'-18'	46.8 Ha		
2018-19	Dalbergia sissoo, Delonix	2*2	13'-15'	45.0 Ha	j =	
2019-20	regia, Ficus benghalensis,	2*2	8'- 10'	82.96 Ha		
2020-21	Ficus religiosa, Madhuca	2*2	6'-8'	80.94 Ha		
2021-22	indica, Mangifera indica, Peltophorum ferrugineum, Pongamia pinnata, Syzygium cumini, Tectona grandis, Terminalia arjuna, Terminalia bellirica, Terminalia bellirica,	2*2	6'-7'	63.67 Ha		
2022-23			5'-6'	Density Enhancement in existing plantation area		
Total	Termanilia catappa, Thevetia peruviana, Mimusops elangi, Psidium gujava, Samanea saman, Anthocephalus kadamba, Casia seamea, Acasia , Neerium oleander, Anacardium occidentale, Dalbergia latifolia, Sterculia foetida etc			444.63 Ha		

c) Survival of Plantation:

Total Plantation (No.)	7,01,930
Survival (No.)	6,31,737
Survival rate	Approx. 90%

9. Agency carrying out plantation and maintenance: NA

10. Financial details (year wise) plantation wise and item wise:

SI. No.	Year	Fund allocated(Rs)	Expenditure made(Rs)	Average cost of each surviving plant in Rs.
1	2010-11	81,62,000	81,62,000.00	245.00
2	2011-12			
3	2012-13	46,21,600	46,21,600.00	121.00
4	2013-14	13,62,500	13,62,500.00	121.00
5	2014-15	18,53,000	18,53,000.00	115.00
6	2015-16	18,65,000	18,65,000	109.00
7	2016-17	49,00,000	49,00,000	100.00
8	2017-18	68,00,000	68,00,000	71.00
9	2018-19	70,00,000	70,00,000	77.00
10	2019-20	70,00,000	72,00,000	84.00
11	2020-21	75,00,000	75,00,000	70.00
12	2021-22	85,00,000	85,00,000	126.00
13	2022-23	85,00,000	60,00,000 (till March 2023)	120.00

11. Inspection of plantation by field experts and their comments and follow up actions:

Forest officials from Divisional Forest Office, Sambalpur and Forest Range Office, Rengali are visiting to our location at periodic intervals and giving their technical guidance from time to time. Joint Director/Director of Regional Office of MoEF &CC, Bhubaneswar also visit our plant site periodically.

12. Remarks/ any other information:

Indigenous species have been planted as per the Guideline of CPCB.

Samen Dayak (Signature)

Report-II

PROFORMA FOR PROVIDING INFORMATION ON REHABILITATION

- 1. No. of villages affected : 11
- 2. Families Affected : 1450

Families affected	SC	ST	ОТН	TOTAL
	-	14 A		1450

3. Compensation package offered per family:

State/ Centre norms	Project package
As per the R&R Policy 2006, Govt. of Odisha	As per the R&R Policy 2006 and 2013, Govt. of Odisha. Aditya Aluminium follows the RR Policy and subsequent Compensation Revision also.

4. Budget estimate for rehabilitation:

a)	Total outlay	84.59 Crores
b)	Amount paid/used	1 80.81 Crores

5. Employment details

- a) Total employment to be provided : 60
- b) Employment given so far : 59
- 6. Rehabilitation & Resettlement details: Total Displaced Persons Numbers 430

а	No. of families rehabilitated				
i	Name of the Site	Aditya Alun	ninium		
ii	Families rehabilitated	SC	ST	OTH	Total
		08	378	18	404
b	Families yet to be rehabilitated				
i.	Name of the Site(s)	Aditya Alun	ninium		
ii	No. of families (Total - 430)	SC	ST	OTH	Total
		00	32	14	46

7. Any other information

: NIL

Source Wayah (Authorised Signatory)

Visiontek Consultancy Services Pv	t. Ltd.
(Committed For Better Environment)	Laboratory Services
Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade	Environment Lab Food Lab Material Lab

Infrastructure Engineering
 Water Resource Management
 Environmental & Social Study

Surface & Sub-Surface Investigation
 Quality Control & Project Management
 Renewable Energy

Agricultural Development
 Information Technology
 Public Health Engineering

ST-7: Stack attached to FTC-1 (ABF-1)

Mine Planning & Design
 Mineral/Sub-Soil Exploration
 Waste Management Services

Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Minerabiology Lab

Date: 31.10.2022

Test Report No .: Envlab/22/R-8543

STACK EMISSION MONITORING REPORT FOR OCTOBER-2022

- Name of Industry
 Date of Sampling
- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- : 03.10.2022

1

- 3. Sampling Location
- 4. Name of sampling Instrument
- 5. Sample Collected by
- : Stack Sampler
 - VCSPL Representative in presence of Aditya Aluminium Representative
- 6. Date of Analysis :
 - : 04.10.2022 TO 06.10.2022

Stack Description		
Stack Height	70 Meter	÷
Stack Diameter	2.06 Meter	i)
Height of Sampling Point	40 Meter	4
Capacity	504 Anode/Day	
Pollution Control Device Attached with the Stack	Bag Filter	1

Parameters	Unit of Measurement	Methodology	Emission Prescribe Standard	Analysis Results	
1. A.v.		* 45 F	(OSPCB)	ST-7	
Stack Temperature	°C	IS 11255: Part 3 :1985 (Reaff 2008)	-	98.0	
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	12.2	
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	*	113715.3	
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	~	735.0	
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	7.5	
Sulphur dioxide as SO2	mg/Nm ³	EPA Method 6C	9	386.2	
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E		76.4	
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method		0.10	
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.39	
Total Fluoride as F	mg/Nm ³	Calculation		0.49	
Fluoride Emission	Kg/T	Calculation	0.1	0.0013	
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatogrphy	-	BDL	
Poly Aromatic Hydrocarbon as PAHs BDL-Blow Detection Limit.	mg/Nm ³	Gas Chromatography	2.0	BDL	

Note: BDL: Below Detection Limit.

00 d by

por by

Infrastructure Engineering Water Resource Management Environmental & Social Study • Surface & Sub-Surface Investigation • Quality Control & Project Management • Renewable Bnergy • Agricultural Development • Information Technology • Public Health Engineering • Mine Planning & Design • Mineral L • Mineral L • Waste Management Services Test Report No.: Envlab/22/R-8544 • Mineral L • Renewable Bnergy • Date: 31.10.2022 1. Name of Industry : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga 2. Date of Sampling : 22.10.2022 3. Sampling Location : Stack Sampler 5. Sample Collected by : VCSPL Representative in presence of Aditya Aluminium Representative 6. Date of Analysis : 23.10.2022 TO 27.10.2022	Y I	Certified for : ISO 9001	(Committed 1 :2015, ISO 1400)	Iltancy Sec For Better Environment 1:2015, ISO 45001:2018 (OH ade, MOEF & CC/CPCB &	nt) (&S), ISO/IEC 17025:2017	Laboratory Services Environment Lab Food Lab Material Lab
STACK EMISSION MONITORING REPORT FOR OCTOBER-2022 1. Name of Industry : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga 2. Date of Sampling : 22.10.2022 3. Sampling Location : ST-8: Stack attached to FTC-2 (ABF-2) 4. Name of sampling Instrument : Stack Sampler 5. Sample Collected by : VCSPL Representative in presence of Aditya Aluminium Representative 6. Date of Analysis : 23.10.2022 TO 27.10.2022 Stack Description Stack Height 70 Meter	Vater Resource Management	 Surface & Sub-Surface Quality Control & Proj 	Investigation	 Agricultural Development Information Technology 	Mine Planning & Design Mineral/Sub-Soil Exploration	Soil Lab Minerai Lab & Micrabiology Lab
1. Name of Industry : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga 2. Date of Sampling : 22.10.2022 3. Sampling Location : ST-8: Stack attached to FTC-2 (ABF-2) 4. Name of sampling Instrument : Stack Sampler 5. Sample Collected by : VCSPL Representative in presence of Aditya Aluminium Representation 6. Date of Analysis : 23.10.2022 TO 27.10.2022 Stack Description : 70 Meter			MONITOR	INC DEBORT FO		of the state of th
Stack Height 70 Meter	 Name of Ind Date of Samp Sampling Lo Name of sam Sample Colle 	ustry oling cation pling Instrument cted by	: M/s Hin : 22.10.2 : ST-8: S : Stack S : VCSPL	ndalco Industries Ltd (U 022 Stack attached to FTC-2 ampler Representative in prese	Jnit-Aditya Aluminium); (ABF-2)	Lapanga
/U WIELE						
Stack Diameter 1.6 Meter		-				

Methodology

IS 11255: Part 3 :1985 (Reaff 2008)

IS 11255: Part 1 :1985 (Reaff 2003)

EPA Method 6C

EPA Method 7E

Distillation followed by Ion

Electrode method

Ion Electrode method

Calculation

Calculation

Extraction followed by Gas

Chromatogrphy

Gas Chromatography

Plot No.- M-2D& A3 Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024 India Tel.: E-mail: visiontek@vcspl.org, visiontekin@gmail.com Visit us at: www.vcspl.org

Height of Sampling Point

Parameters

Stack Temperature

Velocity of Flue Gas

Quantity of Gas Flow

Barometric Pressure

Matter as PM

Concentration of Particulate

Sulphur dioxide as SO₂

Particulate Fluoride

Gaseous Fluoride

Total Fluoride as F

Fluoride Emission

Tar Fumes

40

Oxides of Nitrogen as NOx

Poly Aromatic Hydrocarbon

B Reviewed by Ncy

as PAHs Note: BDE: Below Delegitur Limit.

Pollution Control Device Attached with the Stack

Unit of

Measurement

°C

m/sec

Nm³/Hr

mm of Hg

mg/Nm³

mg/Nm³

mg/Nm³

mg/Nm³

mg/Nm³

mg/Nm³

Kg/T

mg/Nm³

mg/Nm³

Capacity

Tel.: 0674-3511721

40 Meter

336 Anode/Day

Bag Filter

Emission

Prescribe

Standard (OSPCB)

-

-

-

50

*

-

-

ii.

-

0.1

.

2.0

hy

AUCL

Analysis

Results

ST-8

89.0

12.4

71419.2

735.4

7.7

356.4

79.8

0.10

0.38

0.48

0.0008

BDL

BDL

13

> Vis	iontek Consu			t. Ltd
	Committed I Certified for : ISO 9001:2015, ISO 1400 Accredited by : NABET-A Gr		&S), ISO/IEC 17025:2017	Laboratory Servic Environment Lab Food Lab Material Lab
ructure Enginering Resource Management imental & Social Study	 Surface & Sub-Surface Investigation Quality Control & Project Management Renewable Energy 	Agricultural Development Information Technology Public Health Engineering	 Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services 	Soil Lab Mineral Lab & Microbiology Lab

Test Report No.:9439

Infrast
Water
Enviro

Date: 30.11.2022

STACK EMISSION MONITORING REPORT FOR NOVEMBER-2022

- 1. Name of Industry : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
 - : 22.11.2022
 - : ST-7: Stack attached to FTC-1 (ABF-1)

17

- 4. Name of sampling Instrument : Stack Sampler
- 5. Sample Collected by

2. Date of Sampling

3. Sampling Location

- 6. Date of Analysis
- : VCSPL Representative in presence of Client's Representative
- : 23.11.2022 TO 26.11.2022

Stack Descript	ion
Stack Height	70 Meter
Stack Diameter	2.06 Meter
Height of Sampling Point	40 Meter
Capacity	504 Anode/Day
Pollution Control Device Attached with the Stack	Bag Filter

Parameters	Unit of Measurement	Methodology	Emission Prescribe Standard	Analysis Results	
10 M	incusur cinent	· */-	(OSPCB)	ST-7	
Stack Temperature	°C	IS 11255: Part 3 :1985 (Reaff 2008)	+	94.0	
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	12.4	
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)	•	117791.5	
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)		740.0	
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	5.2	
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	370.2	
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E		78.4	
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.10	
Gaseous Fluoride	mg/Nm ³	Ion Electrode method		0.34	
Total Fluoride as F	mg/Nm ³	Calculation	1.47	0.44	
Fluoride Emission	Kg/T	Calculation	0.1	0.0012	
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatogrphy		BDL	
Poly Aromatic Hydrocarbon as PAHs	mg/Nm ³	Gas Chromatography	2.0	BDL	
Note: BDL: Below Detection Limit.	A LEAST	REALITY STATUS	pproved by	hi <u>Jago</u>	

Act structure Enginering • Surface &	credited by : NABET-/ Sub-Surface Investigation ntrol & Project Manageme	A Grade, M • Agr • Info	rmation Technology		1 Material La Material La Soil Lab Mineral Lal ration &
Test Report No.:9440				Date: 30.1	1.2022
STACK EMISSI	ON MONITO	RING R	EPORT FOR NO	VEMBER-2	2022
1. Name of Industry	• M/s	Hindalaa	Industries Ltd (Unit-A	ditva Aluminiu	n). I ananaa
2. Date of Sampling	: 22.1		muustries Liu (Umi-A	uitya Aluminiu	in); Lapanga
3. Sampling Location			tached to FTC-2 (ABF	-	
4. Name of sampling Instru			tached to FIC-2 (ABF	-2)	
5. Sample Collected by		c Sampler	autations in managements of	CE-W D	
			entative in presence of	Client's Keprese	entative
6. Date of Analysis	: 23.1	1.2022 10	26.11.2022	1	
	Sta	ack Descri	iption		
Stack Height				70 Meter	
Stack Diameter				1.6 Meter	
Height of Sampling Point	-		1	40 Meter	
Capacity			33	6 Anode/Day	
Pollution Control Device Attache	ed with the Stack	Bag Filter			
Parameters	Unit of Measurement		Methodology	Emission Prescribe Standard	Analysis Results
	N			(OSPCB)	ST-8
Stack Temperature	°C	IS 11255:	Part 3 :1985 (Reaff 2008) '-	92.0
Velocity of Flue Gas	m/sec	IS 11255:	Part 3 :1985 (Reaff 2008) _	12.0
Quantity of Gas Flow	Nm³/Hr	IS 11255:	Part 3 :1985 (Reaff 2008) -	68956.1
Barometric Pressure	mm of Hg	IS 11255:	Part 3 :1985 (Reaff 2008) -	738.2
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255:	Part 1 :1985 (Reaff 2003) 50	4.6
Sulphur dioxide as SO ₂	mg/Nm ³		EPA Method 6C	-	356.0
Oxides of Nitrogen as NO _x	mg/Nm ³		EPA Method 7E	-	76.2
Particulate Fluoride	mg/Nm ³		ation followed by Ion lectrode method	-	0.10
Gaseous Fluoride	mg/Nm ³		Electrode method	-	0.36
Total Fluoride as F	mg/Nm ³		Calculation	-	0.46
Fluoride Emission	Kg/T		Calculation	0.1	0.0008
Tar Fumes	mg/Nm ³		tion followed by Gas hromatography	-	BDL
Poly Aromatic Hydrocarbon as PAHs	mg/Nm ³		Chromatography	2.0	BDL

-

isiontek	Consul	ltancy	Services	Pvt.	Ltd.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Infrastructure Enginering Water Resource Management · Environmental & Social Study

 Surface & Sub-Surface Investigation • Quality Control & Project Management • Renewable Energy

 Agricultural Development Information Technology Public Health Engineering

 Mine Planning & Design • Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Test Report No.: Envlab/22/R-0640

Date: 29,12,2022

STACK EMISSION MONITORING REPORT FOR DECEMBER-2022

: ST-7: Stack attached to FTC-1 (ABF-1)

- 1. Name of Industry
- : M/s Hindalco Industries Ltd (Unit-Aditva Aluminium); Lapanga : 12.12.2022

: VCSPL Representative in presence of Aditya Aluminium Representative

- 2. Date of Sampling
- 3. Sampling Location
- 4. Name of sampling Instrument : Stack Sampler
- 5. Sample Collected by
- 6. Date of Analysis
- : 13.12.2022 TO 15.12.2022

Stack Descriptio	n
Stack Height	70 Meter
Stack Diameter	2.06 Meter
Height of Sampling Point	40 Meter
Capacity	504 Anode/Day
Pollution Control Device Attached with the Stack	Bag Filter

Pollution Control Device Attached with the Stack

Parameters	Unit of Measureme	Unit of Measureme Methodology		Analysis Results
	nt		Standard (OSPCB)	ST-7
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)		94.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	A	12.3
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)	5-2	116748.2
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	740.0
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	4.2
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C		365.1
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	2.0	77.5
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	101-2	0.11
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	- 1 .	0.32
Total Fluoride as F	mg/Nm ³	Calculation	-	0.43
Fluoride Emission	Kg/T	Calculation	0.1	0.0012
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatography	-	BDL
Poly Aromatic Hydrocarbon as PAR	Reng/Nm ³	Gas Chromatography	2.0	BDL

astructure Enginering Surface &	Sub-Surface Investigation Control & Project Managen	a • Agriculturs	Technology Mine	Planning & Design ral/Sub-Soil Exploration e Management Services	Material La Soil Lab Mineral La & Microbiology
Test Report No.: Envlab/22/R -			1. Buch		: 29.12.2022
			EPORT FOR DI		
1. Name of Industry			dustries Ltd (Unit-A	ditya Aluminiu	n); Lapanga
2. Date of Sampling	- Mar 19 1	12.12.2022			
3. Sampling Location			iched to FTC-2 (ABI	(-2)	
4. Name of sampling Instru		Stack Sampler			
5. Sample Collected by			in presence of Aditya	Aluminium Repr	esentative
6. Date of Analysis		13.12.2022 TO 1	5.12.2022		
	1	Stack Descrip	otion		
Stack Height				70 Meter	
Stack Diameter				1.6 Meter	
Height of Sampling Point			1	40 Meter	
Capacity			33	6 Anode/Day	3
Pollution Control Device A	Attached with the	Stack	- and -	Bag Filter	1. ku
Parameters	Unit of Measurement	Me	thodology	Emission Prescribe Standard	Analysis Results
11		1	10.12.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	(OSPCB)	ST-8
Stack Temperature	⁰ C	IS 11255: Part	3 :1985 (Reaff 2008)	-	96.0
Velocity of Flue Gas	m/sec	IS 11255: Part	3 :1985 (Reaff 2008)	-	12.2
Quantity of Gas Flow	Nm ³ /Hr	IS 11255; Part	3 :1985 (Reaff 2008)	-	69384.5
Barometric Pressure	mm of Hg	IS 11255: Part	3 :1985 (Reaff 2008)	-	739.8
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part	1 :1985 (Reaff 2003)	50	4.8
Sulphur dioxide as SO ₂	mg/Nm ³	EPA	Method 6C	-	350.2
Oxides of Nitrogen as NO _x	mg/Nm ³	and the second se	Method 7E	-	78.0
Particulate Fluoride	mg/Nm ³		owed by Ion Electrode nethod	-	0.10
Gaseous Fluoride	mg/Nm ³		ctrode method		0.34
Total Fluoride as F	mg/Nm ³	Ca	Iculation		0.44
Fluoride Emission	Kg/T		leulation	0.1	0.0007
Tar Fumes	mg/Nm ³		followed by Gas matogrphy	-	BDL
Poly Aromatic Hydrocarbon as PAHs	mg/Nm ³		romatography	2.0	BDL

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering · Water Resource Management · Environmental & Social Study • Surface & Sub-Surface Investigation Quality Control & Project Management Renewable Energy

 Agricultural Development Information Technology Public Health Engineering • Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Test Report No.: Envlab/22/R-1926

Date: 31.01.2023

STACK EMISSION MONITORING REPORT FOR JANUARY-2023

1. Name of Industry 2. Date of Sampling

3. Sampling Location

- M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- 18.01.2023 2
 - ST-7: Stack attached to FTC-1 (ABF-1) 3
- 4. Name of sampling Instrument : Stack Sampler
 - VCSPL Representative in presence of Aditya Aluminium Representative 1
- 5. Sample Collected by 6. Date of Analysis
- : 19.01.2023 TO 21.01.2023

Stack Height Stack Diameter				70 Meter	
Stack Diameter		Stack Height			
			2	2.06 Meter	
Height of Sampling Poin	it			40 Meter	
Capacity			504	Anode/Day	
Pollution Control Device	e Attached with	the Stack		Bag Filter	1
Parameters	Unit of Measurement	Me	thodology	Emission Prescribe Standard	Analysis Results
	wieasurement			(OSPCB)	ST-7
Stack Temperature	0C	IS 11255: Part	t 3 :1985 (Reaff 2008)	-	98.0
Velocity of Flue Gas	m/sec	IS 11255: Part	t 3 :1985 (Reaff 2008)	-	12.6
Quantity of Gas Flow	Nm3/Hr	IS 11255: Part 3 :1985 (Reaff 2008)		A	117331.9
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)		14 L	734.7
Concentration of Particulate Matter as PM	mg/Nm3	IS 11255: Part 1 :1985 (Reaff 2003)		50	5.1
Sulphur dioxide as SO2	mg/Nm3	EPA Method 6C		-	368.2
Oxides of Nitrogen as NOx	mg/Nm3	EPA Method 7E		i que la	80.4
Particulate Fluoride	mg/Nm3	Distillation followed by Ion Electrode method		4	0.10
Gaseous Fluoride	mg/Nm3	Ion Elec	ctrode method	-	0.36
Total Fluoride as F	mg/Nm3	Ca	lculation	-	0.46
Fluoride Emission	Kg/T	Ca	lculation	0.1	0.0013
Tar Fumes	mg/Nm3	Extraction followed by Gas Chromatography		- 1	BDL
Poly Aromatic Hydrocarbon as PAksan	mg/Nm3	Gas Ch	romatography	2.0	BDL

structure Enginering • Surface &	credited by : NABET-A Sub-Surface Investigation ntrol & Project Manageme Energy		Agricultural I Information T Public Health	Development • Mi echnology • Mi	ne Planning & Design neral/Sub-Soil Exploratio iste Management Services	
Test Report No.: Envlab/22/R -1	927				Date: 31.01.20	023
STACK EMISS	SION MONIT	OR	ING REP	ORT FOR JA	NUARY-202	3
1. Name of Industry					Aditya Aluminiu	
2. Date of Sampling		8.01.				
3. Sampling Location				hed to FTC-2 (AB	(F-2)	
4. Name of sampling Instru			Sampler			
5. Sample Collected by				n presence of Adit	ya Aluminium Re	aresentative
6. Date of Analysis			2023 TO 21.		ya mummum ree	siesemanive
		-		and the second		
Stack Height		Stat	k Descript	ion	70 Meter	
Stack Diameter					1.6 Meter	
Height of Sampling Point					40 Meter	
				1		
Capacity					336 Anode/Day	
Pollution Control Device At	tached with the St	ack			Bag Filter	
Parameters	Unit of Measurement	5	Me	thodology	Emission Prescribe Standard	Analysis Results
					(OSPCB)	ST-8
Stack Temperature	0C	IS	5 11255: Part	3 :1985 (Reaff 200	8) -	98.0
Velocity of Flue Gas	m/sec	18	11255: Part	3 :1985 (Reaff 200	B) -	12.2
Quantity of Gas Flow	Nm3/Hr	IS	i 11255: Part	3 :1985 (Reaff 200	3)	68394.8
Barometric Pressure	mm of Hg	IS	11255: Part	3 :1985 (Reaff 200)	3) -	733.2
Concentration of Particulate Matter as PM	mg/Nm3	IS	11255: Part	1 :1985 (Reaff 200	3) 50	5.2
Sulphur dioxide as SO2	mg/Nm3	Do I	EPA	Method 6C		356.1
Oxides of Nitrogen as NOx	mg/Nm3		EPA	Method 7E	-	80.0
Particulate Fluoride	mg/Nm3	Dis		wed by Ion Electro nethod	de -	0.11
Gaseous Fluoride	mg/Nm3			trode method		0.39
Total Fluoride as F	mg/Nm3		Ca	lculation	1	0.50
Fluoride Emission	Kg/T		Ca	lculation	0.1	0.0008
Tar Fumes	mg/Nm3			followed by Gas matogrphy		BDL
Poly Aromatic Hydrocarbon as PAHs	mg/Nm3			omatography	2.0	BDL

Visiontek Consultancy Services Pvt. Ltd. (Committed For Better Environment) Laboratory Services

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Surface & Sub-Surface Investigation • Quality Control & Project Management Renewable Energy

- Agricultural Development Information Technology Public Health Engineering
- Mine Planning & Design Mineral/Sub-Soil Exploration
- Waste Management Services

Environment Lab Food Lab Material Lab Soil Lab Mineral Lab Microbiology Lab

Date: 28.02.2023

Environmental & Social Study

NSULTANC

Infrastructure Engineering

Water Resource Management

Test Report No.: 2882

4. Name of sampling Instrument

STACK EMISSION MONITORING REPORT FOR FEBRUARY-2023 : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

- 1. Name of Industry 2. Date of Sampling
 - 16.02.2023 ÷
- 3. Sampling Location
- Stack Sampler 1
- 5. Sample Collected by

6. Date of Analysis

- VCSPL Representative in presence of Aditya Aluminium Representative .
- : 17.02.2023 TO 20.02.2023

: ST-7: Stack attached to FTC-1 (ABF-1)

Stack Description	
Stack Height	70 Meter
Stack Diameter	2.06 Meter
Height of Sampling Point	40 Meter
Capacity	504 Anode/Day
Pollution Control Device Attached with the Stack	Bag Filter

Parameters	Unit of Measurement	Methodology	Emission Prescribe Standard	Analysis Results
weasurement			(OSPCB)	ST-7
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	÷	102.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	1	11.7
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)	÷	108771.3
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	740.0
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	5.62
Sulphur dioxide as SO2	mg/Nm ³	EPA Method 6C	÷	355.2
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	79.4
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	ià l	0.11
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	(÷)	0.38
Total Fluoride as F	mg/Nm ³	Calculation	- 52	0.49
Fluoride Emission	Kg/T	Calculation	0.1	0.0013
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatography	- Artic	BDL
Poly Aromatic Hydrocarbon as PAHs	mg/Nur	Gas Chromatography	ONTER COR	BDL
Note: BDL: Below Detection Line Reviewed by		ELE	Sprov	1 Mag

Certifie Certifie Out Out	(Co d for : ISO 9001:20	ommitted F 15, ISO 14001 NABET-A Gra vestigation	or Better Envir 2015, ISO 45001:20	D18 (OH&S), ISO/IEC 17025:2017 PCB & SPCB-A Grade Mine Planning & Design • Mineral/Sub-Soil Explora	Laboratory Services Environment Lab Food Lab Material Lab Soli Lab Mineral Lab			
Test Report No.: 2883				Dat	te: 28.02.2023			
1. Name of Industry				FOR FEBRUARY-2023 Init-Aditya Aluminium); Lapar				
2. Date of Sampling		16.02.2023	o industries Ltd (C	Jnit-Aditya Alumintum); Lapar	iga			
3. Sampling Location			attached to FTC 2	(ABE 2)				
			attached to FTC-2	(ADF-2)				
4. Name of sampling Instrument5. Sample Collected by		Stack Sampl						
5. Sample Conceled by	:0	VCSPL Rep	resentative in pre	sence of Aditya Aluminium re	epresentative			
6. Date of Analysis	: 1	17.02.2023 TO	0 20.02.2023					
Stack Description								
Stack Height	Stack Height				70 Meter			
Stack Diameter				1.6 Meter				
Height of Sampling Point		_		40 Meter				
Capacity		0		336 Anode/Day				
Pollution Control Device Attached w	with the Stack	-		Bag Filter				
Parameters	Unit of Measurement	Me	thodology	Emission Prescribe Standard (OSPCB)	Analysis Results			
and the second	0	10 11255. 1	ant 2 . 1095 /D		ST-8			
Stack Temperature	C	15 11255: P	art 3 :1985 (Reaff 2008)		106.0			
Velocity of Flue Gas	m/sec	IS 11255: P	art 3 :1985 (Reaff 2008)	-	11.5			
Quantity of Gas Flow	Nm³/Hr	IS 11255: P	art 3 :1985 (Reaff 2008)	÷	63289.5			
Barometric Pressure	mm of Hg	IS 11255: P	art 3 :1985 (Reaff 2008)	G-0	738.5			
Concentration of Particulate Matte as PM	r mg/Nm ³	IS 11255; P	art 1 :1985 (Reaff 2003)	50	3.42			
Sulphur dioxide as SO2	mg/Nm ³	EPA Method 6C			352.3			
Oxides of Nitrogen as NOx	mg/Nm ³	EPA	Method 7E		78.6			
Particulate Fluoride	mg/Nm ³	and the second second second	n followed by trode method	÷.	0.10			
Gaseous Fluoride	mg/Nm ³	Ion Elec	trode method	2	0.38			
Total Fluoride as F	mg/Nm ³	Ca	lculation	1 ·	0.49			
Fluoride Emission	Kg/T	Calculation		0.1	0.0007			

mg/Nm³

mg/Nm³

Tar Fumes

Poly Aromatic Hydrocarbon as PAHs

-

BDL

BDL

-

2.0

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511721E-mail: visiontek@vcspl.org, visiontekin@gmail.com

Extraction followed by Gas

Chromatogrphy

Gas Chromatography

Visit us at: www.vcspl.org

isiontek Consultancy Services Pvt. Ltd. (Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Infrastructure Enginering • Water Resource Management · Environmental & Social Study Surface & Sub-Surface Investigation • Quality Control & Project Management Renewable Energy

•Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lat Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Test Report No.: 3957

Date: 31.03.2023

STACK EMISSION MONITORING REPORT FOR MARCH-2023

: ST-7: Stack attached to FTC-1 (ABF-1)

- 1. Name of Industry
- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- 2. Date of Sampling : 13.03.2023
- 3. Sampling Location
- 4. Name of sampling Instrument : Stack Sampler
- 5. Sample Collected by
- 6. Date of Analysis
- : VCSPL Representative in presence of Aditya Aluminium Representative 14.03.2023 TO 17.03.2023
- Stack Description 70 Meter Stack Height 2.06 Meter Stack Diameter Height of Sampling Point 40 Meter 504 Anode/Day Capacity Pollution Control Device Attached with the Stack **Bag Filter**:

Parameters	Unit of Measurement	Methodology	Emission Prescribe Standard	Analysis Results
	wieasurement		(OSPCB)	ST-7
Stack Temperature	°C	IS 11255: Part 3 :1985 (Reaff 2008)	-	103.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	1	11.8
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	109970.5
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)		745.0
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	5.2
Sulphur dioxide as SO2	mg/Nm ³	EPA Method 6C	1	358.6
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	78.4
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.10
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	· · · · · · · · · · · · · · · · · · ·	0.40
Total Fluoride as F	mg/Nm ³	Calculation	1	0.50
Fluoride Emission	Kg/T	Calculation	0.1	0.0013
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatography		BDL
Poly Aromatic Hydrocarbon as PAHs	mg/Nm ³	Gas Chromatography	2.0	BDL

Note: BDL: Below Detection Limit.

Visiontek Consultancy Services Pvt. Ltd. (Committed For Better Environment) Laboratory Services

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Infrastructure Engineering Water Resource Management · Environmental & Social Study

 Surface & Sub-Surface Investigation • Quality Control & Project Management • Renewable Energy

 Agricultural Development Information Technology Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Soil Lab Mineral Lab & Microbiology Lab

Environment Lab Food Lab

Material Lab

Test Report No.: 3958

Date: 31.03.2023

: VCSPL Representative in presence of Aditya Aluminium Representative

STACK EMISSION MONITORING REPORT FOR MARCH-2023

- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga 1. Name of Industry
- 2. Date of Sampling : 13.03.2023
- 3. Sampling Location
- : ST-8: Stack attached to FTC-2 (ABF-2)
- 4. Name of sampling Instrument : Stack Sampler
- 5. Sample Collected by 6. Date of Analysis
- : 14.03.2023 TO 17.03.2023

Stack Description				
Stack Height	70 Meter			
Stack Diameter	1.6 Meter			
Height of Sampling Point	40 Meter			
Capacity	336 Anode/Day			
Pollution Control Device Attached with the Stack	Bag Filter			

Parameters	Unit of Measurement	Methodology	Emission Prescribe Standard	Analysis Results
			(OSPCB)	ST-8
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	113.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)		12.1
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)		65980.7
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	742.0
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	5.4
Sulphur dioxide as SO2	mg/Nm ³	EPA Method 6C		353.2
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	1	82.0
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.10
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.39
Total Fluoride as F	mg/Nm ³	Calculation	-	0.49
Fluoride Emission	Kg/T	Calculation	0.1	0.0008
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatogrphy	-	BDL
Poly Aromatic Hydrocarbon as PAHs	mg/Nm ³	Gas Chromatography	2.0	BDL

Note: BDL: Below Detection Limit.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Infrastructure Engineering
 Water Resource Management
 Environmental & Social Study

Surface & Sub-Surface Investigation
 Quality Control & Project Management
 Renewable Energy

Agricultural Development
 Information Technology
 Public Health Engineering

Mine Planning & Design
 Mineral/Sub-Soil Exploration
 Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Date: 31.10.2022

Test Report No.: Envlab/22/R-8545

STACK EMISSION MONITORING REPORT FOR OCTOBER-2022

- 1. Name of Industry
- 2. Date of Sampling
- 3. Sampling Location
- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga : 17.10.2022
- : ST-9: Stack attached to GTC-1 (Pot room)
- 4. Name of sampling Instrument
- 5. Sample Collected by
- 6. Date of Analysis

- : Stack Sampler
- : VCSPL Representative in presence of Aditya Aluminium Representative
- : 18.10.2022 TO 20.10.2022

Stack Description	
Stack Height	100 Meter
Stack Diameter	10.4 Meter
Height of Sampling Point	65 Meter
Number of POT in operation	180 No.
Pollution Control Device Attached with the Stack	Bag Filter

Parameters	Unit of	Protocol	Emission Prescribe	Analysis Results
	Measurement	1100001	Standard (OSPCB)	ST-9
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	109.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	9.0
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	2061875.7
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	730.2
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	3.1
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	71.6
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	44.2
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.10
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.40
Total Fluoride	mg/Nm ³	Calculation	-	0.50
Fluoride Emission	Kg/T	Calculation	0.3	0.049

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering Water Resource Management · Environmental & Social Study Surface & Sub-Surface Investigation Quality Control & Project Management Renewable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab R. Microbiology Lab

Date: 31.10.2022

Test Report No.: Envlab/22/R-8546

STACK EMISSION MONITORING REPORT FOR OCTOBER-2022

- 1. Name of Industry 2. Date of Sampling
- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- : 19.10.2022
- 3. Sampling Location

4. Name of sampling Instrument

- : Stack Sampler
- 5. Sample Collected by
- 6. Date of Analysis
- : VCSPL Representative in presence of Aditya Aluminium Representative

ST-10: Stack attached to GTC-2 (Pot room)

: 20.10.2022 TO 22.10.2022

Stack Desc	ription		and the second s		
Stack Heigh		100 Meter			
Stack Diam				10.4 Meter	
	ampling Point			65 Meter	
	POT in operation			180 No.	
Pollution Co	ontrol Device Attach	ned with the Stack		Bag Filter	
Parameters	Unit of Measurement	Protocol		Emission Prescribe Standard	Analysis Results
				(OSPCB)	ST-10
Stack Temperature	0C	IS 11255: Part 3 :1985	(Reaff 2008)	-	106.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985	(Reaff 2008)	-	9.3
Quantity of Gas Flow	Nm3/Hr	IS 11255: Part 3 :1985	(Reaff 2008)	-	2162953.4
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985	(Reaff 2008)	-	733.1
Concentration of Particulate Matter as PM	mg/Nm3	IS 11255: Part 1 :1985 (Reaff 2003)		50	2.7
Sulphur dioxide as SO2	mg/Nm3	EPA Method	6C	-	73.4
Oxides of Nitrogen as NOx	mg/Nm3	EPA Method	7E	-	62.6
Particulate Fluoride	mg/Nm3	Distillation followed by Ion Electrode method		-	0.11
Gaseous Fluoride	mg/Nm3	Ion Electrode m	ethod	-	0.41
Total Fluoride	mg/Nm3	Calculation	1		0.52
Fluoride Emission	Kg/T	Calculation	1	0.3	0.054

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering Water Resource Management • Environmental & Social Study

• Surface & Sub-Surface Investigation • Quality Control & Project Management • Renewable Energy

 Agricultural Development Information Technology Public Health Engineering

: ST-9: Stack attached to GTC-1 (Pot room)

• Mine Planning & Design Mineral/Sub-Soil Exploration

• Waste Management Services

Laboratory Services Environment Lab Food Lab

Material Lab Soil Lab

Mineral Lab & Microbiology Lab

Test Report No.:9441

Date: 30.11.2022

STACK EMISSION MONITORING REPORT FOR NOVEMBER-2022

- 1. Name of Industry 2. Date of Sampling
- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- 24.11.2022 :
- 3. Sampling Location
- : Stack Sampler
- 5. Sample Collected by
- : VCSPL Representative in presence of Client's Representative
- 6. Date of Analysis

4. Name of sampling Instruments

: 25.11.2022 TO 28.11.2022

Stack Description			
Stack Height	100 Meter		
Stack Diameter	10.4 Meter		
Height of Sampling Point	65 Meter		
Number of POT in operation	180 No.		
Pollution Control Device Attached with the Stack	Bag Filter		

Parameters	Unit of Measurement		Emission Prescribe	Analysis Results
		Protocol	Standard (OSPCB)	ST-9
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	105.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	8.9
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	2065327.5
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	8 	735.2
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	2.7
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	73.2
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	44.4
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.10
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.38
Total Fluoride	mg/Nm ³	Calculation	-	0.48
Fluoride Emission	Kg/T	Calculation	0.3	0.048

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering Water Resource Management • Environmental & Social Study

• Surface & Sub-Surface Investigation • Quality Control & Project Management • Renewable Energy

 Agricultural Development Information Technology Public Health Engineering • Mine Planning & Design Mineral/Sub-Soil Exploration

• Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Test Report No.:9442

: VCSPL Representative in presence of Client's Representative

Date: 30.11.2022

STACK EMISSION MONITORING REPORT FOR NOVEMBER-2022

- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga 1. Name of Industry
- : 24.11.2022 2. Date of Sampling
- : ST-10: Stack attached to GTC-2 (Pot room) 3. Sampling Location
- 4. Name of sampling Instrument: Stack Sampler
- 5. Sample Collected by

6. Date of Analysis

: 25.11.2022 TO 28.11.2022

		Stack Descript	tion		
Stack Height				100 Meter	
Stack Diameter	10 0			10.4 Meter	
Height of Sampling Point				65 Meter	
Number of POT in operati	on			180 No.	
Pollution Control Device A	ick		Bag Filter		
Parameters	Unit of Measurement	F	Protocol	Emission Prescribe Standard (OSPCB)	Analysis Results ST-10
Stack Temperature	0C	IS 11255: Part	: 3 :1985 (Reaff 2008	3) -	97.0
Velocity of Flue Gas	m/sec	IS 11255: Part	3 :1985 (Reaff 2008	3) -	9.2
Quantity of Gas Flow	Nm3/Hr	IS 11255: Part	3 :1985 (Reaff 2008	3) -	2195418.5
Barometric Pressure	mm of Hg	IS 11255: Part	2 3 :1985 (Reaff 2008	3) -	737.5
Concentration of Particulate Matter as PM	mg/Nm3	IS 11255: Part	: 1 :1985 (Reaff 2003	3) 50	2.6
Sulphur dioxide as SO2	mg/Nm3	EPA Method 6C		-	72.8
Oxides of Nitrogen as NOx	mg/Nm3	EPA Method 7E		-	63.1
Particulate Fluoride	mg/Nm3	Distillation followed by Ion Electrode method		de -	0.10
Gaseous Fluoride	mg/Nm3	Ion Electrode method		-	0.4
Total Fluoride	mg/Nm3	Calculation		-	0.50
Fluoride Emission	Kg/T	Ca	lculation	0.3	0.053

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Infrastructure Enginering • Water Resource Management Environmental & Social Study Surface & Sub-Surface Investigation • Quality Control & Project Management Renewable Energy

 Agricultural Development Information Technology Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Date: 29.12.2022

Test Report No.: Envlab/22/R -0642

STACK EMISSION MONITORING REPORT FOR DECEMBER-2022

- 1. Name of Industry M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga :
- 2. Date of Sampling 15.12.2022 :
- 3. Sampling Location : ST-9: Stack attached to GTC-1 (Pot room)
- 4. Name of sampling Instrument: Stack Sampler
- 5. Sample Collected by : VCSPL Representative in presence of Aditya Aluminium Representative
- : 16.12.2022 TO 18.12.2022 6. Date of Analysis

Stack Description				
Stack Height	100 Meter			
Stack Diameter	10.4 Meter			
Height of Sampling Point	65 Meter			
Number of POT in operation	180 No.			
Pollution Control Device Attached with the Stack	Bag Filter			

Parameters	Unit of Measurem ent	Protocol	Emission Prescribe Standard (OSPCB)	Analysis Results ST-9
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	102.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)		8.7
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	2044548.7
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	- 	737.1
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	2.6
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	74.4
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	43.6
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.11
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.36
Total Fluoride	mg/Nm ³	Calculation	-	0.47
Fluoride Emission	Kg/T	Calculation	0.3	0.046

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Infrastructure Engineering Water Resource Management Environmental & Social Study

 Surface & Sub-Surface Investigation • Quality Control & Project Management Renewable Energy

 Agricultural Development Information Technology Public Health Engineering

Mine Planning & Design

 Mineral/Sub-Soil Exploration Waste Management Services

Soil Lab Mineral Lab Microbiology Lab

Laboratory Services Environment Lab

Food Lab

Material Lab

&

Date: 29.12.2022

Test Report No.: Envlab/22/R -0643

STACK EMISSION MONITORING REPORT FOR DECEMBER-2022

- 1. Name of Industry : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- 2. Date of Sampling : 16.12.2022
- 3. Sampling Location : ST-10: Stack attached to GTC-2 (Pot room)

mg/Nm3

mg/Nm3

Kg/T

- 4. Name of sampling Instrument: Stack Sampler
- 5. Sample Collected by
- : VCSPL Representative in presence of Aditya Aluminium Representative
- 6. Date of Analysis
- : 17.12.2022 TO 19.12.2022

/	S	Stack Descript	ion	ă.	
Stack Diameter10.4 MHeight of Sampling Point65 Met			100 Meter		
			10.4 Meter	1	
			65 Meter		
			180 No.		
Pollution Control Devi	ce Attached with th	he Stack	Bag Filter	2	
Parameters	Unit of	D,	otocol	Emission Prescribe	Analysis Results
	Measurement	Measurement		Standard (OSPCB)	ST-10
Stack Temperature	0C	IS 11255: Part 3 :1985 (Reaff 2008)		-	99.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3	3 :1985 (Reaff 2008)	-	8.6
Quantity of Gas Flow	Nm3/Hr	IS 11255: Part 3	3 :1985 (Reaff 2008)	-	2049011.9
Barometric Pressure	mm of Hg	IS 11255: Part 3	3 :1985 (Reaff 2008)	-	737.8
Concentration of Particulate Matter as PM	mg/Nm3	IS 11255: Part 1	:1985 (Reaff 2003)	50	3.2
Sulphur dioxide as SO2	mg/Nm3	EPA Method 6C		-	74.5
Oxides of Nitrogen as NOx	mg/Nm3	EPA Method 7E		-	61.7
Particulate Fluoride	mg/Nm3	Distillation followed by Ion Electrode method		-	0.10

Ion Electrode method

Calculation

Calculation

Gaseous Fluoride

Fluoride Emission

Total Fluoride

-

.

0.3

0.38

0.48

0.047

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering • Water Resource Management Environmental & Social Study

 Surface & Sub-Surface Investigation • Quality Control & Project Management Renewable Energy

 Agricultural Development Information Technology

• Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration Laboratory Services Environment Lab Food Lab Material Lab Soil Lab **Mineral Lab** & Microbiology Lab

Waste Management Services

Test Report No.: Envlab/22/R -1928

Date: 31.01.2023

STACK EMISSION MONITORING REPORT FOR JANUARY-2023

- 1. Name of Industry
- 2. Date of Sampling
- : 11.01.2023

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

- 3. Sampling Location
- : ST-9: Stack attached to GTC-1 (Pot room) 4. Name of sampling Instrument : Stack Sampler
- 5. Sample Collected by
- 6. Date of Analysis

Reviewed by

: VCSPL Representative in presence of Aditya Aluminium Representative : 12.01.2023 TO 14.01.2023

Stack Descr	ription
Stack Height	100 Meter
Stack Diameter	10.4 Meter
Height of Sampling Point	65 Meter
Number of POT in operation	180 No.
Pollution Control Device Attached with the Stack	Bag Filter

Parameters	Unit of Measurement	Protocol	Emission Prescribe Standard (OSPCB)	Analysis Results ST-9		
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-8	95.0		
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	8.3		
Quantity of Gas Flow	/ Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	2003188.3		
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-8	737.5		
Concentration of Particulate Matter as	PM mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	2.9		
Sulphur dioxide as S	$D_2 mg/Nm^3$	EPA Method 6C	-	73.6		
Oxides of Nitrogen as	s NO _x mg/Nm ³	EPA Method 7E	-	45.2		
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.10		
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.40		
Total Fluoride	mg/Nm ³	Calculation	-	0.50		
Fluoride Emission	Kg/T	Calculation	0.3	0.048		

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering • Water Resource Management Environmental & Social Study

 Surface & Sub-Surface Investigation • Quality Control & Project Management Renewable Energy

Agricultural Development

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab **Mineral Lab** & Microbiology Lab

Test Report No.: Envlab/22/R -1929

Information Technology • Public Health Engineering

Date: 31.01.2023

STACK EMISSION MONITORING REPORT FOR JANUARY-2023

- 1. Name of Industry 2. Date of Sampling
- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- :
- 3. Sampling Location
- 11.01.2023
- : ST-10: Stack attached to GTC-2 (Pot room)

Stack Sampler

- 4. Name of sampling Instrument:
- 5. Sample Collected by
- : VCSPL Representative in presence of Aditya Aluminium Representative
- 6. Date of Analysis
- 12.01.2023 TO 14.01.2023 •

Stack Description										
Stack Height	100 Meter									
Stack Diameter	10.4 Meter									
Height of Sampling Point	65 Meter									
Number of POT in operation	180 No.									
Pollution Control Device Attached with the Stack	Bag Filter									

			92	
Parameters	Unit of Measurement	Protocol	Emission Prescribe Standard (OSPCB)	Analysis Results ST-10
Stack Temperature	0C	IS 11255: Part 3 :1985 (Reaff 2008)	-	101.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	9.0
Quantity of Gas Flow	Nm3/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	- -	2132627.9
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	737.8
Concentration of Particulate Matter as PM	mg/Nm3	IS 11255: Part 1 :1985 (Reaff 2003)	50	3.1
Sulphur dioxide as SO2	mg/Nm3	EPA Method 6C	-	75.2
Oxides of Nitrogen as NOx	mg/Nm3	EPA Method 7E	la -	63.2
Particulate Fluoride	mg/Nm3	Distillation followed by Ion Electrode method	-	0.11
Gaseous Fluoride	mg/Nm3	Ion Electrode method	-	0.41
Total Fluoride	mg/Nm3	Calculation	-	0.52
Fluoride Emission	Kg/T	Calculation	0.3	0.053

isiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Surface & Sub-Surface Investigation • Quality Control & Project Management Renewable Energy
- Agricultural Development
- Information Technology

• Public Health Engineering

• Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab **Mineral Lab** Microbiology Lab

Date: 28.02.2023

Test Report No.: 2884

STACK EMISSION MONITORING REPORT FOR FEBRUARY-2023

- 1. Name of Industry
- 2. Date of Sampling
- 3. Sampling Location
- 4. Name of sampling Instrument
- 5. Sample Collected by
- 6. Date of Analysis

- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- : 13.02.2023
 - ST-9: Stack attached to GTC-1 (Pot room) :
 - Stack Sampler :
 - VCSPL Representative in presence of Aditya Aluminium Representative :
- : 14.02.2023 TO 16.02.2023

Stack Description	
Stack Height	100 Meter
Stack Diameter	10.4 Meter
Height of Sampling Point	65 Meter
Number of POT in operation	180 No.
Pollution Control Device Attached with the Stack	Bag Filter

Parameters	Unit of	Protocol	Emission Prescribe	Analysis Results
r ar ameters	Measurement	FTOLOCOL	Standard (OSPCB)	ST-9
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	105.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	8.4
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	1973279.4
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	740.9
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	2.56
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	75.2
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	44.6
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.10
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.41
Total Fluoride	mg/Nm ³	Calculation	-	0.51
Fluoride Emission	Kg/T	Calculation	0.3	0.048

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511721 E-mail: visiontek@vcspl.org, visiontekin@gmail.com Visit us at: www.vcspl.org

isiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Surface & Sub-Surface Investigation • Quality Control & Project Management Renewable Energy

- Agricultural Development Information Technology
- Public Health Engineering

ST-10: Stack attached to GTC-2 (Pot room)

Bag Filter

 Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab Microbiology Lab

Test Report No.: 2885

Date: 28.02.2023

STACK EMISSION MONITORING REPORT FOR FEBRUARY-2023

- 1. Name of Industry
- 2. Date of Sampling
- 3. Sampling Location

4. Name of sampling Instrument

: Stack Sampler

17.02.2023

•

5. Sample Collected by

6. Date of Analysis

- VCSPL Representative in presence of Aditya Aluminium Representative :

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

- : 18.02.2023 TO 20.02.2023
- **Stack Description Stack Height** 100 Meter **Stack Diameter** 10.4 Meter **Height of Sampling Point** 65 Meter Number of POT in operation 180 No.

Pollution Control Device Attached with the Stack

		e e		
Parameters	Unit of Measurement	Protocol	Emission Prescribe Standard (OSPCB)	Analysis Results ST-10
Stack Temperature	0C	IS 11255: Part 3 :1985 (Reaff 2008)	-	106.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	8.2
Quantity of Gas Flow	Nm3/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	1909777.9
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	740.1
Concentration of Particulate Matter as PM	mg/Nm3	IS 11255: Part 1 :1985 (Reaff 2003)	50	3.4
Sulphur dioxide as SO2	mg/Nm3	EPA Method 6C	-	73.2
Oxides of Nitrogen as NOx	mg/Nm3	EPA Method 7E	-	62.6
Particulate Fluoride	mg/Nm3	Distillation followed by Ion Electrode method	-	0.10
Gaseous Fluoride	mg/Nm3	Ion Electrode method	-	0.40
Total Fluoride	mg/Nm3	Calculation	-	0.50
Fluoride Emission	Kg/T	Calculation	0.3	0.046

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511721 E-mail: visiontek@vcspl.org, visiontekin@gmail.com

Visit us at: www.vcspl.org

 Infrastructure Engineering Water Resource Management

Environmental & Social Study

 Surface & Sub-Surface Investigation • Quality Control & Project Management

- Agricultural Development
 - Information Technology
 - Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Date: 31.03.2023

Test Report No.:3959

STACK EMISSION MONITORING REPORT FOR MARCH-2023

- 1. Name of Industry : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- 2. Date of Sampling : 14.03.2023

Renewable Energy

- : ST-9: Stack attached to GTC-1 (Pot room) 3. Sampling Location
- 4. Name of sampling Instrument : Stack Sampler
- 5. Sample Collected by : VCSPL Representative in presence of Aditya Aluminium Representative
 - 6. Date of Analysis
- : 15.03.2023 TO 17.03.2023

Stack Descr	iption
Stack Height	100 Meter
Stack Diameter	10.4 Meter
Height of Sampling Point	65 Meter
Number of POT in operation	180 No.
Pollution Control Device Attached with the Stack	Bag Filter

Parameters	Unit of Measurement	Protocol	Emission Prescribe Standard (OSPCB)	Analysis Results ST-9
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	106.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	9.3
Quantity of Gas Flow	Nm3/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	2160787.9
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	738.7
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	2.7
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	74.4
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	46.2
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.10
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.42
Total Fluoride	mg/Nm ³	Calculation	-	0.52
Fluoride Emission	Kg/T	Calculation	0.3	0.054

Reviewed **I**

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511721 E-mail: visiontek@vcspl.org, visiontekin@gmail.com Visit us at: www.vcspl.org

isiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Infrastructure Enginering
- Water Resource Management
- Environmental & Social Study
- Surface & Sub-Surface Investigation • Quality Control & Project Management

:

- Agricultural Development
- - Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab &

• Renewable Energy

- Information Technology
- Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration Microbiology Lab

Date: 31.03.2023

Test Report No.:3960

STACK EMISSION MONITORING REPORT FOR MARCH-2023

- 1. Name of Industry
- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- 2. Date of Sampling
- 3. Sampling Location
- 16.03.2023 ST-10: Stack attached to GTC-2 (Pot room)
- 4. Name of sampling Instrument
- 5. Sample Collected by
- 6. Date of Analysis
- : Stack Sampler
- : VCSPL Representative in presence of Aditya Aluminium Representative
- : 17.03.2023 TO 20.03.2023

		Stack Description	1		
Stack Height				100 Meter	
Stack Diameter			10.4 Meter		
Height of Sampling Point				65 Meter	
Number of POT in operation	n			180 No.	
Pollution Control Device At	tached with the St	ack		Bag Filter	
Parameters	Unit of Measurement	Proto	ocol	Emission Prescribe Standard (OSPCB)	Analysis Results ST-10
Stack Temperature	0C	IS 11255: Part 3 :1	1985 (Reaff 2008)	-	102.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1	1985 (Reaff 2008)	-	9.1
Quantity of Gas Flow	Nm3/Hr	IS 11255: Part 3 :1	1985 (Reaff 2008)	-	2148131.9
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1	1985 (Reaff 2008)	-	738.6
Concentration of Particulate Matter as PM	mg/Nm3	IS 11255: Part 1 :1	1985 (Reaff 2003)	50	3.6
Sulphur dioxide as SO2	mg/Nm3	EPA Met	thod 6C	-	74.6
Oxides of Nitrogen as NOx	mg/Nm3	EPA Me	thod 7E	-	64.4
Particulate Fluoride	mg/Nm3	Distillation fol Electrode		-	0.11
Gaseous Fluoride	mg/Nm3	Ion Electro	de method	-	0.42
Total Fluoride	mg/Nm3	Calcul	ation	-	0.53
Fluoride Emission	Kg/T	Calcul	ation	0.3	0.055

Obs Obs Obs Obs Obs							POTROOF	M ONLINE FL	GITIVE MOR	NITORING(H) REPORT Oc	tober '22 TO	March '23																				Anne	(ure-3
Implicit discription (prime) (prime) Prime Bala	Oct-22																																Monday 31-10-22	Avg. in Pl
Network Network <t< td=""><td>FUGITIVE EMISSION CH#1 (B001-B090) HE</td><td>PPM</td><td>0.138</td><td>0.131</td><td>0.152</td><td>0.22</td><td>0.225</td><td></td><td></td><td></td><td>0.204</td><td>0.092</td><td>0.053</td><td>0.084</td><td>0.137</td><td>0.186</td><td></td><td>0 114</td><td></td><td>0.213</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0 2246</td><td>0.1357</td><td>0 1493</td><td>0.1626</td><td>0.162</td><td>0.155</td></t<>	FUGITIVE EMISSION CH#1 (B001-B090) HE	PPM	0.138	0.131	0.152	0.22	0.225				0.204	0.092	0.053	0.084	0.137	0.186		0 114		0.213									0 2246	0.1357	0 1493	0.1626	0.162	0.155
NameNam																																	0.3805	0.220
here Here Horizo	FUGITIVE EMISSION CH#3 (A091-A180) HF	PPM	0.601	0.439	0.573	0.418	0.268	0.499	0.747	0.532	0.793	0.635	0.688	0.557	0.528	0.415	0.589	0.486	0.56	0.445	0.515	0.427	0.505	0.452	0.643	0.427	0.519	0.613	0.6381	0.48	0.573	0.5349	0.5132	0.536
here ising ising <t< td=""><td>FUGITIVE EMISSION CH#4 (A001-A090) HF</td><td>PPM</td><td>0.136</td><td>0.373</td><td>0.232</td><td>0.616</td><td>0.271</td><td>0.449</td><td>0.349</td><td>0.284</td><td>0.301</td><td>0.456</td><td>0.286</td><td>0.443</td><td>0.297</td><td>0.423</td><td>0.163</td><td>0.486</td><td>0.439</td><td>0.418</td><td>0.243</td><td>0.277</td><td>0.287</td><td>0.358</td><td>0.269</td><td>0.265</td><td>0.232</td><td>0.318</td><td>0.289</td><td>0.2781</td><td>0.2901</td><td>0.3448</td><td>0.312</td><td>0.329</td></t<>	FUGITIVE EMISSION CH#4 (A001-A090) HF	PPM	0.136	0.373	0.232	0.616	0.271	0.449	0.349	0.284	0.301	0.456	0.286	0.443	0.297	0.423	0.163	0.486	0.439	0.418	0.243	0.277	0.287	0.358	0.269	0.265	0.232	0.318	0.289	0.2781	0.2901	0.3448	0.312	0.329
hg3bits </td <td></td> <td>Mo</td> <td>onthly Average</td> <td>(ppm)</td> <td>0.310</td>																															Mo	onthly Average	(ppm)	0.310
but dots but dots <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Mon</th><th>thly Average (</th><th>mg/M3)</th><th>0.258</th></t<>																															Mon	thly Average (mg/M3)	0.258
Indim transmode (1 100) 200 (1) 9.90 0.200 0.200 0.200 <th< th=""><th>Nov-22</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Avg. in P</th></th<>	Nov-22																																	Avg. in P
LINE MARKSMOR 42 (0) 2 (0) 2 (0) 3 (0) 3 (0) 4 (0) 4 (0) 3 (0) 4 (0)	-			02-11-22		04-11-22											15-11-22																	
Pictry Micry																																		0.07
PROPE DATE DATE DATE DATE DATE DATE DATE DAT																																		0.31
bic 2 Total 10000 Total 100000 Total 1000000 Total 1000000000000000000000000000000000000																																		0.47
Image: Proving the state with the stat	FUGITIVE EMISSION CH#4 (A001-A090) HF	PPM	0.2929	0.378	0.3083	0.2977	0.3393	0.4075	0.4803	0.3971	0.5175	0.3551	0.3341	0.3129	0.3742	0.215	0.301	0.185	0.221	0.29	0.337	0.194	0.282	0.289	0.359	0.266	0.301	0.188	0.311	0.186				0.31
be:3 Introl Norm Norm Norm Norm Norm Norm <																																		0.29
Under Unde			X1	and down	Contraction 1	from days	Mandan	Manualau	ate days and a	When we do not	8-2-4	Contrading to 1	for days	ad a sector of	Warneday	have do not do		P.C.A.	Contraction 1	from days	Manda	Warrandara	Maria da constan	When the second se	Ref. docum	Contrading to the second	6 miles		*	Marine and Street Street				0.24
Under Number N	Dec-22																																	Avg. in P
Under basis	ELIGITIVE EMISSION CH#1 (8001-8090) HE	DDM.																																0.026
Under Number N				0.005																														0.224
Digrave fusion cust 44001.4009 if PM 0.366 0.275 0.342 0.289 0.187 0.380 0.187 0.380 0.481 0.285 0.281 0.291 0.217 0.218 0.217 0.188 0.17 0.385 0.188 0.187 0.385 0.188 0.187 0.385 0.188 0.187 0.188 <																																		0.48
Jan 21 Study Models Tuesds Models<																																		0.264
bars image bars image bars				0.210	0.0.12		0.000		0.000							0.220	0.000		0.000		0.000							0.0000						0.250
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.208</td></th<>																																		0.208
A constant line line line line line line line line	lan-23												Wednesday																				Tuesday	Ave. in P
INSTRUCT Description PM 0.238 0.247 0.248 0.246 0.248 0.247 0.248 0.248 0.248 0.248 0.248 0.249 0.248																14-01-23																	31-01-23	
INSTRUCT PURSION CPUB (2003)-L150) (1P) PPM 0.620 0.623 0.630 0.640 0.640 0.540 0.640 0.550 0.650 0.550 0.650 0.650 0.650 0.650 0.550 <td></td> <td>0.050</td>																																		0.050
Full FUTLY EMISSION CH44 (4001-4000) (F PPM 0.348 0.345 0.344 0.148 0.348 0.344 0.148 0.244 0.224 0.224 0.235 0.135 0.346 0.5341 0.346 0.340 0.340 0.340 0.340 0.340 0.340 0.340 0.340 0.340 0.345 0.346 0.340 0.340 0.345 0.340 0.340																																		0.20
Horizon Number Series Number Series<																																		0.549
bit in the state in the s	FUGITIVE EMISSION CH#4 (A001-A090) HF	PPM	0.2498	0.355	0.281	0.345	0.389	0.349	0.1618	0.2494	0.244	0.229	0.234	0.209	0.2203	0.299	0.3315	0.346	0.4356	0.5341	0.349	0.4202	0.2019	0.3639	0.2317	0.1535	0.1694	0.2812	0.242	0.294				0.29
http: bit bit< bit bit< bit																																		0.276
ONC 0.000 0.000				-																											Mon	thly Average (mg/M3)	0.229
Light Prediction Core Legion 2000 (ref. 00.000) PM 0.000 0.007 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.017 0.010 0.010 0.011 0.027 0.011<	Feb-23																																	Avg. in P
Image: Normal condition Image: Normal condition Nor	ELICITIVE EMISSION CH#1 (8001 8000) HE	DDM																																0.27
PRGTIVE EMISSION CMB (M001 A003) A0071 A130) IF PM 0.42 0.589 0.411 0.688 0.471 0.688 0.478 0.689 0.689 0.689 0.615 0.689 0.615 0.610 0.615 0.615 0.615 0.615 0.617 0.610 0.615 0.615 0.616 0.615 0.610 0.615 0.6																																		0.21
Regression case (algoe) PM 927 0.202 0.102 <td></td> <td>0.51</td>																																		0.51
Narch Weinsch Number Narde Standy Mode Standy Mode Standy Nord Mark Mark Standy Mode Standy	ELIGITIVE EMISSION CH#3 (A091-A180) HE																																	0.19
And a								1 0.000		0.000																					M	onthis Average	(nnm)	0.29
Marcing Marcing <t< td=""><td></td><td></td><td>0.227</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.24</td></t<>			0.227																															0.24
Horizon Horizon <t< td=""><td></td><td></td><td>0.227</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			0.227																															
FUGTIVE EMISSION CHW2 [899]-18100 [HF PM 6.02 1.03 0.03 0.02 0.03 0.02 0.02 0.03 0.02 0.02	FUGITIVE EMISSION CH#4 (A001-A090) HF	PPM		Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday				Awa in f
FUGITIVE EMISSION CHB3 (A091-A130) HF PM 0.42 0.39 0.32 0.39 0.32 0.39 0.32 0.39 0.32 0.39 0.32 0.31 0.32 0.31 0.32 0.34 0.34 0.34 0.34 0.34 0.34 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35	FUGITIVE EMISSION CH#4 (A001-A090) HF	PPM	Wednesday																												Wednesday	Thursday		Avg. in I
	FUGITIVE EMISSION CH#4 (A001-A090) HF Mar-23	PPM	Wednesday 01-03-23	02-03-23	03-03-23	04-03-23	05-03-23	06-03-23	07-03-23	08-03-23	09-03-23	10-03-23	11-03-23	12-03-23	13-03-23	14-03-23	15-03-23	16-03-23	17-03-23	18-03-23	19-03-23	20-03-23	21-03-23	22-03-23	23-03-23	24-03-23	25-03-23	26-03-23	27-03-23	28-03-23	Wednesday 29-03-23	Thursday 30-03-23	Friday	, v
FUGITIVE EMISSION CHW/4 (A001-A090) HF PPM 0.165 0.1432 0.187 0.143 0.117 0.118 0.103 0.123 0.146 0.166 0.1813 0.1737 0.192 0.479 0.1975 0.233 0.2556 0.246 0.4775 0.1641 0.2793 0.348 0.216 0.2334 0.2565 0.2117 0.2399 0.203 0.136 0.1946 0.2971	FUGITIVE EMISSION CH#4 (A001-A090) HF Mar-23 FUGITIVE EMISSION CH#1 (B001-B090) HF	PPM	Wednesday 01-03-23 0.219	02-03-23 0.1085	03-03-23 0.063	04-03-23 0.169	05-03-23 0.286	06-03-23 0.145	07-03-23 0.243	08-03-23 0.062	09-03-23 0.231	10-03-23 0.288	11-03-23 0.2271	12-03-23 0.0311	13-03-23 0.192	14-03-23 0.143	15-03-23 0.206	16-03-23 0.108	17-03-23 0.201	18-03-23 0.143	19-03-23 0.095	20-03-23 0.142	21-03-23 0.305	22-03-23 0.196	23-03-23 0.347	24-03-23 0.139	25-03-23 0.209	26-03-23 0.107	27-03-23 0.146	28-03-23 0.115	Wednesday 29-03-23 0.211	Thursday 30-03-23 0.050	Friday 31-03-23 0.098 0.1785	0.16
	FUGITIVE EMISSION CH#4 (A001-A090) HF Mar-23 FUGITIVE EMISSION CH#1 (B001-B090) HF FUGITIVE EMISSION CH#2 (B091-B180) HF	PPM PPM PPM	Wednesday 01-03-23 0.219 0.212	02-03-23 0.1085 0.1998	03-03-23 0.063 0.067	04-03-23 0.169 0.279	05-03-23 0.286 0.253	06-03-23 0.145 0.243	07-03-23 0.243 0.111	08-03-23 0.062 0.111	09-03-23 0.231 0.221	10-03-23 0.288 0.281	11-03-23 0.2271 0.1305	12-03-23 0.0311 0.1126	13-03-23 0.192 0.208	14-03-23 0.143 0.446	15-03-23 0.206 0.1741	16-03-23 0.108 0.18	17-03-23 0.201 0.2822	18-03-23 0.143 0.226	19-03-23 0.095 0.1844	20-03-23 0.142 0.2205	21-03-23 0.305 0.3173	22-03-23 0.196 0.2348	23-03-23 0.347 0.2094	24-03-23 0.139 0.1599	25-03-23 0.209 0.2916	26-03-23 0.107 0.2648	27-03-23 0.146 0.205	28-03-23 0.115 0.2272	Wednesday 29-03-23 0.211 0.188	Thursday 30-03-23 0.050 0.1902	Friday 31-03-23 0.098 0.1785 0.5925	0.16
Monthly Average(pm) Monthly Average(pm)	FUGITIVE EMISSION CH#4 (A001-A090) HF Mar-23 FUGITIVE EMISSION CH#1 (8001-8090) HF FUGITIVE EMISSION CH#2 (8091-8180) HF FUGITIVE EMISSION CH#3 (A091-A180) HF	PPM PPM PPM PPM	Wednesday 01-03-23 0.219 0.212 0.362	02-03-23 0.1085 0.1998 0.3919	03-03-23 0.063 0.067 0.321	04-03-23 0.169 0.279 0.349	05-03-23 0.286 0.253 0.304	06-03-23 0.145 0.243 0.277	07-03-23 0.243 0.111 0.382	08-03-23 0.062 0.111 0.336	09-03-23 0.231 0.221 0.312	10-03-23 0.288 0.281 0.364	11-03-23 0.2271 0.1305 0.2441	12-03-23 0.0311 0.1126 0.2604	13-03-23 0.192 0.208 0.37	14-03-23 0.143 0.446 0.849	15-03-23 0.206 0.1741 0.2654	16-03-23 0.108 0.18 0.361	17-03-23 0.201 0.2822 0.3583	18-03-23 0.143 0.226 0.27	19-03-23 0.095 0.1844 0.3833	20-03-23 0.142 0.2205 0.4361	21-03-23 0.305 0.3173 0.3926	22-03-23 0.196 0.2348 0.3791	23-03-23 0.347 0.2094 0.5299	24-03-23 0.139 0.1599 0.4838	25-03-23 0.209 0.2916 0.4688	26-03-23 0.107 0.2648 0.4566	27-03-23 0.146 0.205 0.449	28-03-23 0.115 0.2272 0.3881	Wednesday 29-03-23 0.211 0.188 0.371	Thursday 30-03-23 0.050 0.1902 0.4629	Friday 31-03-23 0.098 0.1785	Avg. in P 0.169 0.213 0.393 0.214 0.242

											NAME OF THE II			им									ANNEXURE
									STATUS OF	UTILIZATION					3 (Oct-22 to Mar-23)								
SI. No.	Month	Year	Coal Consumption (MT)	Power Installed Capacity (MW)	Power Generated (MW)	Qunatity of Fly Ash generated (MT)	Quantity of Bottom Ash Generated (MT)	Total Ash Generated (MT)	Disposal Method	Brick	Supplied to cement industries (M/s UTCL, M/s ACC Ltd & M/s DBCL) in (MT)	Mine Void Filling		Road Making (MT)	Low Lying area		Agriculture/Ho rticulture Sector (MT)	Sent to Ash Pond through HCSD & stock in Ash Silo		Ash Utilized from Current Month generation (MT) (Col. 20=Sum of col. 10 to 17)	Total Ash Utilized (MT) (Col. 21=Col. 19+ Col.20)	% of ash Utilization (Col. 22=Col. 21/ Col.8*100)	Remarks
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	
1	Oct	2022	342063.95	900	603.91	128767	5666.97	134434.0		2125.43	126024.6	0	0	0	5667	0	0	5259.02	1015.4	133817.0	134832.42	100.30	
2	Νον	2022	304741.61	900	605.41	110927	4736	115663.00	Dry ash is being	2420.65	105604.1	0	0	0	4736	0	0	2902.29	0.0	112760.7	112760.71	97.49	
3	Dec	2022	331123.76	900	644.42	123309	5675.50	128984.00	supplied to Cement Plants, fly ash Brick units and in low lying area development,R	3627.35	119140.36	0	0	0	5676	0	0	540.79	0.0	128443.2	128443.21	99.58	
4	Jan	2023	343878	900	644.29	132564	6301	138865.00	oad Project and remaining ash is being send through HCSD system to ash pond.	2699.55	125959.24	0	0	0	6301	0	0	3905.41	2168.3	134959.6	137127.85	98.75	
5	Feb	2023	297270.00	900	640.65	119090	5678	124768.00		1534.95	116199.68	0	0	0	5678	0	0	1354.88	13408.08	123413.1	136821.20	109.66	
6	Mar	2023	366117.14	900	646.69	150660	7486	158146.00		1531.70	136148.32	0	0	0	7486	0	0	17620.00	13312.09	145166.0	158478.11	100.21	
	Total		1985194.5			765316.2	35543.8	800860.0		13939.6	729076.2	0.0	0.0	0.0	35543.8	0.0	0.0	31582.4	29903.9	778559.6	808463.5	100.95	

Visiontek Consultancy Services Pvt. Ltd. (Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Infrastructure Engineering

- Water Resource Management
- Environmental & Social Study

• Surface & Sub-Surface Investigation • Quality Control & Project Management

- Agricultural Development

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Laboratory Services

Ref: VCSPL/22/R-

 Information Technology Public Health Engineering

Date: 02.03.2023

ASH ANALYSIS REPORT NOVEMBER-2022

- Name of Industry : M/s Hindalco Industries Limited (Unit- Aditya Aluminium), Lapanga.
- **Sampling Location** : FA-01: CPP Fly Ash Silo

: 23.11.2022

Date of Sampling Date of Analysis

• Renewable Energy

: 24.11.2022 to 03.12.2022

Sample Collected By : VCSPL Representative in presence of Aditya Aluminium Representative.

Sl. No.	Parameters	Unit	Analysis Results	Unit	Analysis Results
51. 140.	1 arameters	UIIIt	FA-01	Om	FA-01
Chemical	Analysis				
1	Na ₂ O	%	0.23	mg/kg	2300
2	MgO	%	0.94	mg/kg	9400
3	Al ₂ O ₃	%	21.5	mg/kg	215000
4	SiO ₂	%	50.3	mg/kg	503000
5	P2O5	%	0.021	mg/kg	210
6	SO ₃	%	2.2	mg/kg	22000
7	K ₂ O	%	0.79	mg/kg	7900
8	CaO	%	4.5	mg/kg	45000
9	TiO ₂	%	0	mg/kg	
10	MnO	%	0.23	mg/kg	2300
11	Fe ₂ O ₃	%	9.1	mg/kg	91000
Heavy M	etals Analysis				
1	Mercury as Hg	%	<0.001	mg/kg	<0.001
2	Arsenic as As	%	<0.001	mg/kg	<0.001
3	Lead as Pb	%	0.0165	mg/kg	165
4	Chromium as Cr	%	< 0.002	mg/kg	< 0.002
5	Vanadium as V	%	<0.001	mg/kg	<0.001
6	Iron as Fe	%	5.379	mg/kg	53790
7	Cobalt as Co	%	<0.001	mg/kg	<0.001
8	Copper as Cu	%	0.067	mg/kg	670
9	Nickel as Ni	%	0.086	mg/kg	860
10	Zinc as Zn	%	0.0525	mg/kg	525
11	Strontium as Sr	%		mg/kg	
12	Barium as Ba	%	<0.001	mg/kg	<0.001

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Infrastructure Engineering

Water Resource Management

Environmental & Social Study

Ref: VCSPL/22/R-

- Surface & Sub-Surface Investigation • Quality Control & Project Management • Renewable Energy
- Agricultural Development
 - Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

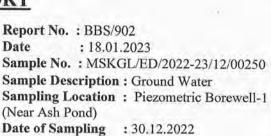
Information Technology

Date: 02.03.2023

ASH ANALYSIS REPORT NOVEMBER-2022

- 1. Name of Industry : M/s Hindalco Industries Limited (Unit- Aditya Aluminium), Lapanga.
 - **Sampling Location** : BA-01: CPP Bottom Ash Silo
- 2. Date of Sampling
- : 23.11.2022 3. Date of Analysis : 24.11.2022 to 03.12.2022
- 4. Sample Collected By : VCSPL Representative in presence of Aditya Aluminium Representative.

Sl. No.	Domonrotono	T	Analysis Results	T	Analysis Results
51. INO.	Parameters	Unit	BA-01	Unit	BA-01
Chemical .	Analysis				
1	Na ₂ O	%	0.26	mg/kg	2600
2	MgO	%	2.5	mg/kg	25000
3	Al ₂ O ₃	%	26.3	mg/kg	263000
4	SiO ₂	%	49.3	mg/kg	493000
5	P ₂ O ₅	%	0.024	mg/kg	240
6	SO ₃	%	11.3	mg/kg	113000
7	K ₂ O	%	0.96	mg/kg	9600
8	CaO	%	32.8	mg/kg	328000
9	TiO ₂	%	0	mg/kg	
10	MnO	%	0.36	mg/kg	3600
11	Fe ₂ O ₃	%	7.6	mg/kg	76000
Heavy Me	tals Analysis				
1	Mercury as Hg	%	<0.001	mg/kg	<0.001
2	Arsenic as As	%	<0.001	mg/kg	<0.001
3	Lead as Pb	%	0.0158	mg/kg	158
4	Chromium as Cr	%	< 0.002	mg/kg	< 0.002
5	Vanadium as V	%	<0.001	mg/kg	<0.001
6	Iron as Fe	%	6.1	mg/kg	61000
7	Cobalt as Co	%	<0.001	mg/kg	<0.001
8	Copper as Cu	%	0.027	mg/kg	270
9	Nickel as Ni	%	0.093	mg/kg	930
10	Zinc as Zn	%	0.068	mg/kg	680
11	Strontium as Sr	%		mg/kg	
12	Barium as Ba	%	<0.001	mg/kg	<0.001


N-5/100, Ground Floor IRC Village, Nayapalli Bhubaneswar - 751015 CIN: U51909WB1956PTC023037

T : (0674) 2362916 / 2360917 F : (0674) 2362918

TEST REPORT

ANALYSIS RESULT Organoleptic and Physical Parameters as per IS 10500 : 2012

Name & Address of the Customer : HINDALCO INDUSTRIES LTD. (Unit- Aditya Aluminium) At/Po: Lapanga, Beside SH-10 Sambalpur, Odisha-768212

Sl. No.	Test Parameters	Requirement (Acceptable Limit	Permissible limit in the absence of alternate Source	Test Method / Specification	Result
1.	pH at 26 ⁰ C	6.5-8.5	No Relaxation	IS 3025 (Part 11)-1984 Rffm: 2012	7.21
2.	Turbidity in mg/l	1	5	IS 3025 (Part 10)-1984 Rffm: 2012	BDL(DL:1.0)
3.	Total Dissolved Solids as TDS in mg/l	500	2000	IS 3025 (Part 16)-1984; Rffm:2012	160.0
4.	Aluminium as Al in mg/l	0.03	0.2	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.01)
5.	Boron as B in mg/l	0.5	1.0	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.5)
6.	Calcium as Ca in mg/l	75	200	IS 3025 (Part 40)- 1991 Rffm: 2014	22.0
7.	Chloride as Cl in mg/l	250	1000	IS 3025 (Part 32)-1988 Rffm: 2014	13.0
8.	Copper as Cu in mg/l	0.05	1.5	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
9.	Flouride as F in mg/l	1.0	1.5	IS 3025 (Part 60)- 2008 Rffm: 2013	0.4
10.	Iron as Fe in mg/l	0.3	No Relaxation	IS 3025 (Part 53)-1988 Rffm: 2014	0.38
11.	Magnesium as Mg in mg/l	30	100	IS 3025 (Part 46)-1994 Rffm: 2014	6.0
12.	Manganese as Mn in mg/l	0.1	0.3	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
13,	Nitrate as NO3 in mg/1	45	No Relaxation	IS 3025 (Part 34)-1988 Rffm: 2014	0.45
14.	Phenolic Compounds as C6H5OH in mg/l	0.001	0.002	IS 3025 (Part 43)- 1992; Rffm: 2014	BDL(DL:0.001)
15.	Selenium as Se in mg/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
16.	Sulphate as SO4 in mg/l	200	400	IS 3025 (Part 24)- 1986 Rffm: 2014	16.0
17.	Total Hardness as CaCO3 in mg/l	200	600	IS 3025 (Part 21)-2013	96.0
18.	Cadmium as Cd in mg/l	0.003	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
19.	Cyanide as CN in mg/l	0.05	No Relaxation	IS 3025 (Part 27)- 1986; Rffm:2003	BDL(DL:0.01)
20.	Lead as Pb in mg/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
21.	Mercury as Hg in mg/l	0.001	No Relaxation	IS 3025(Part 48)-1994	BDL(DL:0.001)
22.	Arsenic as As in mg/l	0.01	0.05	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
23.	Total Chromium as Cr in mg/l	0.05	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
24.	Sodium as Na in mg/l			APHA 23rd Edition, 3500 Na B	10.0
25.	Conductivity in us/cm			APHA 23rd Edition, 2510B	289.0
26.	Potassium as K in mg/l			APHA 23rd Edition, 3500 K B 2017	2.7
27.	Zinc as Zn in mg/l	5	15	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
28.	Total Alkalinity as CaCO3 in mg/l	200	600	IS 3025 (Part 23)- 1986 Rffm: 2009	84.0

Report Prepared by: (Kaw

Mitra S. K. Private Limited A. L. Raits

Authorized Signatory

H.O.: Shrachi Centre (5th Floor), 74B, Acharya Jagadish Chandra Bose Road, Kolkata - 700 016, West Bengal, India T: 91 33 4014 3000 / 2265 0006 / 2265 0007 F: 91 33 2265 0008 E: info@mitrask.com W: www.mitrask.com

PRI

BBSR

TESTING INSPECTION

N-5/100, Ground Floor IRC Village, Nayapalli Bhubaneswar - 751015 CIN : U51909WB1956PTC023037

T : (0674) 2362916 / 2360917 F : (0674) 2362918

TEST REPORT

Name & Address of the Customer : HINDALCO INDUSTRIES LTD. (Unit- Aditya Aluminium) At/Po: Lapanga, Beside SH-10

Sambalpur, Odisha-768212

Report No. : BBS/903Date: 18.01.2023Sample No. : MSKGL/ED/2022-23/12/00251Sample Description : Ground WaterSampling Location : Pizometric Borewell-2(Near Proposed Ash Pond)Date of Sampling : 30.12.2022

ANALYSIS RESULT

Organoleptic and Physical Parameters as per IS 10500 : 2012

Sl. No.	Test Parameters	Requirement Acceptable Limit	Permissible limit in the absence of alternate Source	Test Method / Specification	Result
1.	pH at 26 [°] C	6.5-8.5	No Relaxation	IS 3025 (Part 11)-1984 Rffm: 2012	7.1
2.	Turbidity in mg/l	1	5	IS 3025 (Part 10)-1984 Rffm: 2012	BDL(DL:1.0)
3.	Total Dissolved Solids as TDS in mg/l	500	2000	IS 3025 (Part 16)-1984; Rffm:2012	108.0
4.	Aluminium as Al in mg/l	0.03	0.2	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.01)
5.	Boron as B in mg/l	0.5	1.0	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.5)
6.	Calcium as Ca in mg/l	75	200	IS 3025 (Part 40)- 1991 Rffm: 2014	14.0
7.	Chloride as Cl in mg/l	250	1000	IS 3025 (Part 32)-1988 Rffm: 2014	11.0
8.	Copper as Cu in mg/l	0.05	1.5	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
9.	Flouride as F in mg/l	1.0	1.5	IS 3025 (Part 60)- 2008 Rffm: 2013	0.29
10.	Iron as Fe in mg/l	0.3	No Relaxation	IS 3025 (Part 53)-1988 Rffm: 2014	0.2
11.	Magnesium as Mg in mg/l	30	100	IS 3025 (Part 46)-1994 Rffm: 2014	5.0
12.	Manganese as Mn in mg/l	0.1	0.3	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
13.	Nitrate as NO3 in mg/1	45	No Relaxation	IS 3025 (Part 34)-1988 Rffm: 2014	0.84
14.	Phenolic Compounds as C6H5OH in mg/l	0.001	0.002	IS 3025 (Part 43)- 1992; Rffm: 2014	BDL(DL:0.001)
15.	Selenium as Se in mg/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
16.	Sulphate as SO4 in mg/l	200	400	IS 3025 (Part 24)- 1986 Rffm: 2014	10.0
17.	Total Hardness as CaCO3 in mg/1	200	600	IS 3025 (Part 21)-2013	52.0
18.	Cadmium as Cd in mg/l	0.003	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
19.	Cyanide as CN in mg/l	0.05	No Relaxation	IS 3025 (Part 27)- 1986; Rffm:2003	BDL(DL:0.005)
20.	Lead as Pb in mg/l	0.01	. No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
21.	Mercury as Hg in mg/l	0.001	No Relaxation	IS 3025(Part 48)-1994	BDL(DL:0.005)
22.	Arsenic as As in mg/l	0.01	0.05	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
23.	Total Chromium as Cr in mg/l	0.05	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
24.	Sodium as Na in mg/l			APHA 23rd Edition, 3500 Na B	5.7
25.	Conductivity in us/cm			APHA 23rd Edition, 2510B	196.0
26.	Potassium as K in mg/l			APHA 23rd Edition, 3500 K B 2017	2.4
27.	Zinc as Zn in mg/l	5	15	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
28.	Total Alkalinity as CaCO3 in mg/l	200	600	IS 3025 (Part 23)- 1986 Rffm: 2009	62.0

Report Prepared by:

Mitra S. K. Private Limited

Authorized Signatory

H.O.: Shrachi Centre (5th Floor), 74B, Acharya Jagadish Chandra Bose Road, Kolkata - 700 016, West Bengal, India T : 91 33 4014 3000 / 2265 0006 / 2265 0007 F : 91 33 2265 0008 E : info@mitrask.com W : www.mitrask.com

N-5/100, Ground Floor IRC Village, Nayapalli Bhubaneswar - 751015 CIN : U51909WB1956PTC023037

T : (0674) 2362916 / 2360917 F : (0674) 2362918

TEST REPORT

Name & Address of the Customer : HINDALCO INDUSTRIES LTD. (Unit- Aditya Aluminium) At/Po: Lapanga , Beside SH-10 Sambalpur , Odisha-768212

Report No. : BBS/904 Date : 18.01.2023 Sample No. : MSKGL/ED/2022-23/12/00252 Sample Description : Ground Water Sampling Location : Pizometric Borewell-3 (Near RR Colony) Date of Sampling : 30.12.2022

ANALYSIS RESULT

Organoleptic and Physical Parameters as per IS 10500 : 2012

SI. No.	Test Parameters	Requirement Acceptable Limit	Permissible limit in the absence of alternate Source	Test Method / Specification	Result
1.	pH at 26 ⁰ C	6.5-8.5	No Relaxation	IS 3025 (Part 11)-1984 Rffm: 2012	7.66
2.	Turbidity in mg/l	1	5	IS 3025 (Part 10)-1984 Rffm: 2012	BDL(DL:1.0)
3.	Total Dissolved Solids as TDS in mg/l	500	2000	IS 3025 (Part 16)-1984; Rffm:2012	257.0
4.	Aluminium as Al in mg/l	0.03	0.2	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.01)
5.	Boron as B in mg/l	0.5	1.0	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.5)
6.	Calcium as Ca in mg/l	75	200	IS 3025 (Part 40)- 1991 Rffm: 2014	56.0
7.	Chloride as Cl in mg/l	250	1000	IS 3025 (Part 32)-1988 Rffm: 2014	49.0
8.	Copper as Cu in mg/l	0.05	1.5	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
9.	Flouride as F in mg/l	1.0	1.5	IS 3025 (Part 60)- 2008 Rffm: 2013	BDL(DL:0.2)
10.	Iron as Fe in mg/l	0.3	No Relaxation	IS 3025 (Part 53)-1988 Rffm: 2014	0.42
11.	Magnesium as Mg in mg/l	30	100	IS 3025 (Part 46)-1994 Rffm: 2014	8.0
12.	Manganese as Mn in mg/l	0.1	0.3	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
13.	Nitrate as NO3 in mg/I	45	No Relaxation	IS 3025 (Part 34)-1988 Rffm: 2014	BDL(DL:0.4)
14.	Phenolic Compounds as C6H5OH in mg/l	0.001	0.002	IS 3025 (Part 43)- 1992; Rffm: 2014	BDL(DL:0.001)
15.	Selenium as Se in mg/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
16.	Sulphate as SO4 in mg/l	200	400	IS 3025 (Part 24)- 1986 Rffm: 2014	28.0
17.	Total Hardness as CaCO3 in mg/1	200	600	IS 3025 (Part 21)-2013	179.0
18.	Cadmium as Cd in mg/l	0.003	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
19.	Cyanide as CN in mg/l	0.05	No Relaxation	IS 3025 (Part 27)- 1986; Rffm:2003	BDL(DL:0.005)
20.	Lead as Pb in mg/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
21.	Mercury as Hg in mg/l	0.001	No Relaxation	IS 3025(Part 48)-1994	BDL(DL:0.005)
22.	Arsenic as As in mg/l	0.01	0.05	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
23.	Total Chromium as Cr in mg/l	0.05	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
24.	Sodium as Na in mg/l			APHA 23rd Edition, 3500 Na B	31.0
25.	Conductivity in us/cm			APHA 23rd Edition, 2510B	680.0
26.	Potassium as K in mg/l			APHA 23rd Edition, 3500 K B 2017	8.1
27.	Zinc as Zn in mg/l	5	15	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
28.	Total Alkalinity as CaCO3 in mg/l	200	600	IS 3025 (Part 23)- 1986 Rffm: 2009	158.0

Report Prepared by: (Kamen

Mitra S. K. Private Limited

A. L-Rass Authorized Signatory

H.O.: Shrachi Centre (5th Floor), 74B, Acharya Jagadish Chandra Bose Road, Kolkata - 700 016, West Bengal, India T : 91 33 4014 3000 / 2265 0006 / 2265 0007 F : 91 33 2265 0008 E : info@mitrask.com W : www.mitrask.com

RH

BBSR

N-5/100, Ground Floor IRC Village, Nayapalli Bhubaneswar - 751015 CIN : U51909WB1956PTC023037

T : (0674) 2362916 / 2360917 F : (0674) 2362918

TEST REPORT

Name & Address of the Customer : HINDALCO INDUSTRIES LTD. (Unit- Aditya Aluminium) At/Po: Lapanga , Beside SH-10 Sambalpur , Odisha-768212 Report No. : BBS/905Date: 18.01.2023Sample No. : MSKGL/ED/2022-23/12/00253Sample Description : Ground WaterSampling Location : Pizometric Borewell-4(Bomaloi Village)Date of Sampling : 30.12.2022

ANALYSIS RESULT Organoleptic and Physical Parameters as per IS 10500 : 2012

SI. No.	Test Parameters	Requirement Acceptable Limit	Permissible limit in the absence of alternate Source	Test Method / Specification	Result
1.	pH at 26 ⁰ C	6.5-8.5	No Relaxation	IS 3025 (Part 11)-1984 Rffm: 2012	7.22
2.	Turbidity in mg/l	1	5	IS 3025 (Part 10)-1984 Rffm: 2012	BDL(DL:1.0)
3.	Total Dissolved Solids as TDS in mg/l	500	2000	IS 3025 (Part 16)-1984; Rffm:2012	129.0
4.	Aluminium as Al in mg/l	0.03	0.2	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.01)
5.	Boron as B in mg/l	0.5	1.0	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.5)
6.	Calcium as Ca in mg/l	75	200	IS 3025 (Part 40)- 1991 Rffm: 2014	19.0
7.	Chloride as Cl in mg/l	250	1000	IS 3025 (Part 32)-1988 Rffm: 2014	20.0
8.	Copper as Cu in mg/l	0.05	1.5	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
9.	Flouride as F in mg/l	1.0	1.5	IS 3025 (Part 60)- 2008 Rffm: 2013	0.59
10.	Iron as Fe in mg/l	0.3	No Relaxation	IS 3025 (Part 53)-1988 Rffm: 2014	0.4
11.	Magnesium as Mg in mg/l	30	100	IS 3025 (Part 46)-1994 Rffm: 2014	9.0
12.	Manganese as Mn in mg/l	0.1	0.3	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
13.	Nitrate as NO3 in mg/l	45	No Relaxation	IS 3025 (Part 34)-1988 Rffm: 2014	BDL(DL:0.04)
14.	Phenolic Compounds as C6H5OH in mg/l	0.001	0.002	IS 3025 (Part 43)- 1992; Rffm: 2014	BDL(DL:0.001)
15.	Selenium as Se in mg/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
16.	Sulphate as SO4 in mg/l	200	400	IS 3025 (Part 24)- 1986 Rffm: 2014	24.0
17.	Total Hardness as CaCO3 in mg/l	200	600	IS 3025 (Part 21)-2013	96.0
18.	Cadmium as Cd in mg/l	0.003	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
19.	Cyanide as CN in mg/l	0.05	No Relaxation	IS 3025 (Part 27)- 1986; Rffm:2003	BDL(DL:0.005)
20.	Lead as Pb in mg/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
21.	Mercury as Hg in mg/l	0.001	No Relaxation	IS 3025(Part 48)-1994	BDL(DL:0.005)
22.	Arsenic as As in mg/l	0.01	0.05	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
23.	Total Chromium as Cr in mg/l	0.05	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
24.	Sodium as Na in mg/l			APHA 23rd Edition, 3500 Na B	18.0
25.	Conductivity in us/cm			APHA 23rd Edition, 2510B	256.0
26.	Potassium as K in mg/l			APHA 23rd Edition, 3500 K B 2017	8.1
27.	Zinc as Zn in mg/l	5	15	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
28.	Total Alkalinity as CaCO3 in mg/l	200	600	IS 3025 (Part 23)- 1986 Rffm: 2009	88.0

Report Prepared by:

Mitra S. K. Private Limited

M. W. Rats Authorized Signatory

H.O.: Shrachi Centre (5th Floor), 74B, Acharya Jagadish Chandra Bose Road, Kolkata - 700 016, West Bengal, India T : 91 33 4014 3000 / 2265 0006 / 2265 0007 F : 91 33 2265 0008 E : info@mitrask.com W : www.mitrask.com

Plot No-687/2428, Ekamra Villa Square, Jaydev Vihar, 1st Floor, IRC Village, Bhubaneswar, Khordha, Odisha-751015 [CIN: U51909WB1956PTC023037]

T :(0674) 2360917, 9777450189 Nature 23609455 of the Customer : HINDALCO INDUSTRIES LTD. (Unit- Aditya Aluminium) At/Po: Lapanga, Beside SH-10 Sambalpur, Odisha-768212

TEST REPORT

Report No. : BBS/402 Date : 17.04.2023 Sample No. : MSKGL/ED/2022-23/03/01418 Sample Description : Ground Water Sampling Location : Piezometric Borewell-1 (Near Ash Pond) Date of Sampling : 21.03.2023

ANALYSIS RESULT Organoleptic and Physical Parameters as per IS 10500 : 2012

Sl. No.	Test Parameters	Requirement (Acceptable Limit	Permissible limit in the absence of alternate Source	Test Method / Specification	Result
1.	pH at 26 ^o C	6.5-8.5	No Relaxation	IS 3025 (Part 11)-1984 Rffm: 2012	7.28
2.	Turbidity in mg/l	1	5	IS 3025 (Part 10)-1984 Rffm: 2012	BDL(DL:1.0)
3.	Total Dissolved Solids as TDS in mg/l	500	2000	IS 3025 (Part 16)-1984; Rffm:2012	211.0
4.	Aluminium as Al in mg/l	0.03	0.2	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.01)
5.	Boron as B in mg/l	0.5	1.0	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.5)
6.	Calcium as Ca in mg/l	75	200	IS 3025 (Part 40)- 1991 Rffm: 2014	25.0
7.	Chloride as Cl in mg/l	.250	1000	IS 3025 (Part 32)-1988 Rffm: 2014	30.0
8.	Copper as Cu in mg/l	0.05	1.5	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
9.	Flouride as F in mg/l	1.0	1.5	IS 3025 (Part 60)- 2008 Rffm: 2013	0.34
10.	Iron as Fe in mg/l	0.3	No Relaxation	IS 3025 (Part 53)-1988 Rffm: 2014	0.48
11.	Magnesium as Mg in mg/l	30	100	IS 3025 (Part 46)-1994 Rffm: 2014	12.0
12.	Manganese as Mn in mg/l	0.1	0.3	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
13.	Nitrate as NO3 in mg/l	45	No Relaxation	IS 3025 (Part 34)-1988 Rffm: 2014	BDL(DL:0.5)
14.	Phenolic Compounds as C6H5OH in mg/l	0.001	0.002	IS 3025 (Part 43)- 1992; Rffm: 2014	BDL(DL:0.001)
15.	Selenium as Se in mg/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
16.	Sulphate as SO4 in mg/l	200	400	IS 3025 (Part 24)- 1986 Rffm: 2014	32.0
17.	Total Hardness as CaCO3 in mg/l	200	600	IS 3025 (Part 21)-2013	113.0
18.	Cadmium as Cd in mg/l	0.003	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
19.	Cyanide as CN in mg/l	0.05	No Relaxation	IS 3025 (Part 27)- 1986; Rffm:2003	BDL(DL:0.005)
20.	Lead as Pb in mg/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
21.	Mercury as Hg in mg/l	0.001	No Relaxation	IS 3025(Part 48)-1994	BDL(DL:0.005)
22.	Arsenic as As in mg/l	0.01	0.05	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
23.	Total Chromium as Cr in mg/l	0.05	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
24.	Sodium as Na in mg/l			APHA 23rd Edition, 3500 Na B	22.0
25.	Conductivity in us/cm			APHA 23rd Edition, 2510B	330.0
26.	Potassium as K in mg/l			APHA 23rd Edition, 3500 K B 2017	5.0
27.	Zinc as Zn in mg/l	5	15	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
28.	Total Alkalinity as CaCO3 in mg/l	200	600	IS 3025 (Part 23)- 1986 Rffm: 2009	98.0

Report Prepared by:

Mitra S. K. Private Limited

Rath Authorized Signatory

H.O.: Shrachi Centre (5th Floor), 74B, Acharya Jagadish Chandra Bose Road, Kolkata - 700 016, West Bengal, India T: 91 33 4014 3000 / 2265 0006 / 2265 0007, F: 91 33 2265 0008, E: info@mitrask.com, W: www.mitrask.com

Plot No-687/2428, Ekamra Villa Square, Jaydev Vihar, 1st Floor, IRC Village, Bhubaneswar, Khordha, Odisha-751015 [CIN: U51909WB1956PTC023037]

T :(0674) 2360917, 9777450189 F :(0674) 2362918 Name & Address of the Customer : HINDALCO INDUSTRIES LTD. (Unit- Aditya Aluminium) At/Po: Lapanga, Beside SH-10 Sambalpur, Odisha-768212

TEST REPORT

Report No. : BBS/403Date: 17.04.2023Sample No. : MSKGL/ED/2022-23/03/01419Sample Description : Ground WaterSampling Location : Pizometric Borewell-2(Near Proposed Ash Pond)Date of Sampling: 21.03.2023

ANALYSIS RESULT

Organoleptic and Physical Parameters as per IS 10500 : 2012

SI. No.	Test Parameters	Requirement Acceptable Limit	Permissible limit in the absence of alternate Source	Test Method / Specification	Result
1.	pH at 26°C	6.5-8.5	No Relaxation	IS 3025 (Part 11)-1984 Rffm: 2012	7.16
2.	Turbidity in mg/l	1	5	IS 3025 (Part 10)-1984 Rffm: 2012	BDL(DL:1.0)
3.	Total Dissolved Solids as TDS in mg/l	500	2000	IS 3025 (Part 16)-1984; Rffm:2012	72.0
4.	Aluminium as Al in mg/l	0.03	0.2	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.01)
5.	Boron as B in mg/l	0.5	1.0	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.5)
6.	Calcium as Ca in mg/l	75	200	IS 3025 (Part 40)- 1991 Rffm: 2014	9.6
7.	Chloride as Cl in mg/l	250	1000	IS 3025 (Part 32)-1988 Rffm: 2014	14.0
8.	Copper as Cu in mg/l	0.05	1.5	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
9.	Flouride as F in mg/l	1.0	1.5	IS 3025 (Part 60)- 2008 Rffm: 2013	BDL(DL:0.2)
10.	Iron as Fe in mg/l	0.3	No Relaxation	IS 3025 (Part 53)-1988 Rffm: 2014	0.23
11.	Magnesium as Mg in mg/l	30	100	IS 3025 (Part 46)-1994 Rffm: 2014	1.5
12.	Manganese as Mn in mg/l	0.1	0.3	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
13.	Nitrate as NO3 in mg/l	45	No Relaxation	IS 3025 (Part 34)-1988 Rffm: 2014	BDL(DL:0.5)
14,	Phenolic Compounds as C6H5OH in mg/l	0.001	0.002	IS 3025 (Part 43)- 1992; Rffm: 2014	BDL(DL:0.001)
15.	Selenium as Se in mg/I	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
16.	Sulphate as SO4 in mg/l	200	400	IS 3025 (Part 24)- 1986 Rffm: 2014	8.0
17.	Total Hardness as CaCO3 in mg/l	200	600	IS 3025 (Part 21)-2013	32.0
18.	Cadmium as Cd in mg/l	0,003	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
19.	Cyanide as CN in mg/l	0.05	No Relaxation	IS 3025 (Part 27)- 1986; Rffm:2003	BDL(DL:0.01)
20.	Lead as Pb in mg/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
21.	Mercury as Hg in mg/l	0.001	No Relaxation	IS 3025(Part 48)-1994	BDL(DL:0.001)
22.	Arsenic as As in mg/l	0.01	0.05	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
23.	Total Chromium as Cr in mg/l	0.05	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
24.	Sodium as Na in mg/l			APHA 23rd Edition, 3500 Na B	2,0
25.	Conductivity in us/cm			APHA 23 rd Edition, 2510B	108.0
26.	Potassium as K in mg/l			APHA 23rd Edition, 3500 K B 2017	BDL(DL:0.5)
27.	Zinc as Zn in mg/l	5	15	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
28.	Total Alkalinity as CaCO3 in mg/l	200	600	IS 3025 (Part 23)- 1986 Rffm: 2009	30.0

Kamp Report Prepared by:

Mitra S. K. Private Limited A. W Roth

Authorized Signatory

H.O.: Shrachi Centre (5th Floor), 74B, Acharya Jagadish Chandra Bose Road, Kolkata - 700 016, West Bengal, India T: 91 33 4014 3000 / 2265 0006 / 2265 0007, F: 91 33 2265 0008, E: info@mitrask.com, W: www.mitrask.com

Plot No-687/2428, Ekamra Villa Square, Jaydev Vihar, 1st Floor, IRC Village, Bhubaneswar, Khordha, Odisha-751015 [CIN: U51909WB1956PTC023037]

T :(0674) 2360917, 9777450189 F :(0674) 2362918

Name & Address of the Customer : HINDALCO INDUSTRIES LTD. (Unit- Aditya Aluminium) At/Po: Lapanga , Beside SH-10 Sambalpur , Odisha-768212

TEST REPORT

Report No. : BBS/404Date: 17.04.2023Sample No. : MSKGL/ED/2022-23/03/01420Sample Description : Ground WaterSampling Location : Pizometric Borewell-3(Near RR Colony)Date of Sampling: 21.03.2023

ANALYSIS RESULT Organoleptic and Physical Parameters as per IS 10500 : 2012

Sl. No.	Test Parameters	Requirement Acceptable Limit	Permissible limit in the absence of alternate Source	Test Method / Specification	Result
1.	pH at 26°C	6.5-8.5	No Relaxation	IS 3025 (Part 11)-1984 Rffm: 2012	7.14
2.	Turbidity in mg/l	1	5	IS 3025 (Part 10)-1984 Rffm: 2012	BDL(DL:1.0)
3.	Total Dissolved Solids as TDS in mg/l	500	2000	IS 3025 (Part 16)-1984; Rffm:2012	276.0
4.	Aluminium as Al in mg/l	0.03	0.2	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.01)
5.	Boron as B in mg/l	0.5	1.0	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.5)
6.	Calcium as Ca in mg/l	75	200	IS 3025 (Part 40)- 1991 Rffm: 2014	40.0
7,	Chloride as Cl in mg/l	250	1000	IS 3025 (Part 32)-1988 Rffm: 2014	44.0
8.	Copper as Cu in mg/l	0.05	1.5	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
9.	Flouride as F in mg/l	1.0	1.5	IS 3025 (Part 60)- 2008 Rffm: 2013	BDL(DL:0.2)
10.	Iron as Fe in mg/l	0.3	No Relaxation	IS 3025 (Part 53)-1988 Rffm: 2014	0.36
11.	Magnesium as Mg in mg/l	30	100	IS 3025 (Part 46)-1994 Rffm: 2014	5.4
12.	Manganese as Mn in mg/l	0.1	0.3	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
13.	Nitrate as NO3 in mg/l	45	No Relaxation	IS 3025 (Part 34)-1988 Rffm: 2014	BDL(DL:0.5)
14.	Phenolic Compounds as C6H5OH in mg/l	0.001	0.002	IS 3025 (Part 43)- 1992; Rffm: 2014	BDL(DL:0.001)
15.	Selenium as Se in mg/l	0.01	No Relaxation	1S 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
16.	Sulphate as SO4 in mg/l	200	400	IS 3025 (Part 24)- 1986 Rffm: 2014	21.0
17.	Total Hardness as CaCO3 in mg/l	200	600	IS 3025 (Part 21)-2013	122.0
18.	Cadmium as Cd in mg/l	0.003	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
19.	Cyanide as CN in mg/l	0.05	No Relaxation	IS 3025 (Part 27)- 1986; Rffm:2003	BDL(DL:0.005)
20.	Lead as Pb in mg/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
21.	Mercury as Hg in mg/l	0.001	No Relaxation	IS 3025(Part 48)-1994	BDL(DL:0.005)
22.	Arsenic as As in mg/l	0.01	0.05	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
23.	Total Chromium as Cr in mg/l	0.05	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
24.	Sodium as Na in mg/l		المدويد	APHA 23rd Edition, 3500 Na B	10.0
25.	Conductivity in us/cm			APHA 23 rd Edition, 2510B	413.0
26.	Potassium as K in mg/l		فتبدع	APHA 23rd Edition, 3500 K B 2017	2.0
27.	Zinc as Zn in mg/l	5	15	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
28.	Total Alkalinity as CaCO3 in mg/l	200	600	IS 3025 (Part 23)- 1986 Rffm: 2009	88.0

am d by: repar

Mitra S. K. Private Limited

. mpath Authorized Signatory

H.O.: Shrachi Centre (5th Floor), 74B, Acharya Jagadish Chandra Bose Road, Kolkata - 700 016, West Bengal, India T: 91 33 4014 3000 / 2265 0006 / 2265 0007, F: 91 33 2265 0008, E: info@mitrask.com, W: www.mitrask.com

Plot No-687/2428, Ekamra Villa Square, Jaydev Vihar, 1st Floor, IRC Village, Bhubaneswar, Khordha, Odisha-751015 [CIN: U51909WB1956PTC023037]

T :(0674) 2360917, 9777450189 F :(0674) 2362918

Name & Address of the Customer : HINDALCO INDUSTRIES LTD. (Unit- Aditya Aluminium) At/Po: Lapanga , Beside SH-10 Sambalpur , Odisha-768212

TEST REPORT

Report No. : BBS/405Date: 17.04.2023Sample No. : MSKGL/ED/2022-23/03/01421Sample Description : Ground WaterSampling Location : Pizometric Borewell-4(Bomaloi Village)Date of Sampling: 21.03.2023

ANALYSIS RESULT

Organoleptic and Physical Parameters as per IS 10500 : 2012

SI. No.	Test Parameters	Requirement Acceptable Limit	Permissible limit in the absence of alternate Source	Test Method / Specification	Result
1.	pH at 26°C	6.5-8.5	No Relaxation	IS 3025 (Part 11)-1984 Rffm: 2012	7.18
2,	Turbidity in mg/l	1	5	IS 3025 (Part 10)-1984 Rffm: 2012	BDL(DL:1.0)
3.	Total Dissolved Solids as TDS in mg/l	500	2000	IS 3025 (Part 16)-1984; Rffm:2012	144.0
4.	Aluminium as Al in mg/l	0.03	0.2	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.01)
5.	Boron as B in mg/l	0.5	1.0	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.5)
6.	Calcium as Ca in mg/l	75	200	IS 3025 (Part 40)- 1991 Rffm: 2014	24.0
7.	Chloride as Cl in mg/l	250	1000	IS 3025 (Part 32)-1988 Rffm: 2014	22.0
8.	Copper as Cu in mg/l	0.05	1.5	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
9.	Flouride as F in mg/l	1.0	1.5	IS 3025 (Part 60)- 2008 Rffm: 2013	0.28
10.	Iron as Fe in mg/l	0.3	No Relaxation	IS 3025 (Part 53)-1988 Rffm: 2014	0.34
11.	Magnesium as Mg in mg/l	30	100	IS 3025 (Part 46)-1994 Rffm: 2014	7.0
12.	Manganese as Mn in mg/l	0,1	0.3	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
13.	Nitrate as NO3 in mg/l	45	No Relaxation	IS 3025 (Part 34)-1988 Rffm: 2014	BDL(DL:0.04)
14.	Phenolic Compounds as C6H5OH in mg/l	0.001	0.002	IS 3025 (Part 43)- 1992; Rffm: 2014	BDL(DL:0.001)
15.	Selenium as Se in mg/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
16.	Sulphate as SO4 in mg/l	200	400	IS 3025 (Part 24)- 1986 Rffm: 2014	24.0
17.	Total Hardness as CaCO3 in mg/l	200	600	IS 3025 (Part 21)-2013	89.0
18.	Cadmium as Cd in mg/l	0.003	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
19.	Cyanide as CN in mg/l	0.05	No Relaxation	IS 3025 (Part 27)- 1986; Rffm:2003	BDL(DL:0.005)
20.	Lead as Pb in mg/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
21.	Mercury as Hg in mg/l	0.001	No Relaxation	IS 3025(Part 48)-1994	BDL(DL:0.005)
22.	Arsenic as As in mg/l	0.01	0.05	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
23.	Total Chromium as Cr in mg/l	0.05	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
24.	Sodium as Na in mg/l			APHA 23 rd Edition, 3500 Na B	11.0
25.	Conductivity in us/cm			APHA 23 rd Edition, 2510B	225.0
26.	Potassium as K in mg/l			APHA 23rd Edition, 3500 K B 2017	2.0
27.	Zinc as Zn in mg/l	5	15	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
28.	Total Alkalinity as CaCO3 in mg/l	200	600	IS 3025 (Part 23)- 1986 Rffm: 2009	82.0

Vamas Report Prepared by:

Mitra S. K. Private Limited

Authorized Signatory

H.O.: Shrachi Centre (5th Floor), 74B, Acharya Jagadish Chandra Bose Road, Kolkata - 700 016, West Bengal, India T: 91 33 4014 3000 / 2265 0006 / 2265 0007, F: 91 33 2265 0008, E: info@mitrask.com, W: www.mitrask.com

Compliance Status from October 22 to March 23

COMPLIANCE TO CREP GUIDELINES FOR SMELTER

Sr.	Conditions	Compliance Status
No.		-
1	Environmental clearance for new smelters to be given by MoEF only with pre-baked technology	Smelter design is based on pre-baked technology only.
2	Fluoride emissions should be limited to 0.8 kg/ton of aluminium production and dry scrubbing of fluorides	Fluoride emissions is being controlled by installing GTC & FTC below 0.8 kg/ton of aluminium metal produced. The average total fluoride emission for the period October 22 to March 23 is 0.09 Kg/Ton
3	Fluoride consumption in the smelter should be limited to 10 kg/ton of aluminium produced	of metal production. The specific fluoride (as F) consumption for the period October 22 to March 23 is 7.82 kg/ton of metal produced.
4	The fluoride in forage should be limited toAverage of 12 consecutive months- 40 ppmAverage of 2 consecutive months- 60 ppmOne month- 80 ppmRegular monitoring data to be submitted to	Forage fluoride is being monitored on quarterly basis as a part of post project monitoring activities. The monitored data is being regularly submitted to SPCB and CPCB.
	SPCB and CPCB.	
5	The average life of the pots should be 2500 days. The possibility of using the SPL in cement or steel industry after recovery of aluminium fluoride should be explored.	The Carbon part of SPL is being supplied to M/s Green Energy Limited, Sambalpur for reprocessing/detoxification and in this way the carbon part is completely recycled.
6	The SPL should be disposed in secured landfill.	Permission has been received from SPCB for SPL refractory/Fine mix dust supplied to authorized Cement Plants for co-processing in cement kiln. We are exploring for disposal of SPL fine mix dust/refractory to cement plants for coprocessing in cement kiln. M/s Re Sustainability Ltd has established the facility for detoxification and disposal as per the protocol given by CPCB in its CHW-TSDF at kanchichuhan, Dist- Jajpur site. SPCB has issued permission to Re Sustainability Ltd for disposal of SPL refractory in its CHWTSDF. Around 14815 MT SPL Refractory part and 1535 MT Carbon part is in stock till end of March- 2023 and kept inside the well-ventilated permanent covered sheds for disposal to CHW- TSDF/Actual users.

Compliance Status from October 22 to March 23

Sr. No.	Conditions	Compliance Status
7	Achieving particulate matter limit of 50	It is being Complied with.
	mg/Nm3 in anode baking furnace	

COMPLIANCE TO CREP GUIDELINES FOR CPP

Sr. No.	Conditions	Compliance Status
1	Implementation of Environmental Standards (emission & effluent) in non- compliant* Power Plants (31 & 27) - Submission of action plan: June 30, 2003 -Placement of order for Pollution of control equipment: September, 2003 - Installation & commission: December 31, 2005	Not Applicable
2	For existing thermal power plants, a feasibility study shall be carried out by Central Electricity Authority (CEA) to examine possibility to reduce the particulate matter emissions to 100 mg/Nm3. The studies shall also suggest the road map to meet 100 mg/Nm3. The studies shall also suggest the road map to meet 100 mg/Nm3 wherever found feasible. CEA shall submit the report by March 2004.	Not Applicable
3	New / expansion power projects to be accorded environmental clearance on or after1.4.1.2003 shall meet the limit of 100 mg/Nm3 for particulate matter.	Complied. PM emission is well below stipulated limit of 50 mg/Nm3
4	Development of SO ₂ & NO _x emission standards for coal based plants by December 2003. - New/ expansion power projects shall meet the limit of SO ₂ & NO _x w.e.f. 1.1.2005. - Existing power plants shall meet the limit of SO2 & NOX w.e.f.1.1.2006.	Standard for SO ₂ & NOx has been published by MOEF.
5	Install/activate opacity meters/ continuous monitoring system in all the units by December 31, 2004 with proper calibration system.	Continuous monitoring system installed in the stacks attached to Power Plant for monitoring of PM, SO ₂ & NOx.
6	Development of guidelines/ standards for mercury and other toxic heavy metals emissions by December 2003.	Standard for Hg emission for captive power plant has been published by MOEF&CC. Monthly monitoring report is being submitted to SPCB.
7	Review of stack height requirement and guidelines for power plants based on micro meteorological data by June 2003	Guideline has been published for stack height by MOEFCC in this regard.

Compliance Status from October 22 to March 23

8	Implementation of use of beneficiated coal as per	Not Applicable
0	GOI Notification:	
	Power plants will sign fuel supply agreement (FSA) to	
	meet the requirement as per the matrix prepared by	
	CEA for compliance of the notification as short term	
	measure.	
	Options/mechanism for setting up of coal washeries	
	as a long term measure	
	* Coal India will up its own washery	
	* Sate Electricity Board to set up its own washery	
	* Coal India to ask private entrepreneurs to set up	
	washeries for CIL and taking washing charges	
	* SEBs to select a private entrepreneur to set up a	
	washery near pit- head installation of coal	
	beneficiation plant	
9	Power plants will indicate their requirement of	Not Applicable
	abandoned coal mines for ash disposal & Coal India/	
	MOC shall provide the list of abandoned mines by	
	June 2003 to CEA.	
10	Power plants will provide dry ash to the users outside	It is being Complied with.
	the premises or uninterrupted access to the users	
	within six months.	.
11	Power Plants should provide dry fly ash free of cost	Dry fly ash is being provided to the ash
	to the users	brick manufacturing units free of cost.
12	State P.W.Ds/ construction & development agencies	Not Applicable
	shall also adhere to the specifications/Schedules of	
	CPWD for ash-based products utilization MoEF will	
12	take up the matter with State Governments.	Complied
13	New plants to be accorded environmental clearance	Complied
(i)	on or after 1.04.2003 shall adopt dry fly ash	
	extraction or dry disposal system or Medium (35-	
	40%) ash concentration slurry disposal system or Lean phase with hundred percent ash waste re-	
	circulation system depending upon site specific	
	environmental situation.	
13	Existing plants shall adopt any of the systems	Implemented
(ii)	mentioned in 13(i) by December 2004	
14	Fly ash Mission shall prepare guidelines/manuals for	Noted
<u> </u>	fly ash utilization by March 2004.	
15	New plants shall promote adoption of clean coal and	Noted
1.5	clean power generation technologies	
	* Units will submit bank guarantee to respective SPCB	

HINDALCO MANAGEMENT FRAMEWORK excellence by design

ENVIRONMENT POLICY

We, at Hindalco Industries Limited, operating across the process chain from mining to semi-fabricated products in non-ferrous metals, will strive to continually improve our environmental performance for sustainable operations and responsible growth globally, by integrating sound environmental systems & practices and Pollution Prevention approach.

To achieve this, we shall:

- Continue to comply with all applicable legal and other requirements on environment.
- Continually improve environmental performance by strengthening the Environmental Management System conforming to national /international standards, including setting up and reviewing targets and measuring, monitoring and reporting their progress.
- Allocate sufficient resources such as organisational structure, technology and funds for implementation of the policy and for regular monitoring of performance.
- Adopt pollution prevention approach for all our processes; enhance material efficiency and achieve high productivity.
- Conserve key resources like electricity, coal, water, oil, and raw materials, by promoting
 efficient technologies and manufacturing process improvements, water conservation
 programmes, and efficient use of raw materials.
- Adopt energy efficient and cleaner technologies based on techno-economic viability, appropriate to the region in which we operate, and in line with our growth and diversification plans.
- Promote the principles of waste prevention, reduction, reuse, recycling and recovery to minimize waste generation and strengthen the practices for management of wastes.
- Work in partnership with regulatory authorities, relevant suppliers, contractors, distributors and logistics partners and all other stakeholders, as applicable, to understand and initiate improvement actions.
- Engage with internal and external stakeholders including key business partners such as joint venture partners, licensees and outsourcing partners and wider communities, to broaden our understanding of environmental priorities and initiate actions on key environmental challenges.
- Adapt environmental performance over life cycle as an important input to the decision-making processes in the organization.
- Raise environmental awareness at all levels of our operations, through training and effective communication, participation and consultation.
- Communicate this Policy within the Organization. Develop and follow appropriate communication system to inform other stakeholders, as applicable, about our environmental commitment and performance.
- Conduct environmental, health and safety due diligence before undergoing any mergers and acquisitions.

This policy shall be made available to all employees, suppliers, customers, community and other stakeholders, as appropriate.

ATISH PAI

MANAGING DIRECTOR

Date : 30 June 2020

HINDALCO INDUSTRIES LIMITED

POINT-WISE COMPLIANCE TO THE POINTS RAISED DURING PUBLIC HEARING OF ADITYA ALUMINIUM

SI. No.	POINTS RAISED	COMPLIANCE STATUS
1	The Project Proponent should provide employment to the locals on priority basis.	The industry has already provided employment to the locals based on the eligibility in the ongoing projects and they are committed to do so in the proposed expansion project.
2	The Industry should establish an ITI training centre to train the young people in technical field so as to enable them for getting suitable employment in the plant.	The industry has been providing opportunity for ITI studies in Polytechnic Rengali. Students are trained 2 year ITI course. Vocational training like Beautician, Mobile repairing, Micro irrigation Bike repairing, Soft Toy, Driving, Grafting, Organic Farming (Agriculture) and Tailoring has been instituted last months.
3	The Industry should carry out massive plantation in the vacant spaces of the surrounding villages, R.R colony etc. Trees which are not under the purview of the core plant area are to be protected and minimum 25% of the project area to be made green cover.	The industry has already planted 7,01,930 saplings inside the factory premises till March-2023. Also, the industry has started plantation in the vacant spaces of the surrounding and have distributed 54,130 nos of saplings to the villagers in the plant surrounding villages till March-23.
4	The Industry should inform the Public about the air pollution control measures to be adopted in the proposed plant for control of air pollution and also proactive measures to be taken by the company for control of rise in ambient temperature. Pollution measurement machines to be installed in every villages and pollution control committees to be formed to regulate the pollution.	The industry has installed ESPs, Bag filters etc to control air pollution. Greenbelt development and selecting the best environment friendly technology & equipment's for Smelter and Power plants are some of the proactive measures taken by the Company. Online ambient air quality monitoring stations are being installed inside the plant area for information on real time information on different pollutants.
5	The Project Proponent should inform the public about the peripheral developmental works to be carried out in future.	Peripheral developmental works are being carried out in consultation with the Gram Panchayat Sarpanch, villagers, opinion makers and well-wishers as per the CSR guideline. Solar Street light of 100 nos installed in 6 villages, Pipalkani Road and Bendojor Nallah construction, 7 nos of Pond Excavation, drinking water supply to 86 nos of hamlets in peak summer, 03 nos of Blood donation camps, 2 nos of Village Mandaps and 3 nos of health camps have been done
6	The industry should make necessary arrangements for provision of drinking water in the affected area.	The industry has been supplying drinking water through tankers, into the project affected villages in coordination with Sarapanchs, RWSS, BDO and Block chairman, Rengali of 7nos of Gram Panchayats in peak

		summer Drinking water suggive to 00 nee of herelate
		summer. Drinking water supply to 86 nos of hamlets and main villages also got the facility.
7	The industry should make necessary arrangement to provide round the clock doctors for better medical service in the Lapanga area.	The industry has been very actively contributing the greater causes of Health Opened up Eye Healthcare Unit at Rengali, and awareness program at all villages catering benefit to 6713 nos of beneficiaries. Conducted Health camp facilitation in coordination with CHC Kuchinda and Laida where 700 nos of got benefitted. There are 5 nos of children, Adolescent healthcare and Nutrition programs conducted in the villages. First Aid centre has facility to local areas for free treatment by reputed doctors. Provided free treatment facility to more than 3182 of local people with free treatment, medicine, and consultation.
8	The Industry should make alternate arrangement to source water instead of deep bore wells in & around the project area.	The industry is getting water from the Hirakud Reservoir meets all the requirements of the industry.
9	The industry should give financial support to grow small scale industries in the localities.	The industry is supporting farmers to grow the livelihood of the villagers as per their CSR policy. However, many training programs have been conducted for self-employment SHGs such as Spice units, Oil Processing units and paper cup making units, Vegetable farming, Phenol making, Hand wash making, Duckery, Egg Production, Tailoring, avenue Plantation & various social/health awareness programs, monthly saving programs, to the 200 nos of SHGs comprising of 2125 nos of women and 7 Farmers Group adopted by Industry. CSR has mobilised 53.39Lakh for SHG entrepreneurship program.
10	The industry should pay financial support for each local traditional festival to villagers. Cremation ground should be provided in each village. Alternate Football ground to be provided to Bomaloi villagers as the company is occupying the existing football ground.	We are already providing financial support for each local Traditional festivals like Astaprahari, Pratistha diwas, and sports like Football tournament and Cricket tournament with the locals. We conducted women sports, school sports football tournaments and Cricket tournaments at different villages every year as a part of promotion of Rural sports. The nearby football grounds are maintained every year by industry.
11	The industry should provide community toilets at the surrounding affected villages. Special care to be taken for physical handicapped persons in the affected areas	We have already provided Toilets to each house in village Pitapali & community toilets in village Bomaloi & Tileimal. Physically challenged people are continuously supported by the company. Gayatri Sahu one blind graduate working with CSR team since three years and all programs are conducted regarding physically challenged persons in Block level every year.

Expense incurred under	Enterprise S	Social Commitment	till March- 2023:

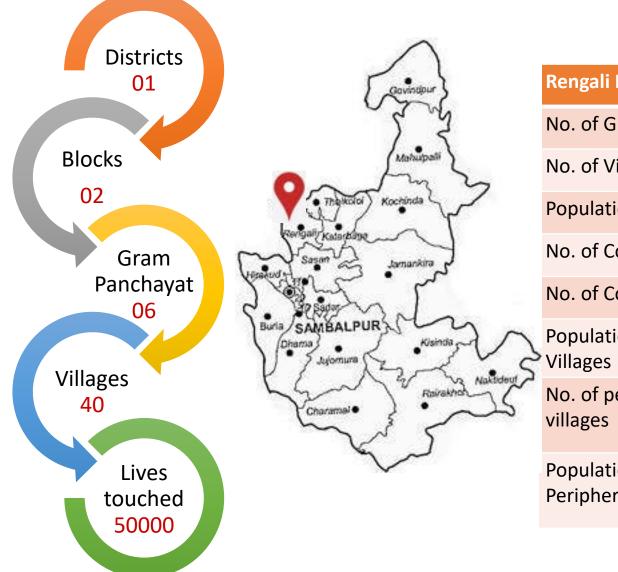
SI. Nos.	Description	Amount Spent (In Crores)	Remarks
1	G D Birla Medical Research and Education Foundation for School at Kurki	20.25	
2	Land taken on Lease from IDCO for School at Kurki	9.10	
3	Sponsorship of Kalinga Lancers in Indian Hockey league Fy15, Fy16 & Fy17	4.50	
4	CSR expenses in & around Aditya Aluminium including Hirakud areas in FY17	7.61	
5	Sponsorship for Asian Athletic Championship 2017	0.50	
6	CSR expenses in & around Aditya Aluminium including Hirakud areas during April 18 to March 19	4.65	
7	CSR expenses in & around Aditya Aluminium including Hirakud areas during April 2019 to March 2020	0.62	
8	CSR expenses in & around Aditya Aluminium including Hirakud areas during April 2020 to Mar 2021	5.31	
9	CSR expenses in & around Aditya Aluminium including Hirakud areas during April 2021 to Mar 2022	8.81	
10	CSR expenses in Education (EDU)	0.33	
11	CSR expenses in in & around in Environment and sustainable Livelhood	0.57	
12	CSR expenses in in & around in Healthcare in Hirakud areas also	1.06	
13	CSR expenses in in & around in social causes	0.40	
14	CSR expenses in in & around in Rural & Development projects	0.26	
15	Aditya Expenses from Oct-22 to March-23	0.76	
16	Hirakud power and Smelter Expenses from Oct-22 to Mar-23	0.87	
	Total Expense	65.61	

<u>Aditya Aluminium intends to continue with the following activities under Enterprise</u> <u>Social Commitment like</u>: -

- a) Infrastructure development in villages around the Project area.
- b) Drinking Water supply facilities.
- c) Green cover development in collaboration with State Govt. departments.
- d) Football playground or mini stadium in Bomaloi village, as stated in the minutes of public consultation held before environmental clearance.
- e) Free distribution of schoolbooks & bags to children.
- f) Constructing Toilets for girls in schools/villages.
- g) Scholarship to poor, talented students in the schools.
- h) Subsidy for Ash supply (Rs 150/- per Tonne at present) to local Ash brick manufacturers, as per OSPCB/MOEF&CC Notifications.

- i) Providing Ash brick manufacturing machines to unemployed youth in the villages and one time assistance to establish the Unit.
- j) Contributing to the development of Railway infrastructures in consultation with the railway authorities (e.g., ROB).
- k) Implementation of skill development programmes and providing necessary infrastructure to existing ITI, Polytechnic colleges.
- I) Development of Schools in the State of Odisha.

The remaining 5% amount for Phase-1 capacity (i.e., Smelter of 0.38 MTPA and CPP of 900 MW) is proposed to be spent over a period of 39 years from the year 2017.


Aditya Aluminium, Lapanga Hindalco Industries Limited

> Q3—Q4 FY 2022-23 OCT – MAR

OUR PRESENCE

Block : Rengāli Geographical Location: Sambalpur, Orissa, India, Asia Geographical Coordinates: 21° 38' 0" North, 84° 3' 0" East

Rengali Block	
No. of GPs	16
No. of Villages	69
Population	96000
No. of Core GPs	6
No. of Core Villages	14
Population of Core Villages	15000
No. of periphery villages	26
Population of Periphery villages	35000

GRAM PANCHAYAT PROFILING

Lapanga – 9 villages
Bomoloi – 11 villages
Ghichamura – 6 villages
Jangala – 5 villages
Katarbaga – 5 villages
Kilasama – 2 villages
Nishanbanga – 1 village
Rengali – 1 village

OUR PARTNERS

NGOs/TRUSTS

- Vision Foundation, Sambalpur
- SBISRET Burla
- Odisha Rural Development & Marketing Society (ORMAS)
- SATTVA Media and Consultancy Pvt Ltd
- Action for Social Advancement (ASA)- Bhopal
- Swadheen Ekta Sangathan

INSTITUTIONS/ CONSULTANTS-

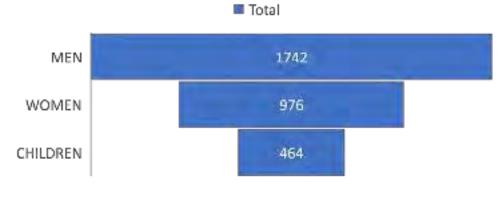
- Government Polytechnic College Rengali
- INGUZ Beauty and Healthcare Sambalpur
- Aditya Birla Skill School

GOVERNMENT ORGANISATIONS-

- Odisha Livelihood Mission (OLM)
- Integrated Child Development Services (ICDS)
- National Health Mission (NHM)
- District and Block Agriculture & Horticulture
- District and Block Animal Husbandry
- District Industries Centre (DIC)
- District Education Office
- Zila Panchayat
- Krishi Vigyan Kendra

ESC Expenditure FY 2022-23

ESC EXPENSES (INR IN LAKHS)						
FOCUS AREA	2022-23					
HEALTH	6029874					
EDUCATION	684681					
LIVELIHOOD	7226623					
INFRASTRUCTURE	2308870					
SOCIAL CHANGE	4849132					
STUDY	260000					
SALARY	20.45					
	2,13,59,200.45					


PROJECT AAYUSH: HEALTH FOR ALL FIRST AID CENTRE

	Consolidated Report of First Aid Centre 2022-23													
KPIs	April	May	June	July	August	Sept	October	November	December	January	February	Marc h	Total	
Patients Footfall	154	198	248	342	238	254	216	260	320	262	317	373	3182	
Village covered	23	26	20	46	11	15	53	26	31	30	34	29	344	
Total Test Conducted	78	119	135	111	70	40	54	29	15	208	346	28	1233	
Medicine Cost	2573	3019	4852	12884	11114	13262	11652	15255	14869	66152	121190	24392. 208	301214.208	

Village List with Max Patient footfall					
SL No	SL No Name of Village				
1	Lapanga				
2	Malyatikra				
3	Khadiapali				
4	Sardhaapali				
5	Bomaloi				

FAC Demographic Data 2022-23

Vision Center Pics

Vision Centre OPD

Vision Centre Cataract Patients

Vision Centre IEC

Vision Centre Awareness

Vision Centre Outreach Patients

SWASTHYA VAHINI- MOBILE TELEMEDICINE

Vision

 To provide primary healthcare at doorstep in the villages with state of art technology and real time doctor consultation

Scope

• 24 villages in 5 Gram Panchayat

Coverage

10000 patients per annum

Investment

• Rs. 24.92 lakhs

Project Duration

3 Years

Objective

- Primary Healthcare at doorstep
- MBBS Doctor Consultation through Telemedicine.
- Door to door Preventive Health Check-up
- Testing of Blood sugar, haemoglobin level, ECG &other 26 test.
- Free doctor consultation and medicines as prescribed
- Awareness session & Health awareness
- Unique Id generation of every beneficiaries.

OPD at doorstep

Facilities

- 3 lead and 6 lead ECG
- Free and paid medicine
- Free Pathology through Referrals to Aditya
- Free doctor consultation through Aditya doctors and logistic support for referrals

Output

- Total Footfall avail the service- 1450
- Doctor Consultation 83
- Total Hb test- 8
- Total HGT test 62
- Health Camps 5 benefitting 197
- Awareness- 4 camps, 298 **Participants**
- Ludhapalli : 20 Households visited and 12 people tested
- Pondoloi: 32 Households visited and 23 people tested

Awareness on deworming

ADITYA BIRLA

HINDALCO

PROJECT SAMADHAAN- ADOLESCENT HEALTHCARE

PROJECT SAMADHAAN- ADOLESCENT HEALTHCARE

Goal

Awareness on menstrual hygiene and sexual wellbeing among adolescents girls

Objective

- To provide solution for safe disposal of sanitary napkins
- To create awareness about good menstrual hygiene practices
- To break Taboo and superstitions around menstrual hygiene among adolescents
- To increase girl student attendance in schools
- To decrease girl student drop in high school

Activities

- Installation of Incinerators
- Formation of Samadhaan Committee
- Conduct regular awareness session
- Discussion in the Committee meeting
- Distribution of Sanitary pad (One Time)

Coverage / Reach

- 10 Schools covered
- 1 PHC covered / 1500 beneficiaries
- 26 awareness sessions 1534 beneficiaries

WORLD SIGHT DAY

- 50 Free Cataract Surgeries
- **859** cataract surgeries conducted till date
- MS. Sandhyarani Kisan (Naib Sarapanch Rengali), Ms. Sibani Sunani (GRS Rengali).
 Mr. Rajib Mishra(Social Activist Swadhin Ekta Sanghathan Rengali attended event

Blood Donation Camp – 16th Dec

260 units collected

•

- Employees and families participated
- Largest collection in one day in FY 2022
- Aditya provided appreciation certificate

HEALTH CAMP - RENGALI

- 150 People availed services
- Support by Block administration and NHM Laida
- Government and Aditya Doctors rendered services

World AIDS Day – 1st Dec

- Awareness camp on world Aids at Jangla
- We are partners to OSACS

National Day for Disabled People – 3rd Dec

- Supported the government program
- More than 50 disabled people supported
- Prizes given to participants
- Hearing aid given by Government
- Eye Camp for disabled people and family

ରିଷା ସାଧନ କେନ୍ଦ୍ର

Project Samadhaan-Adolescent Health Awareness Camp

- Adolescent health camp in Golamal school
- More than 50 students attended
- Class IX and X

TB Awareness Camp

 Supporting government in TB elimination campaign

Family Planning Operation Camp

- Government organized camp
- Aditya supported women and ASHA ANM in logistics and mobilization
- 10 women from periphery villages among 39 who were operated in Rengali PHC.

GLOBAL HAND WASHING DAY

- 15th October
- 15 schools and SHG members participated
- Event was organized in UGME School Dhorropani

SUPOSHAN – NUTRI GARDEN

- 6 Model Anganwadis
- Benefitting 180 children in age group 3-6 years
- Shramdaan by Community
- Aditya facilitates mobilization, seed, fencing, awareness, monitoring

ron Deficiency Day observed at Ghichamura TRON 82 high School DEFICIENCY LABOR & HOP Awareness session conducted More than 30 students with their parents attended

SUPOSHAN

Nutri Garden model preparatio n at Binjipalli

TB Elímination Programme 2023

Total TB Awareness session conducted – 09 Total Participant – 120 Meeting with PHC-02 Meeting with District-02 Awareness at Golmaal UGHS- 42. Cyclothon & Awareness session at NRHS – 65 Cyclothon & Awareness session at Rengali PHC- 70

TB ELIMINATION PROGRAMME

WORLD TB DAY PROGRAMM (in School) WORLD TB DAY PROGRAMM (in Village)

CYCLOTHON at RENGALI

ADITYA BIRLA

SADHANA – Nurturing Minds

School Bag Distribution

No of schools covered: 03

No of children benefitted: 200

Outcome:

- Promotes Solidarity and uniformity sans socio-economic status
- Improvement in attendance.
- Motivation towards Learning in School
- Safety of education material and ease in commutation to school.

Children's Day

School: 01

Participants: 250

Outcomes:

- Awareness on Countries Leader.
- Promotion of Competitive spirit.
- Platform to promote cultural talents
- Prizes to motivate participation and performance

Independence Day

School covered: 18

AWCs Covered: 9

Participants : 3150

Activities:

- Central level Flag hosting
- Competitions
- Patriotic song
- March fast(Gram Parikrama)
- Distribution of prizes & sweets.

SIKSHA – Learning to Lead

BLOCK LEVEL SCIENCE EXHIBITION

No of schools involved: 10 No of children participated : 250

No of guide teachers: 33

Outcome:

- Interest in innovation & new experiment.
- Development of scientific temperament
- Increase knowledge through Theme based module preparation & demonstration
- Student exposure and personality development through science seminar & exhibition.

WORLD YOGA DAY

Venue: Lapanga High School

No of children participated: 85

No of Teachers involved: 08

Outcome

- Awareness on Yoga benefits
- Learning through Practice of Yogasans
- Planned for Yoga classes at school level weekly once

SCHOOL ANNUAL FUNCTIONS 2023

- Saraswati Sishu Mandir Katarbaga
- Total no of Children involved: 250
- Bomaloi UP School & Sevashram Bomaloi
- Total Participants:200
- Lapanga High School
- Total participants : 164

SIKSHA – Learning to Lead

Under 19 District Level Football Tournament 2022

- Schools: 10
- Students: 150
- Finalist: Rengali vs Kuchinda
- Champion, Kuchinda bagged the award

John Ambulance Painting Competition 2023

- Schools: 03
- Students: 35
- No of paintings: 29
- High School, Lapanga
- UGME School: Tiliemal
- Dhorropani High School

Distribution of Exam Kit

Schools covered: 09

Students benefited: 473

Major outcome:

- Connect of Company with Students
- Positive messaging to reduce anxiety and stress
- Ensure uniformity and availability of resource
- Created positive brand image

International Literacy Day 2022

District Level Under 17 Football Tournament

- Organized by District Sports Association Sambalpur at Veer Sai Stadium
- Shri Rohit Pujari Hon. Minister inaugurated the event
- Aditya supported Rengali Boys and Girls team. The team won the first match but lost semi final match to Kuchinda
- Total 15 teams each participated in the Tournament

School Annual Sports – Saraswati Sishu Vidya Mandir- Lapanga

School Annual Sports Government High School Lapanga

Glimpses of Project SADHANA- Support to Schools

John Ambulance sponsored Painting Competition 2023

No of school Involved: 03 No of Children participated: 35 No of paintings finalized: 29

High School, Lapanga UGME School: Tileimal Dhorrapani High School

Annual Function 2023

Saraswati Sishu Mandir Katarbaga Total no of Children involved: 250

Annual Function 2023 Bomaloi UP School & Sevashram Bomaloi Total Participants:200

PROJECT MO SCHOOL ABHIYAN

A Government of **Odisha** Initiative under **School** & Mass Education Department

- Objective revamping school education by promoting volunteerism and collaboration through an innovative citizen-government partnership
- Coverage Support to 80 High Schools under 5T in Odisha (Sambalpur Cluster
- Investment INR 300 Lakhs
- Fund Leverage 600 Lakhs (Govt contribution 1:2)
- SDGs 4 Quality Education
- Outcome Plugged in infrastructure gaps in 80 High Schools

Schools equipped with smart class, e-library, Computer lab, garden, Washrooms, Drinking water

Increase in Student Attendance and improved performance

PROJECT KILKARI – Support to Anganwadi

- TLM Support to Anganwadi 38
- Model Anganwadi : 2
- No of children involved: 1500

EDUCATION INFRASTRUCTURE

Before Painting at Ludhapali AWC

- 2 Anganwadi Centres in R&R colony
- BALA painting on Exterior walls
- Attract children to Anganwadi
- 55 Children benefitted

Before Painting at Pandloi AWC

After Painting at Ludhapali AWC

PROJECT SINCHAI

SAMRIDHI : Promising Prosperity

Exposure Visit to Krishak Mela

Status of Project Black Rice

- No of Farmers involved: 55
- No of farmers completed harvesting: 54
- No of acre cultivated: 5.2 acres.
- Total Paddy Production: 37 quintal.
- No of farmers preserved seed: 44
- Seed preserved: 3quintal
- Total rice after processing : 18 Quintal

National farmer's Day 2022 observed in Dhorropani Attended by 300+ farmers Government officials from horticulture department KGVK attended along with Senior Leadership of Aditya

PROJECT SAKSHAM-HOT CHIPS EXPOSURE VISIT

- SHG EXPOSURE VISIT TO HOT CHIPS
- JAI JAGANNATH SHG
- 6 MEMBERS OF SHG VISITED
- VILLAGE: DHORROPANI

Government Schemes Facilitation

- 50 women attended
- PMJJY, PM JSY, Job Card, Pisciculture etc

NEWSCLIPPINGS

ତିଲେଇମାଲ-ଡେରବା ରାଷା ନିର୍ମାଣ ଶୁଭାରୟ

ରାୟ ସେହିବା ନୂଳକ 🌄 0/0 0/16 good EVER (RELIGION युष्ट सुबंध दासत तन्त्रव, UNDERED IN LINE URP BEURIEL Research 14. 600 1004 (DEVER DADA SEI01, COMPLE GDCB 00441 (0490 obe anaceoracite φίδα, εκκατός τηνα 1291 BARD BARD BE & BO DOCT 8 028 0000 Biar 8 9 cm.

eada, fre(ag); erege agree for barroka for gosig fer I arre offe moor mendran on braanse coestee (o, the goe daw) which gow adjust cear

THENTED BE EXTENDED FORM OF nega congriter manual mandare vehicles non reg

REA ADAM COM GARDIN

iai (600 ଆବତ୍ୟ ଆଲୁମିନିୟମ ପକ୍ଷରୁ ମହିଳା ଦିବସ

DOMESTIC DISCOURCE, TOTOTEST Excent advent those

ଆବିତ୍ୟ ଆଲୁମିନିୟମ ପକ୍ଷରୁ ବିଶ୍ୱ ହାତ ଧୂଆ ବିବସ

(D05) (P07) (200) LOOPE USING ME HER DOONE MAD ge and ge more hereon. On The Residence of the state o 1000 TURN (UNIDER) - FE VEDOR 60000-00

DO DON council inform NON BOWE (holes (Children) General and Second 6909 102-02 VEHICLE UP DURCH undraham unter

the bouce, survive or me vol (millioner) (and couples) CAVAD EXPERIT OF D singe Dei ize (nobre e central more be enter The Mark and

THE REPORT I NUMBER (RE): 2001 24/1411 0

කිං ගට්මගත ගුඩුම තෝමාත් ପଳି ଓ ନୟର ନୟନ ଯେଗଦନ NUMBER OF STREET, STRE

ର ହେଇଥି । ସାଙ୍କଳି କୃବତ୍ର ଯଥ କଥା ନାଳ ଅପ୍ଟରିତ କରିହାର 2 699 0008 0099 0080 BORDENS 1 10 2010000 බාගත් බොහා වෙම කරන් EADE EXCERNE CENT, GOIGEN OUR DEVON LIQUER DOTA,

ගැන්වේ දෙනෙ වන්ව ඉත්තර ඉත්තර ସେ, ସଥ୍ୟ ନିର୍ବତାଶ ଏହି ସମ୍ଭଳିତ ଅପେଳଦ බ -හාධ පළත් විධානයා බිහාස පාලවිය ପ୍ରକାର ଅନ୍ୟାଳ । ସମ୍ବାଧି ଲାଇନିକ କଳ କୃତ୍ୟା

සිත්තයේ අතර බොහෝ සුපා කිරීමාවේ කිරී ସମ୍ପାଦର ଏକିଶେଷ ଆଲୋଜନ କରିଥିଲେ । ଜନସାହାର ଏହା କରାବରରାଳୀ ଶୁହ ମହନ୍ତ 'ගමනේග' ගමනෙමට මෙගේමෙන | 'මඩග

ଆଦିତ୍ୟ ଆଲୁମିନିୟମ ପକ୍ଷରୁ ବିଶ୍ୱ ଯକ୍ଷା ଦିବସ

ଏହରର କରିଅନେ । ଶ୍ରହା କରାଏଣ, ଶଳିଗଳିକ ଇତ୍ୱାସନ କିଲାଗସ ମୁଖ୍ୟଙ୍କ ପ୍ରତ୍ୟାଶ ନର୍ଭବଧାନରେ ଲଗାରମ ଅନ୍ତ୍ରିକ ହୋଇଥିବା ।

Automas

with talk of the late

contract, plants

NAME AND ADDRESS.

No 11 11 11 11

ଅବିଦା ଅଲ୍ଟିରିଆନ, କରଣା ଅଛନ୍ ପ୍ରକଳ୍ପ ଭୂଳା କଳିହାର ଇତ୍ଯାହନ the is which it setting on 1000 100 10

Odisha Bhaskar: 27" Feb 23

tile W. F. Dw'M. Mark Street, state 1978 strike wearder ow in other addet, has given which show, symmet were give again the fact and

strate global sector of an and store on book of state on other states and the state of a first a press dense table. Allere have aller have, aller earliers, our pages, som lingtes at the de uppens, out is of the to be and that are no growing which you want or the set therein the real and the they over hitten follows Gentry, Rollal de Ander In Universit Compsiline " statuage multipli stress units for a stressed at the bigstonic officient state with the state of the state of the do altrig sectors mand, no his on, who examine it for more risers rape. the line of the size of some an and and third only into the thread-on fractional state of the south on a state of the the report and of Stationer and a station was presented as divided in the presentation of at and the million of gains, that are in gate of passings makes in this, an inglury over one

ଆଦିତ୍ୟ ଆଲୁମିନିୟମରେ ଜାତୀୟ ପୃଷ୍କିକର ସସ୍ଥାହ

topic m/(DQ) depays departed poor stream Chick HARD OCCUPY HERE ADD HERE DO NOT THE DO NOT I BY COD DUCT THE OCCUPIES DUILS (THUS HER COV COOL I NOOD & IT IS WHETHER TO AND A THOUGH AND A SHORE AND A SHOR of the "able common said case" and write start would be a human spar sold upon allow a beauty runn ICALS SOURCE BOOK BOOK SHORE THEY AN A REAL PROPERTY AND A REAL PR I DODG ON MORE DON'S PRIME PERSON ADORED IN Contract and a property of the party of the second states of IC the Gast was good to be all the service as here to be the

ପଧାନପାଲି ମା ସମକେଶ୍ୱରୀ ମହିର ପ୍ରତିଶ୍ଚା ଲୟକ

ଆବିତ୍ୟ ଆଲୁମିନିୟମ ପକ୍ଷରୁ ପ୍ରସାଦ ବଣ୍ଢନ

(BC) (B, 9) (9) (2) (2) (3) (3) DECIFICAEI GUICE/ROL TIORY TRATERT 699966 2992 01021 007921510 90(0)0294 କଳାରମା 122,000

ରେଙ୍କରି, ୬୬୩ (ଅଗ୍ର): ରେଙ୍କରି କୃକ୍ କରଙ୍କ ଅବିତ୍ୟ ଅଲ୍ଲମିରିକମ ପ୍ରଥମ୍ଲ ଅଲକିନାୟ ମହିଳ ଦିବସ ହମାଚାହ ଅନିକା କୁତ ନାଇସରେ ପାଳଟ କରାଗଇଛି । ପୁଳନ୍ତ ସଖନ ମାଧମରେ ୬୦୦ ବଙ୍କ ଅହାରକ ଯୋଷାର ଅନ୍ତିର ସବସ୍ୟ ନଥା

୨୦୦ଟି ଶ୍ୱୟଂ ସହାୟକ ଗୋଷାଙ୍କ ଯୋଗଦାନ

ଇଦେଏଙ୍ଗାବାଟେ ଅଂଶ୍ୱେହଣ କରିଥିଲେ । ସନଶାମ ପରିକ, ସି.ପି.ପି ମୁଖ୍ୟ, କ. ବିବେଳାନକ ମିଶ୍ର, କରସକାରଳି ଖ ମାଳକ ରମ୍ବଳ ମୁଖ୍ୟ, କମକ ପରେଣ, ମୁଖ୍ୟ ପ୍ରେଲମର ଶ୍ରାଷ, ଗୀତାଞ୍ଚଳି ମହାଯାନ୍ତ, କିଲ୍ଲା ସମାନ ମଙ୍କନ ଅଧିକାରୀ, ପୁକିସ୍ପିତା

ପଟରାରକ, ନିର୍ବା ଶିଶ୍ୱ କୁରଖା ଅଧିକାରୀ, ପାନକ ଦିଇଗାଳନ କାଟ, ଉକସଞ୍ଚ, କାଙ୍କଳା, ସରସଞ୍ଚ, ତହ ଜ". ଗଳା ଦେଳେରା ସୁମୁଷ ଯୋଗଦାନ କରି කළම්බෙත්, සිවාහලා බ මාධ්රාධිමා මහතා එක් କରିଥିଲେ । କଳ' ଶଢାସକ ଗୋଷୀ ରତ୍ୟାହାନ ପାଇନଗିକ ଲୋକ ନତା ଗାର ପରିଚେଞ୍ଚଣ କରଣ କାମନି ରତାଫରୁ ୬୦୦ କ୍ରନ୍ମ ଯହାଲକ ଗୋମ୍ଲାମନକ୍ କରିକା ପାଇଁ ଅକର୍ଷଣାର ଅର୍ଥ ପୋଜି ବୟନ କରା ଶେହା କାସାଧାର, ପାରିପାନ୍ତିକ ଶତ୍ୟାହ ଦିଭାଙ୍ଗର สถายอาสิต กอกว่ามี กล่างสายสายอาสิต

INTERNAL COMMUNICATION- CSR NEWSLETTER

LAUNCH OF PROJECT

1000 CATARACT SURGERIES

WPROJECT VISION CENTRE

Global Hand Washing Day

Formy your on on it link pre-lineary tiltular bland whething line

The importance of this imply has adhed to be the

senses high ordered selling used repetite is put to

UTKARSH **CSR NEWSLETTER**

Addive Alexitation Lapenge

LIMANAGE 2022

soliday for particular language

Personal Per

November, 2022 / Vol XII

UTKARSH

CSR NEWSLETTER November 2022

PAGE 01

sings, by prove of and the ground expression in

Working towards better tomorrow

National Farmer's Day Facting accounty to building of Same

prolington: Suttonal Facture's Day is calaborried many past in 23 Escandar to contrarante. Brit Ampleyers of Line Forta Malow Onullary Owned Singli and Asiled Non. at knowing lightly and descend he big far faither and have

DITYA ALUMINIUM LAFANGA

DECEMBER 2022

WITHIN AS FRANKING MICH. SHI

UTKARSH

Adapt wider its bright belowing it repairing mare than \$100 formare in A them panahayet in Regal Stark. Do formers they as moved resard performs pecale representation age mput provides and farmers by attend tioners must at Discouperi. The acard acu where and its more into that have an . The second test shear supressing grantable assuring farmers so heat uppr procedures and performers and manting holings with market ployers.

uit fired Speaks Eleri Saminer Narak Cold Nead as the second is grant property as trade states when some such that

and the monthly the distance and PRESS, STOTIC, SECRETER AND state or ease of an ease are security and a second s NAME ADDRESS OF TAXABLE ADDRESS OF TAXABLE

tion an animation of a state. BREFERRICH IN STREETINGS ARE COMPLEMENT OF CAME OF A PERSON NAMED AND DESCRIPTION AND DESCRIPTION. PROPERTY OF STREET, STREET, STREET, STR. -

SWASTHYA VAHINI

AWARDS & ACCOLADES

- Amity CSR Award 2022 for Project Saksham by Amity Business School Pune
- Golden Bird CSR Platinum Award 2022 for Project Vision Centre under Community Development Category by Golden Bird National Award 2022
- Aditya Aluminium Lapanga has bagged Corporate Governance and Sustainability Vision Award 2023 by Indian Chamber of Commerce on 24th February 2023.
- ABG Planet Award For Water Positivity To Hindalco Industries Ltd
- Fame Excellence Platinum Award 2021 for Excellence in Best Practices under Women Empowerment Project SAKSHAM

ou)

66

Giving and caring for the underprivileged is embedded in our Group's DNA.

- -

- MRS. RAJASHREE BIRLA

isiontek Consultancy Services Pvt. I (Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Infrastructure Enginering

 Water Resource Management • Environmental & Social Study

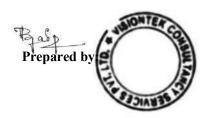
• Surface & Sub-Surface Investigation • Quality Control & Project Management • Renewable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Ref: VCSPL/22/R-4152

Date: 05.12.2022


METEOROLOGICAL MONITORING REPORT NOVEMBER-2022

:

- 1. Name of Industry
- 2. Data Collected By
- M/s Hindalco Industries Limited
- : Unit-Aditya Aluminium, Lapanga, Sambalpur

Automatic Weather	Monitoring Station
-------------------	---------------------------

Data	Tempera	ature(⁰ C)	Relative Hu	umidity (%)	Wind Spe	ed Km/h	Wind	Rain fall
Date	Max	Min	Max	Min	Max	Min	Direction	(mm)
01.11.2022	30.5	18.5	67.0	40.0	2.2	0.3	WNW	0
02.11.2022	28.3	21.4	63.0	47.0	1.9	0.0	WSW	0
03.11.2022	31.8	20.2	69.0	45.0	2.2	0.3	WNW	0
04.11.2022	32.8	19.9	71.0	42.0	1.7	0.3	SSW	0
05.11.2022	31.3	19.7	69.0	42.0	1.7	0.3	WSW	0
06.11.2022	31.1	20.1	69.0	45.0	1.9	0.6	NNE	0
07.11.2022	31.4	20.3	69.0	45.0	1.7	0.6	WSW	0
08.11.2022	31.5	21.5	69.0	47.0	1.7	0.3	NNE	0
09.11.2022	31.6	19.5	69.0	42.0	1.9	0.6	WSW	0
10.11.2022	31.8	19.2	69.0	42.0	1.9	1.4	NNW	0
11.11.2022	31.2	18.8	70.0	42.0	2.5	1.1	WSW	0
12.11.2022	30.1	17.4	67.0	40.0	2.8	0.6	WNW	0
13.11.2022	30.7	16.3	67.0	40.0	2.2	0.3	WSW	0
14.11.2022	30.1	16.8	67.0	36.0	1.9	0.3	WSW	0
15.11.2022	29.6	17.1	65.0	36.0	2.2	0.8	SSW	0
16.11.2022	30.2	17.5	67.0	38.0	1.7	0.0	WNW	0
17.11.2022	29.8	17.4	65.0	38.0	1.7	0.6	WNW	0
18.11.2022	29.8	17.6	65.0	38.0	4.2	1.4	WNW	0
19.11.2022	28.2	15.1	63.0	38.0	3.9	1.7	WNW	0
20.11.2022	29.7	15.3	65.0	33.0	3.3	2.2	WNW	0
21.11.2022	28.2	16.2	63.0	33.0	2.5	0.8	WSW	0
22.11.2022	28.3	16.8	63.0	36.0	2.8	1.4	WSW	0
23.11.2022	29.8	15.4	65.0	36.0	2.2	0.3	WNW	0
24.11.2022	29.2	14.1	65.0	33.0	2.2	1.1	WSW	0
25.11.2022	27.1	14.6	60.0	31.0	1.7	0.8	SSW	0
26.11.2022	26.9	15.1	58.0	33.0	1.4	0.6	SSW	0
27.11.2022	28.7	14.8	63.0	31.0	1.7	0.3	SSW	0
28.11.2022	29.2	15.4	65.0	33.0	1.4	0.6	SSW	0
29.11.2022	30.1	15.2	67.0	33.0	1.7	0.6	NNW	0
30.11.2022	30.4	15.1	67.0	33.0	1.7	1.1	NNW	0
AVERAGE	30.0	17.4	66.0	38.3	2.1	0.7	0.0	0.0

isiontek Consultancy Services Pvt. I (Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Infrastructure Enginering

Water Resource Management

• Environmental & Social Study

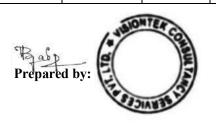
• Surface & Sub-Surface Investigation • Quality Control & Project Management • Renewable Energy

:

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Ref: VCSPL/22/R-4153


Date: 06.02.2023

METEOROLOGICAL MONITORING REPORT JANUARY-2023

- 3. Name of Industry
- 4. Data Collected By
- M/s Hindalco Industries Limited
- Unit-Aditya Aluminium, Lapanga, Sambalpur :

Autom	atic Weather M	Ionitoring Station
Relative H	umidity (%)	Wind Speed Km/h

Data	Date Temperature(⁰ C)		Relative H	umidity (%)	Wind Sp	eed Km/h	Wind	Rain fall
Date	Max	Min	Max	Min	Max	Min	Direction	(mm)
01.01.2023	30.2	15.8	67.0	43.0	1.7	1.1	WNW	0
02.01.2023	29.6	15.5	65.0	43.0	2.8	0.8	NNW	0
03.01.2023	28.9	16.1	63.0	36.0	3.6	0.6	NNW	0
04.01.2023	29.7	15.6	65.0	43.0	2.8	0.6	WSW	0
05.01.2023	30.5	15.7	67.0	43.0	2.8	1.4	NNW	0
06.01.2023	29.1	14.2	65.0	32.0	3.0	0.8	WNW	0
07.01.2023	27.3	15.6	60.0	23.0	2.2	0.8	WNW	0
08.01.2023	27.5	14.2	60.0	27.0	2.2	1.1	WSW	0
09.01.2023	28.6	13.5	63.0	27.0	2.2	0.8	WSW	0
10.01.2023	28.4	14.7	63.0	27.0	2.5	0.3	SSW	0
11.01.2023	28.9	15.6	63.0	27.0	1.4	0.3	SSW	0
12.01.2023	30.1	14.9	67.0	29.0	1.7	0.6	SSW	0
13.01.2023	30.3	15.2	67.0	43.0	1.7	0.6	SSW	0
14.01.2023	30.5	15.5	67.0	43.0	2.5	0.8	WSW	0
15.01.2023	29.7	14.8	65.0	32.0	3.3	0.6	WSW	0
16.01.2023	29.3	14.1	65.0	32.0	3.0	0.3	WNW	0
17.01.2023	30.1	15.6	67.0	43.0	2.8	0.8	NNW	0
18.01.2023	31.5	16.2	69.0	36.0	3.0	1.4	NNW	0
19.01.2023	30.4	15.7	67.0	43.0	3.0	0.3	WNW	0
20.01.2023	30.2	16.1	71.0	36.0	3.0	1.4	WNW	0
21.01.2023	32.8	16.9	71.0	36.0	2.8	0.0	SSW	0
22.01.2023	32.6	16.4	71.0	36.0	3.3	0.8	WSW	0
23.01.2023	32.4	15.2	73.0	43.0	3.0	0.3	WSW	0
24.01.2023	33.2	16.1	76.0	36.0	3.3	1.1	WSW	0
25.01.2023	34.1	17.6	73.0	38.0	2.8	1.4	SSW	0
26.01.2023	33.6	17.7	76.0	38.0	2.5	0.8	SSW	0
27.01.2023	34.2	18.2	73.0	40.0	2.8	0.8	SSW	0
28.01.2023	33.4	17.9	73.0	38.0	2.5	1.1	NNW	0
29.01.2023	34.2	17.2	76.0	38.0	2.5	1.4	WNW	0
30.01.2023	33.1	18.4	73.0	40.0	2.8	1.1	NNW	0
31.01.2023	32.6	18.3	71.0	40.0	2.3	0.6	SSW	0
AVERAGE	30.9	16.0	68.1	36.5	2.6	0.8	0.0	0.0
		1						I

isiontek Consultancy Services Pvt. I

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Infrastructure Enginering

Water Resource Management

Environmental & Social Study

• Surface & Sub-Surface Investigation Quality Control & Project Management • Renewable Energy

:

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Ref: VCSPL/22/R-4154

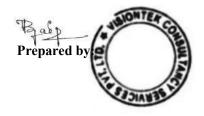
3.

Date: 02.01.2023

AMBIENT AIR QUALITY MONITORING REPORT (OCT-2022 TO DEC-2022)

- 1. Name of Industry
- M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga : Monitoring Station No.- AAQMS-1 : Gumkarma
- 2. **Sampling Location**

RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler :


4. Sample collected by

Monitoring Instruments

: VCSPL representative

	PARAMETERS												
Date	PM ₁₀	PM2.5	SO ₂	NOx	O3	CO	NH ₃	C ₆ H ₆	BaP	Ni	Pb	As	F
	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(mg/m ³)	(µg/m ³)	(µg/m ³)	(ng/m ³)	(ng/m ³)	(µg/m ³)	(ng/m ³)	(µg/m ³)
03.10.2022	56.4	30.6	14.8	19.3	< 4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
06.10.2022	53.2	29.8	15.1	19.8	<4.0	0.24	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
10.10.2022	50.8	28.7	15.9	18.6	<4.0	0.25	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
13.10.2022	53.4	29.4	16.1	19.2	<4.0	0.29	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
17.10.2022	55.9	31.2	16.2	18.9	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
20.10.2022	58.7	33.5	17.4	18.5	<4.0	0.25	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
24.10.2022	56.4	31.6	17.1	17.9	<4.0	0.21	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
27.10.2022	62.1	32.6	17.5	18.6	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
31.10.2022	59.8	31.7	18.4	18.7	<4.0	0.25	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
03.11.2022	58.4	30.8	18.7	19.6	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
07.11.2022	64.1	33.5	18.9	19.5	<4.0.	0.28	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
10.11.2022	70.4	39.5	17.9	20.1	<4.0	0.29	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
14.11.2022	75.1	40.7	18.5	19.8	<4.0	0.24	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
17.11.2022	74.2	40.6	17.3	18.9	<4.0	0.26	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
21.11.2022	76.9	42.5	17.1	19.1	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
24.11.2022	73.1	39.8	16.5	19.5	<4.0	0.25	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
28.11.2022	68.5	38.5	15.9	19.4	<4.0	0.24	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
30.11.2022	60.1	30.4	16.4	18.9	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
01.12.2022	62.9	32.6	15.8	18.9	<4.0	0.29	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
05.12.2022	65.4	34.2	16.9	17.9	<4.0	0.25	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
08.12.2022	59.5	33.6	17.1	17.8	<4.0	0.25	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
12.12.2022	61.8	34.1	16.8	18.8	<4.0	0.29	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
15.12.2022	58.7	32.9	17.5	19.2	<4.0	0.29	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
22.12.2022	60.2	32.8	18.1	19.9	<4.0	0.26	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
26.12.2022	55.4	29.9	18.3	19.4	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
29.12.2022	59.2	32.1	17.9	19.7	<4.0	0.24	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	
Average	61.9	33.8	17.1	19.1	<4.0	0.25	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
Testing method	Gravimet ric	Gravimet ric	Improve d West and Geake method	Modified Jacob & Hochheis er (Na- Arsenite)	Chemica l Method	NDIR Spectrosc opy	Indo phenol blue method	Absorptio n & Desorption followed by GC analysis	Solvent extraction followed by Gas Chromato graphy analysis	AAS method after sampling	AAS method after samplin g	AAS method after sampling	Zirconium SPADNS Method

BDL Values: SO₂<4 μg/m³, NO_X<9 μg/m³, O₃<4 μg/m³, Ni<0.01 ng/m³, As<0.001 ng/m³, C₆H₆<0.001 μg/m³, BaP<0.002 ng/m³, Pb<0.001 μg/m³, F<0.01µg/m³·CO-<0.1 mg/m³

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511721 E-mail: visiontek@vcspl.org, visiontekin@gmail.com Visit us at: www.vcspl.org

Water Resource Management

Environmental & Social Study

'isiontek Consultancy Services Pvt.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Surface & Sub-Surface Investigation Quality Control & Project Management • Renewable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Ref: VCSPL/22/R-4155

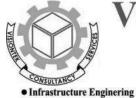
2.

Date: 02.01.2023

AMBIENT AIR QUALITY MONITORING REPORT (OCT-2022 TO DEC-2022)

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga


- : Monitoring Station No.- AAQMS-2: Ghichamura
- **Sampling Location Monitoring Instruments** 3.
- RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler :
- 4. Sample collected by
- VCSPL representative

	PARAMETERS												
Date	PM ₁₀	PM2.5	SO ₂	NOx	O ₃	CO	NH ₃	C ₆ H ₆	BaP	Ni	Pb	As	F
Date	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(mg/m ³)	(µg/m ³)	(µg/m ³)	(ng/m ³)	(ng/m ³)	(µg/m ³)	(ng/m ³)	(µg/m ³)
03.10.2022	50.6	27.8	9.6	11.1	<4.0	0.25	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
06.10.2022	52.3	28.5	9.7	10.8	<4.0	0.23	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
10.10.2022	51.8	28.1	9.5	11.6	<4.0	0.28	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
13.10.2022	50.4	27.5	9.3	11.9	<4.0	0.32	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
17.10.2022	48.6	26.9	9.5	12.4	<4.0	0.34	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
20.10.2022	57.3	31.2	9.5	12.9	<4.0	0.31	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
24.10.2022	53.2	28.9	9.3	13.2	<4.0	0.38	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
27.10.2022	55.1	29.4	9.2	12.6	<4.0	0.35	<20.0	<4	< 0.5	<2.5	< 0.02	<1	< 0.01
31.10.2022	49.6	26.7	9.4	12.8	<4.0	0.33	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
03.11.2022	55.2	29.2	9.9	12.1	<4.0	0.32	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
07.11.2022	49.8	26.8	9.5	11.9	<4.0	0.36	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
10.11.2022	55.6	30.1	9.7	12.3	<4.0	0.35	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
14.11.2022	57.2	30.5	9.3	12.7	<4.0	0.33	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
17.11.2022	53.1	29.4	9.6	12.6	<4.0	0.35	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
21.11.2022	60.2	31.6	9.4	12.1	<4.0	0.37	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
24.11.2022	59.6	32.2	9.2	11.9	<4.0	0.35	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
28.11.2022	58.4	32.4	9.8	11.6	<4.0	0.32	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
30.11.2022	53.5	29.5	9.3	11.5	<4.0	0.37	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
01.12.2022	50.2	28.4	9.9	11.1	<4.0	0.35	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
05.12.2022	48.9	26.8	9.4	10.9	<4.0	0.38	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
08.12.2022	53.2	28.9	9.7	10.8	<4.0	0.42	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
12.12.2022	52.4	28.5	9.1	10.6	<4.0	0.44	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
15.12.2022	49.8	26.7	9.3	12.3	<4.0	0.41	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
22.12.2022	50.6	27.4	9.8	11.9	<4.0	0.39	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
26.12.2022	54.1	29.5	9.9	11.4	<4.0	0.35	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
29.12.2022	51.2	27.5	9.3	11.2	<4.0	0.34	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	
Quarterly Average	53.2	28.9	9.5	11.9	<4.0	0.35	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
Testing method	Gravimetric	Gravimetric	Improved West and Gaeke method	Modified Jacob & Hochheiser (Na-Arsenite)	Chemical Method	NDIR Spectroscopy	Indo phenol blue method	Absorption & Desorption followed by GC analysis	Solvent extraction followed by Gas Chromatogra phy analysis	AAS method after sampling	AAS method after sampling	AAS method after sampling	Zirconium SPADNS Method

BDL Values: SO₂< 4 µg/m³, NO_x< 9 µg/m³, O₃<4 µg/m³, Ni<0.01 ng/m³, As< 0.001 ng/m³, C₆H₆<0.001 µg/m³, BaP<0.002 ng/m³, Pb<0.001 µg/m³, F<0.01µg/m³CO<0.1 mg/m³

 Water Resource Management Environmental & Social Study

4.

isiontek Consultancy Services Pvt. (Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Surface & Sub-Surface Investigation Quality Control & Project Management • Renewable Energy

:

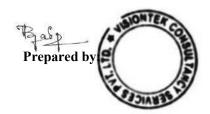
:

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Date: 02.01.2023

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Ref: VCSPL/22/R-4156


RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

AMBIENT AIR QUALITY MONITORING REPORT (OCT-2022 TO DEC-2022)

- 1. Name of Industry
- M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga :
- 2. **Sampling Location**
- Monitoring Station No.- AAQMS-3 : Tileimal
- 3. **Monitoring Instruments** Sample collected by
- : **VCSPL** representative

	1					PA	ARAMETE	RS					
Date	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NOx (µg/m ³)	O3 (µg/m ³)	CO (mg/m ³)	NH3 (μg/m ³)	C ₆ H ₆ (µg/m ³)	BaP (ng/m ³)	Ni (ng/m ³)	Pb (μg/m ³)	As (ng/m ³)	F (μg/m ³)
03.10.2022	48.9	26.8	10.5	14.5	<4.0	0.22	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
06.10.2022	49.6	27.1	10.1	14.8	<4.0	0.24	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
10.10.2022	48.7	26.5	9.8	14.9	<4.0	0.29	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
13.10.2022	53.2	29.5	11.5	15.1	<4.0	0.25	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
17.10.2022	51.4	27.4	11.2	14.6	<4.0	0.24	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
20.10.2022	49.6	26.9	10.5	14.7	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
24.10.2022	52.8	28.7	12.4	15.3	<4.0	0.26	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
27.10.2022	54.2	29.5	13.3	15.9	<4.0	0.25	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
31.10.2022	53.6	29.4	12.5	15.8	<4.0	0.24	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
03.11.2022	56.8	31.1	12.9	15.5	<4.0	0.22	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
07.11.2022	54.2	29.6	11.4	16.4	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
10.11.2022	52.8	28.8	12.6	17.1	<4.0	0.25	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
14.11.2022	58.6	32.3	15.8	16.5	<4.0	0.29	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
17.11.2022	62.4	34.1	15.4	16.8	<4.0	0.27	<20.0	<4	< 0.5	<2.5	< 0.02	<1	< 0.01
21.11.2022	68.2	35.2	17.2	16.4	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
24.11.2022	59.8	33.1	14.2	17.1	<4.0	0.26	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
28.11.2022	62.1	34.6	15.9	17.6	<4.0	0.24	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
30.11.2022	56.7	31.2	13.2	17.9	<4.0	0.32	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
01.12.2022	55.8	30.8	13.2	17.4	<4.0	0.29	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
05.12.2022	54.3	29.6	11.8	16.9	<4.0	0.31	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
08.12.2022	52.9	28.7	11.9	16.3	<4.0	0.3	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
12.12.2022	51.4	29.5	12.1	16.5	<4.0	0.33	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
15.12.2022	52.8	28.4	11.6	15.8	<4.0	0.35	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
22.12.2022	53.2	29.3	11.4	15.7	<4.0	0.31	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
26.12.2022	51.9	28.7	12.6	16.2	<4.0	0.33	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
29.12.2022	54.2	29.6	13.1	15.5	<4.0	0.32	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	
Average	54.6	29.9	12.6	16.0	<4.0	0.27	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
Testing method	Gravim etric	Gravimet ric	Improv ed West and Geake method	Modifie d Jacob & Hochhei ser (Na- Arsenit e)	Chemic al Method	NDIR Spectro scopy	Indo phenol blue method	Absor ption & Desor ption follow ed by GC analysi	Solvent extracti on followe d by Gas Chroma tograph V	AAS method after samplin g	AAS method after sampling	AAS method after sampling	Zirconi um SPADN S Method

BDL Values: SO₂< 4 µg/m³, NO_x< 9 µg/m³, O₃< 4 µg/m³, Ni<0.01 ng/m³, As< 0.001 ng/m³, C₆H₆<0.001 µg/m³, BaP<0.002 ng/m³, Pb<0.001 µg/m³, F<0.01µg/m³ CO<0.1 mg/m³

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511721 E-mail: visiontek@vcspl.org, visiontekin@gmail.com Visit us at: www.vcspl.org

Water Resource Management

• Environmental & Social Study

isiontek Consultancy Services Pvt. (Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Surface & Sub-Surface Investigation Quality Control & Project Management • Renewable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Ref: VCSPL/22/R-4157

4.

Date: 02.01.2023

AMBIENT AIR QUALITY MONITORING REPORT (OCT-22 TO DEC-2022)

- 1. Name of Industry
- M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

- 2. **Sampling Location**
- Monitoring Station No.- AAQMS-4 : Bomaloi
- 3. **Monitoring Instruments** Sample collected by
- VCSPL representative •

							PARAME	TERS					
Date	PM ₁₀	PM _{2.5} (μg/m ³)	SO ₂	NO _x	O ₃	CO	NH ₃ (μg/m ³)	C ₆ H ₆	BaP	Ni	Pb	As	F
02 10 2022	(μg/m ³)	40 /	(µg/m ³)	(μg/m ³)	(µg/m ³)	(mg/m ³)	40 /	(μg/m ³)	(ng/m ³)	(ng/m ³)	(μg/m ³)	(ng/m ³)	(µg/m ³)
03.10.2022	58.6	32.1	16.5	22.3	<4	0.29	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
06.10.2022	57.9	30.9	16.7	23.4	<4	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
10.10.2022	53.4	29.7	17.1	22.9	<4	0.27	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
13.10.2022	59.5	31.6	17.2	23.1	<4	0.29	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
17.10.2022	61.2	33.4	17.5	22.5	5.5	0.32	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
20.10.2022	58.5	31.8	18.4	22.6	5.3	0.33	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
24.10.2022	55.4	29.6	18.3	22.9	5.2	0.35	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
27.10.2022	56.2	30.5	18.9	26.1	5.4	0.36	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
31.10.2022	55.4	29.8	18.4	26.8	<4.0	0.33	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
03.11.2022	55.3	30.2	17.5	26.2	5.6	0.32	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
07.11.2022	59.8	32.4	17.9	27.1	5.5	0.34	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
10.11.2022	61.2	33.6	17.5	25.6	5.3	0.31	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
14.11.2022	59.8	32.8	18.9	26.3	<4.0	0.38	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
17.11.2022	67.4	37.1	18.2	24.8	<4.0	0.39	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
21.11.2022	72.8	39.8	18.4	25.2	5.2	0.35	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
24.11.2022	68.9	36.5	19.3	23.6	5.4	0.33	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
28.11.2022	81.2	39.6	19.5	24.1	5.5	0.32	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
30.11.2022	79.5	41.2	18.6	23.9	5.3	0.29	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
01.12.2022	69.8	38.6	18.9	24.5	5.4	0.31	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
05.12.2022	70.5	38.7	18.8	26.8	<4	0.29	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
08.12.2022	63.4	35.2	18.5	25.9	<4	0.31	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
12.12.2022	59.8	33.2	18.3	27.4	<4	0.36	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
15.12.2022	58.4	32.6	17.9	26.5	<4	0.35	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
22.12.2022	67.2	35.4	17.6	23.5	<4	0.33	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
26.12.2022	68.5	36.9	17.4	23.1	<4	0.34	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
29.12.2022	63.4	33.2	18.5	24.5	<4	0.31	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	ł
Average	63.2	34.1	18.1	24.7	5.4	0.32	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
Testing method	Gravim etric	Gravim etric	Impro ved West and Gaeke metho d	Modifi ed Jacob & Hochh eiser (Na- Arseni te)	Chemic al Method	NDIR Spectro scopy	Indo phenol blue method	Absorpti on & Desorptio n followed by GC analysis	Solvent extractio n followed by Gas Chromat ography analysis	AAS method after samplin g	AAS method after sampling	AAS method after sampling	Zirconi um SPADN S Method

BDL Values: SO₂< 4 µg/m³, NO_X< 9 µg/m³, O₃< 4 µg/m³, Ni<0.01 ng/m³, As< 0.001 ng/m³, C₆H₆<0.001 µg/m³, BaP<0.002 ng/m³, Pb<0.001 µg/m³, F<0.01µg/m³CO-<0.1 mg/m³

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511721 E-mail: visiontek@vcspl.org, visiontekin@gmail.com Visit us at: www.vcspl.org

isiontek Consultancy Services Pvt. (Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Infrastructure Enginering

Water Resource Management

Environmental & Social Study

2.

4.

• Surface & Sub-Surface Investigation Quality Control & Project Management • Renewable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Ref: VCSPL/22/R-4158

Date: 02.01.2023

AMBIENT AIR QUALITY MONITORING REPORT (OCT-22 TO DEC-2022)

- 1. Name of Industry
 - Sampling Location

Sample collected by

Monitoring Station No.- AAQMS-5 : Kapulas

M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

3. Monitoring Instruments

> VCSPL representative •

	PARAMETERS												
Date	PM10	PM _{2.5}	SO ₂	NOx	O3	СО	NH ₃	C ₆ H ₆	BaP	Ni	Pb	As	F
	(µg/m ³)	(µg/m³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(mg/m ³)	(µg/m ³)	(µg/m ³)	(ng/m ³)	(ng/m ³)	(µg/m ³)	(ng/m ³)	(µg/m ³)
03.10.2022	50.8	27.8	15.8	22.5	< 4.0	0.13	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
06.10.2022	51.2	28.2	16.1	22.4	< 4.0	0.15	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
10.10.2022	51.6	28.4	16.4	23.6	< 4.0	0.12	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
13.10.2022	52.1	28.6	16.3	23.7	< 4.0	<0.10	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
17.10.2022	50.9	27.9	16.5	24.5	< 4.0	0.12	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
20.10.2022	52.1	29.4	17.1	25.1	< 4.0	0.15	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
24.10.2022	52.8	29.2	17.6	25.5	< 4.0	0.13	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
27.10.2022	53.2	28.8	17.9	26.4	< 4.0	0.14	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
31.10.2022	53.4	29.3	18.2	26.9	< 4.0	0.13	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
03.11.2022	55.6	31.2	18.5	27.2	< 4.0	0.12	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
07.11.2022	54.8	29.8	19.3	28.5	< 4.0	0.15	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
10.11.2022	55.9	30.5	19.5	28.3	< 4.0	0.14	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
14.11.2022	56.4	30.7	18.7	28.4	< 4.0	0.16	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
17.11.2022	54.2	29.6	18.3	29.2	< 4.0	0.13	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
21.11.2022	55.3	30.1	18.6	26.1	< 4.0	0.12	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
24.11.2022	55.7	31.2	20.4	24.5	< 4.0	0.15	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
28.11.2022	54.9	29.9	20.7	25.3	< 4.0	0.14	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
30.11.2022	53.1	28.6	21.4	26.8	< 4.0	0.18	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
01.12.2022	56.4	30.7	21.6	28.7	< 4.0	0.16	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
05.12.2022	55.2	29.9	22.2	28.2	< 4.0	0.13	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
08.12.2022	54.8	29.8	22.8	28.5	< 4.0	0.15	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
12.12.2022	56.2	30.5	23.1	28.4	< 4.0	<0.10	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
15.12.2022	55.1	29.4	23.7	29.3	< 4.0	<0.10	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
22.12.2022	53.1	28.9	23.1	28.1	< 4.0	<0.10	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
26.12.2022	52.6	28.6	24.6	28.6	< 4.0	<0.10	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
29.12.2022	53.1	28.5	24.9	29.1	< 4.0	<0.10	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
NAAQ	100	60	80	80	100	4	400	05	01	20	1.0	06	
Standard										-			
Average	53.9	29.4	19.7	26.7	< 4.0	0.14	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
				Modifie				Absorpti	Solvent extracti				Zircon
Testing method	Gravim etric	Gravimet ric	Improve d West and Gaeke method	d Jacob & Hochhei ser (Na- Arsenite)	Chemic al Method	NDIR Spectrosc opy	Indo phenol blue metho d	on & Desorptio n followed by GC analysis	on followed by Gas Chroma tograph y analysis	AAS method after samplin g	AAS method after samplin g	AAS method after samplin g	ium SPAD NS Metho d

BDL Values: SO₂< 4 µg/m³, NO_X< 9 µg/m³, O₃<4 µg/m³, Ni<0.01 ng/m³, As< 0.001 ng/m³, C₆H₆<0.001 µg/m³, BaP<0.002 ng/m³, Pb<0.001 µg/m³, F<0.01µg/m³.CO-<0.1

mg/m³

Water Resource Management

4.

Environmental & Social Study

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade • Surface & Sub-Surface Investigation Quality Control & Project Management

:

:

• Renewable Energy

 Agricultural Development Information Technology Public Health Engineering

(Committed For Better Environment)

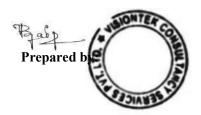
Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

 Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

isiontek Consultancy Services Pvt. Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Ref: VCSPL/22/R-4159

RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler


Date: 02.01.2023

AMBIENT AIR QUALITY MONITORING REPORT (OCT-22 TO DEC-2022)

- 1. Name of Industry
- M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga :
- 2. **Sampling Location**
- : Monitoring Station No.- AAQMS-6 : Phulchanghal
- 3. **Monitoring Instruments** Sample collected by
- VCSPL representative

						Р	ARAMETE	CRS					
Date	PM10 (μg/m3)	PM2.5 (μg/m3)	SO2 (µg/m3)	NOx (µg/m3)	O3 (µg/m3)	CO (mg/m3)	NH3 (μg/m3)	C6H6 (µg/m3)	BaP (ng/m3)	Ni (ng/m3)	Pb (μg/m3)	As (ng/m3)	F (μg/m3)
03.10.2022	54.6	29.8	17.2	21.6	<4.0	0.28	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
06.10.2022	55.8	30.2	17.8	22.1	<4.0	0.26	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
10.10.2022	56.4	30.6	18.5	22.5	<4.0	0.23	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
13.10.2022	55.2	29.5	18.9	23.8	<4.0	0.25	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
17.10.2022	56.4	30.6	18.3	23.4	<4.0	0.23	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
20.10.2022	57.9	31.2	17.9	24.6	<4.0	0.26	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
24.10.2022	58.2	31.8	17.5	25.1	<4.0	0.29	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
27.10.2022	57.6	31.1	17.6	25.2	<4.0	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
31.10.2022	58.2	32.1	17.8	26.9	<4.0	0.25	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
03.11.2022	59.1	31.6	18.2	26.8	<4.0	0.28	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
07.11.2022	58.3	31.7	18.9	26.4	<4.0	0.26	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
10.11.2022	57.4	32.5	19.4	26.1	<4.0	0.25	<20.0	<4	< 0.5	<2.5	< 0.02	<1	< 0.01
14.11.2022	56.4	30.9	19.3	26.8	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
17.11.2022	55.9	30.5	19.2	25.4	<4.0	0.22	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
21.11.2022	57.1	30.9	19.5	25.3	<4.0	0.21	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
24.11.2022	56.3	30.2	19.8	24.9	<4.0	0.22	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
28.11.2022	58.4	31.1	18.9	24.5	<4.0	0.19	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
30.11.2022	57.4	30.9	18.7	23.9	<4.0	0.2	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
01.12.2022	57.1	31.2	18.5	23.8	<4.0	0.21	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
05.12.2022	55.3	29.8	17.9	24.1	<4.0	0.22	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
08.12.2022	55.4	29.6	17.6	24.5	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
12.12.2022	56.2	30.5	16.9	24.6	<4.0	0.25	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
15.12.2022	57.4	31.6	16.5	24.1	<4.0	0.26	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
22.12.2022	58.1	32.4	16.3	24.9	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
26.12.2022	57.3	31.5	15.9	25.3	<4.0	0.28	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
29.12.2022	56.4	30.8	16.1	25.8	<4.0	0.26	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	
Average	56.9	30.9	18.0	24.7	<4.0	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.0
Testing method	Gravime tric	Gravimet ric	Improv ed West and Gaeke method	Modified Jacob & Hochheis er (Na- Arsenite)	Chemica l Method	NDIR Spectros copy	Indo phenol blue method	Absorptio n & Desorptio n followed by GC analysis	Solvent extraction followed by Gas Chromato graphy analysis	AAS method after sampling	AAS method after sampling	AAS method after samplin g	Zircor um SPAD S Metho

BDL Values: SO₂< 4 μg/m³, NO_x< 9 μg/m³, O₃<4 μg/m³, Ni<0.01 ng/m³, As< 0.001 ng/m³, C₆H₆<0.001 μg/m³, BaP<0.002 ng/m³, Pb<0.001 μg/m³, F<0.01 μg/m³, CO<0.1 mg/m³

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Infrastructure Enginering Water Resource Management

4.

Environmental & Social Study

• Surface & Sub-Surface Investigation Quality Control & Project Management • Renewable Energy

:

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

isiontek Consultancy Services Pvt. Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Ref: VCSPL/22/R-4160

Date: 02.01.2023

AMBIENT AIR QUALITY MONITORING REPORT (OCT-22 TO DEC-2022)

(Committed For Better Environment)

- 1. Name of Industry
- M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga :

RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

- 2. **Sampling Location**
- Monitoring Station No.- AAQMS-7 : Khadiapali •
- 3. **Monitoring Instruments** Sample collected by
- VCSPL representative •

						PA	RAMETER	RS					
Date	PM10 (μg/m ³)	PM2.5 (μg/m ³)	SO2 (μg/m ³)	NOx (µg/m ³)	O3 (µg/m ³)	CO (mg/m ³)	NH3 (μg/m ³)	С6Н6 (µg/m ³)	BaP (ng/m ³)	Ni (ng/m ³)	Рb (µg/m ³)	As (ng/m ³)	F (µg/m ³)
03.10.2022	59.6	32.1	11.9	22.6	<4.0	0.19	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
06.10.2022	60.4	32.9	12.1	22.9	<4.0	0.22	<20.0	<4	< 0.5	<2.5	< 0.02	<1	< 0.01
10.10.2022	59.8	32.5	11.6	23.4	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
13.10.2022	56.2	30.8	12.4	23.8	<4.0	0.21	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
17.10.2022	54.8	29.8	12.5	24.1	<4.0	0.25	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
20.10.2022	52.6	27.6	13.1	25.1	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
24.10.2022	54.8	29.8	13.3	25.2	<4.0	0.26	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
27.10.2022	56.2	30.5	13.5	26.3	<4.0	0.24	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
31.10.2022	54.1	29.5	13.4	27.4	<4.0	0.26	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
03.11.2022	52.1	28.8	14.1	26.5	<4.0	0.24	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
07.11.2022	58.6	32.4	14.5	27.8	<4.0	0.25	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
10.11.2022	61.3	32.9	13.9	28.4	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
14.11.2022	62.5	34.1	13.6	28.9	<4.0	0.22	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
17.11.2022	65.8	36.5	13.5	29.5	<4.0	0.26	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
21.11.2022	66.7	37.4	13.7	29.8	<4.0	0.27	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
24.11.2022	68.9	38.2	12.9	29.2	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
28.11.2022	63.5	35.6	12.7	27.4	<4.0	0.25	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
30.11.2022	67.4	36.1	13.1	27.6	<4.0	0.29	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
01.12.2022	64.5	35.2	13.5	28.3	<4.0	0.32	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
05.12.2022	58.9	32.6	13.5	26.9	<4.0	0.33	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
08.12.2022	62.3	33.9	12.5	27.4	<4.0	0.26	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
12.12.2022	60.1	32.4	12.7	26.8	<4.0	0.28	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
15.12.2022	55.3	29.8	12.1	26.2	<4.0	0.27	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
22.12.2022	58.4	30.5	11.9	24.5	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
26.12.2022	56.5	31.2	11.5	24.1	<4.0	0.25	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
29.12.2022	57.2	31.6	11.3	23.8	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	
Average	59.6	32.5	12.9	26.3	<4.0	0.25	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
Testing method	Gravimetric	Gravimetric	Improved West and Geake method	Modified Jacob & Hochheiser (Na-Arsenite)	Chemical Method	NDIR Spectroscopy	Indo phenol blue method	Absorption & Desorption followed by GC analysis	Solvent extraction followed by Gas Chromatogra phy analysis	AAS method after sampling	AAS method after sampling	AAS method after sampling	Zirconiur SPADNS Method

BDL Values:SO₂< 4 µg/m³, NO_X< 9 µg/m³, O₃<4 µg/m³, Ni<0.01 ng/m³, As< 0.001 ng/m³, C₆H₆<0.001 µg/m³, BaP<0.002 ng/m³, Pb<0.001 µg/m³, F<0.01µg/m³CO<0.1 mg/m³

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Infrastructure Enginering

Water Resource Management

Environmental & Social Study

4.

• Surface & Sub-Surface Investigation Quality Control & Project Management • Renewable Energy

:

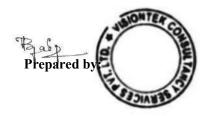
 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Ref: VCSPL/22/R-4161

Date: 02.01.2023

AMBIENT AIR QUALITY MONITORING REPORT (OCT-22 TO DEC-2022)


RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

1. Name of Industry

- M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga :
- 2. **Sampling Location**
- : Monitoring Station No.- AAQMS-8 : Thelkoloi
- 3. **Monitoring Instruments** Sample collected by
- VCSPL representative :

						PA	ARAMETE	RS					
Date	РМ10 (µg/m3)	PM2.5 (μg/m3)	SO2 (µg/m3)	NOx (µg/m3)	O3 (µg/m3)	CO (mg/m3)	NH3 (µg/m3)	С6Н6 (µg/m3)	BaP (ng/m3)	Ni (ng/m3)	Pb (μg/m3)	As (ng/m3)	F (µg/m3)
03.10.2022	59.6	32.5	19.6	22.7	7.9	0.35	22.8	<4	<0.5	<2.5	<0.02	<1	< 0.01
06.10.2022	57.4	31.6	19.8	23.9	8.3	0.37	23.1	<4	<0.5	<2.5	<0.02	<1	< 0.01
10.10.2022	55.8	31.9	19.9	24.1	8.4	0.39	23.5	<4	<0.5	<2.5	<0.02	<1	< 0.01
13.10.2022	56.9	30.8	20.5	24.5	8.1	0.33	23.9	<4	<0.5	<2.5	< 0.02	<1	< 0.01
17.10.2022	59.2	32.1	21.1	24.9	8.6	0.36	24.5	<4	<0.5	<2.5	< 0.02	<1	< 0.01
20.10.2022	60.4	32.8	21.5	25.3	9.5	0.38	24.2	<4	<0.5	<2.5	<0.02	<1	< 0.01
24.10.2022	61.3	33.2	21.8	25.8	9.7	0.39	25.1	<4	<0.5	<2.5	<0.02	<1	< 0.01
27.10.2022	62.5	34.6	20.2	24.7	9.3	0.31	25.4	<4	<0.5	<2.5	<0.02	<1	<0.01
31.10.2022	58.6	32.1	20.7	25.6	9	0.35	25.9	<4	<0.5	<2.5	<0.02	<1	<0.01
03.11.2022	64.3	35.6	20.6	25.2	9.1	0.38	26.4	<4	<0.5	<2.5	<0.02	<1	< 0.01
07.11.2022	63.8	34.2	20.4	24.9	8.7	0.39	25.9	<4	<0.5	<2.5	<0.02	<1	< 0.01
10.11.2022	66.8	37.5	22.2	24.1	7.9	0.33	26.7	<4	<0.5	<2.5	<0.02	<1	< 0.01
14.11.2022	70.1	38.6	21.8	23.9	8.1	0.35	25.8	<4	<0.5	<2.5	<0.02	<1	< 0.01
17.11.2022	68.9	39.4	21.9	24.5	8.3	0.37	25.9	<4	<0.5	<2.5	< 0.02	<1	< 0.01
21.11.2022	74.6	40.1	20.6	23.1	8.5	0.36	25.2	<4	<0.5	<2.5	< 0.02	<1	< 0.01
24.11.2022	78.6	42.5	20.8	23.5	8.6	0.34	26.9	<4	<0.5	<2.5	< 0.02	<1	< 0.01
28.11.2022	79.8	44.2	20.5	22.8	8.4	0.33	26.9	<4	<0.5	<2.5	<0.02	<1	< 0.01
30.11.2022	68.4	45.2	21.4	22.6	8.2	0.35	27.1	<4	<0.5	<2.5	< 0.02	<1	< 0.01
01.12.2022	61.2	40.9	20.3	21.7	8.3	0.36	26.8	<4	<0.5	<2.5	< 0.02	<1	< 0.01
05.12.2022	60.9	36.5	21.2	21.8	7.9	0.39	28.5	<4	<0.5	<2.5	< 0.02	<1	< 0.01
08.12.2022	63.4	35.4	21.8	20.5	8.1	0.35	28.9	<4	<0.5	<2.5	<0.02	<1	< 0.01
12.12.2022	59.8	33.8	22.1	21.2	7.9	0.34	28.3	<4	<0.5	<2.5	<0.02	<1	<0.01
15.12.2022	56.4	32.6	22.5	21.6	7.5	0.36	27.9	<4	<0.5	<2.5	<0.02	<1	<0.01
22.12.2022	59.7	33.4	22.9	23.2	7.7	0.35	27.8	<4	<0.5	<2.5	<0.02	<1	<0.01
26.12.2022	55.2	30.2	23.4	23.4	7.6	0.33	26.9	<4	<0.5	<2.5	< 0.02	<1	<0.01
29.12.2022	59.3	33.1	23.5	24.1	7.4	0.32	26.8	<4	<0.5	<2.5	<0.02	<1	<0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	
Average	63.2	35.6	21.3	23.6	8.3	0.36	26.0	<4	<0.5	<2.5	<0.02	<1	<0.01
Testing method	Gravime tric	Gravimet ric	Improve d West and Geake method	Modified Jacob & Hochheis er (Na- Arsenite)	Chemica l Method	NDIR Spectros copy	Indo phenol blue method	Absorptio n & Desorptio n followed by GC analysis	Solvent extraction followed by Gas Chromato graphy analysis	AAS method after sampling	AAS method after sampling	AAS metho d after sampli ng	Zirconi um SPADN S Method

BDL Values: SO₂< 4 μg/m³, NO₃< 9 μg/m³, O₃<4 μg/m³, Ni<0.01 ng/m³, As< 0.001 ng/m³, C₆H₆<0.001 μg/m³, BaP<0.002 ng/m³, Pb<0.001 μg/m³, F<0.01 μg/m³, CO<0.1 mg/m³

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Infrastructure Engineering
Water Resource Management
Environmental & Social Study

Surface & Sub-Surface Investigation
 Quality Control & Project Management
 Renewable Energy

Agricultural Development
 Information Technology
 Public Health Engineering

Mine Planning & Design
 Mineral/Sub-Soil Exploration
 Waste Management Services

Date: 05.12.2022

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Ref: VCSPL/22/R-4161

SURFACE WATER QUALITY ANALYSIS REPORT NOVEMBER-2022

: M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

Sampling location

Name of Industry

Date of sampling

- : SW-1: Hirakud Reservoir; SW-2: Lapanga Pond; SW-3: Matwadinadi –U/S,
- SW-4:Bamloi Pond; SW-5: Bhedan River Near Katikela

14.11.2022

: 15.11.2022 TO 22.11.2022

Date of analysis Sample collected by

VCSPL Representative

2 Cold 3 Tasi 4 Odo 5 Tur 6 Totz 7 Totz 8 Totz 9 Calc 10 Mag 11 Resi 12 Bor 13 Chlo 14 Sulp 15 Fluc 16 Nitr 17 Sodi 18 Potz 19 Phee C6H 20 Cya 21 23 Arss	lour tal Dissolved Solids tal Hardness (as CaCO ₃) tal Alkalinity leium (as Ca) agnesium (as Mg) sidual, free Chlorine ron (as B) eloride (as C1) lphate (as SO4)	Testing Methods APHA 4500H ⁺ B APHA 2120 B, C APHA 2160 C APHA 2150 B APHA 2130 B APHA 2340 C APHA 2320 B APHA 3500Ca B APHA 4500Cl, B APHA 4500Cl, B	Unit Hazen NTU mg/l mg/l mg/l mg/l mg/l mg/l	as per IS-2296:1992 Class - 'C' 6.0-9.0 300 1500 	SW-1 7.31 <1.0 Agreeable 3.8 102 62 62	SW-2 7.22 <1.0 Agreeable 7.6 143 88	SW-3 7.71 <1.0 Agreeable Agreeable 2.1 91 56	SW-4 7.72 <1.0 Agreeable Agreeable 6.3 132 24	SW-5 7.83 <1.0 Agreeable 2.4 94
2 Cold 3 Tasi 4 Odo 5 Tur 6 Totz 7 Totz 8 Totz 9 Calc 10 Mag 11 Resi 12 Bor 13 Chlo 14 Sulp 15 Fluc 16 Nitr 17 Sodi 18 Potz 19 Phee C6H 20 Cya 21 23 Arss	lour ste lour arbidity tal Dissolved Solids tal Hardness (as CaCO ₃) tal Alkalinity decium (as Ca) agnesium (as Mg) sidual, free Chlorine ron (as B) doride (as C1) lphate (as SO4)	APHA 2120 B, C APHA 2160 C APHA 2150 B APHA 2130 B APHA 2540 C APHA 2340 C APHA 2320 B APHA 3500Ca B APHA 3500Mg B APHA 4500Cl, B APHA 4500B, B	 NTU mg/l mg/l mg/l mg/l mg/l	6.0-9.0 300 1500 	<1.0 Agreeable Agreeable 3.8 102 62	<1.0 Agreeable Agreeable 7.6 143 88	<1.0 Agreeable Agreeable 2.1 91	<1.0 Agreeable Agreeable 6.3 132	<1.0 Agreeable Agreeable 2.4 94
3 Tasi 4 Odo 5 Tur 6 Totz 7 Totz 8 Totz 9 Calc 10 Mag 11 Resi 12 Bor 13 Chlo 14 Sulp 15 Fluc 16 Nitr 17 Sodi 18 Potz 19 Phee C6H 20 21 Anic 23 Arss	ste lour rbidity tal Dissolved Solids tal Hardness (as CaCO ₃) tal Alkalinity licium (as Ca) agnesium (as Mg) sidual, free Chlorine ron (as B) lioride (as C1) lphate (as SO4)	APHA 2160 C APHA 2150 B APHA 2130 B APHA 2540 C APHA 2340 C APHA 2320 B APHA 3500Ca B APHA 3500Mg B APHA 4500Cl, B APHA 4500B, B	 NTU mg/l mg/l mg/l mg/l mg/l	 1500 	Agreeable Agreeable 3.8 102 62	Agreeable Agreeable 7.6 143 88	Agreeable Agreeable 2.1 91	Agreeable Agreeable 6.3 132	Agreeable Agreeable 2.4 94
4 Odo 5 Tur 6 Totz 7 Totz 8 Totz 9 Calc 10 Mag 11 Resi 12 Bor 13 Chlo 14 Sulp 15 Fluc 16 Nitr 17 Sodi 18 Potz 20 Cya 21 Anic 22 Cad 23 Arss	lour tal Dissolved Solids tal Hardness (as CaCO ₃) tal Alkalinity leium (as Ca) agnesium (as Mg) sidual, free Chlorine ron (as B) eloride (as C1) lphate (as SO4)	APHA 2150 B APHA 2130 B APHA 2540 C APHA 2340 C APHA 2320 B APHA 3500Ca B APHA 3500Mg B APHA 4500Cl, B APHA 4500B, B	 NTU mg/l mg/l mg/l mg/l	 1500 	Agreeable 3.8 102 62	Agreeable 7.6 143 88	Agreeable 2.1 91	Agreeable 6.3 132	Agreeable 2.4 94
5 Tur 6 Tota 7 Tota 8 Tota 9 Calc 10 Mag 11 Resi 12 Bor 13 Chla 14 Sulp 15 Fluc 16 Nitr 17 Sodi 18 Potz 19 Phenent 20 Cya 21 Annic 23 Arset	rrbidity tal Dissolved Solids tal Hardness (as CaCO ₃) tal Alkalinity leium (as Ca) agnesium (as Mg) sidual, free Chlorine ron (as B) eloride (as C1) lphate (as SO4)	APHA 2130 B APHA 2540 C APHA 2340 C APHA 2320 B APHA 3500Ca B APHA 3500Mg B APHA 4500Cl, B APHA 4500B, B	NTU mg/l mg/l mg/l mg/l	 1500 	3.8 102 62	7.6 143 88	2.1 91	6.3 132	2.4 94
6 Tota 7 Tota 8 Tota 9 Cala 10 Mag 11 Resi 12 Bor 13 Chlo 14 Sulp 15 Fluc 16 Nitr 17 Sodi 18 Potz 20 Cya 21 Anic 22 Cad 23 Arss	tal Dissolved Solids tal Hardness (as CaCO ₃) tal Alkalinity licium (as Ca) agnesium (as Mg) sidual, free Chlorine ron (as B) lioride (as C1) liphate (as SO4)	APHA 2540 C APHA 2340 C APHA 2320 B APHA 3500Ca B APHA 3500Mg B APHA 4500Cl, B APHA 4500B, B	mg/l mg/l mg/l mg/l mg/l	1500 	102 62	143 88	91	132	94
7 Tota 8 Tota 9 Cald 10 Mag 11 Resi 12 Bor 13 Chlo 14 Sulp 15 Fluc 16 Nitr 17 Sodi 18 Potz 19 Che 20 Cya 21 Anio 23 Arso	tal Hardness (as CaCO ₃) tal Alkalinity licium (as Ca) agnesium (as Mg) sidual, free Chlorine ron (as B) lioride (as C1) lphate (as SO4)	APHA 2340 C APHA 2320 B APHA 3500Ca B APHA 3500Mg B APHA 4500Cl, B APHA 4500B, B	mg/l mg/l mg/l mg/l		62	88		-	-
8 Tota 9 Calc 10 Mag 11 Resi 12 Bor 13 Chlo 14 Sulp 15 Fluc 16 Nitr 17 Sodi 18 Potz 19 Phenent 20 Cya 21 Annic 23 Arset	tal Alkalinity licium (as Ca) agnesium (as Mg) sidual, free Chlorine ron (as B) lioride (as Cl) lphate (as SO4)	APHA 2320 B APHA 3500Ca B APHA 3500Mg B APHA 4500Cl, B APHA 4500B, B	mg/l mg/l mg/l				56	0.4	
9 Cale 10 Mag 11 Resi 12 Bor 13 Chlo 14 Sulp 15 Fluc 16 Nitr 17 Sodi 18 Potz 20 Cya 21 Anio 22 Cad 23 Arso	lcium (as Ca) agnesium (as Mg) sidual, free Chlorine ron (as B) sloride (as Cl) lphate (as SO4)	APHA 3500Ca B APHA 3500Mg B APHA 4500Cl, B APHA 4500B, B	mg/l mg/l		62	00		84	58
10 Mag 10 Mag 11 Resi 12 Bor 13 Chlo 14 Sulp 15 Fluo 16 Nitr 17 Sodi 18 Potz 19 Phenene Color 20 Cya 21 Annice 22 Cad 23 Arset	agnesium (as Mg) sidual, free Chlorine ron (as B) lloride (as Cl) lphate (as SO4)	APHA 3500Mg B APHA 4500Cl, B APHA 4500B, B	mg/l			80	58	74	58
11 Resi 12 Bor 13 Chlo 14 Sulp 15 Fluc 16 Nitr 17 Sodi 18 Potz 19 Phee 20 Cya 21 Anio 22 Cad 23 Arso	sidual, free Chlorine ron (as B) lloride (as Cl) lphate (as SO4)	APHA 4500Cl, B APHA 4500B, B	ð		18.4	25.6	17.6	24.0	17.6
12 Bor 13 Chlo 14 Sulp 15 Fluc 16 Nitr 17 Sodi 18 Potz 19 Phee 20 Cya 21 Anio 22 Cad 23 Arss	ron (as B) Iloride (as Cl) Iphate (as SO4)	APHA 4500B, B	/1		3.9	5.9	2.9	5.9	3.4
13 Chle 14 Sulp 15 Flue 16 Nitr 17 Sodi 18 Potz 19 Phei C6H Cya 21 Anic 23 Arss	lloride (as Cl) lphate (as SO4)		mg/l		BDL	BDL	BDL	BDL	BDL
14 Sulp 15 Fluc 16 Nitr 17 Sodi 18 Potz 19 Phei C6H Cya 21 Anic 22 Cad 23 Arss	lphate (as SO ₄)	ADUA 4500CLD	mg/l		<0.1	<0.01	<0.01	<0.01	<0.01
15 Flue 16 Nitr 17 Sodi 18 Potz 19 Phei C6H Cya 21 Anie 22 Cad 23 Arse	1 ()	APHA 4500Cl ⁻ B	mg/l	600	26	28	29	31	34
16 Nitr 17 Sodi 18 Potz 19 Phei 20 Cya 21 Anio 22 Cad 23 Arso		APHA 4500 SO42- E	mg/l	400	12.6	34.6	18.5	48.6	12
17 Sodi 18 Potz 19 Phen 20 Cya 21 Anio 22 Cad 23 Arso	uoride (as F)	APHA 4500F-C	mg/l	1.5	0.36	0.26	0.23	0.33	0.31
18 Potz 19 Phe: C6H 20 Cya 21 Anio 22 Cad 23 Arso	trate (as NO3)	APHA 4500 NO3 ⁻ E	mg/l	50	1.35	1.56	1.28	1.51	1.23
19 Pher C ₆ H 20 Cya 21 Anio 22 Cad 23 Arso	dium as Na	APHA3500-Na	mg/l		8.9	9.6	9.1	9.3	9.7
19 C6H 20 Cya 21 Anio 22 Cad 23 Arso	tassium as K	APHA 3500-K	mg/l		2.4	2.8	2.6	2.4	2.5
21 Anio 22 Cad 23 Arso	enolic Compounds (as H5OH)	APHA 5530 B,D	mg/l	0.005	<0.05	<0.05	<0.05	<0.05	<0.05
22Cad23Arso	vanide (as CN)	APHA 4500 CN ⁻ C,D	mg/l	0.05	BDL	BDL	BDL	BDL	BDL
23 Arso	ionic Detergents (as MBAS)	APHA 5540 C	mg/l	1.0	<0.2	<0.2	<0.2	<0.2	<0.2
	dmium (as Cd)	APHA 3111 B,C	mg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
24 0	senic (as As)	APHA 3114 B	mg/l	0.2	<0.004	<0.004	<0.004	<0.004	<0.004
24 Cop	opper (as Cu)	APHA 3111 B,C	mg/l	1.5	<0.02	<0.02	<0.02	<0.02	<0.02
25 Lea	ad (as Pb)	APHA 3111 B,C	mg/l	0.1	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
26 Mar	anganese (as Mn)	APHA 3500Mn B	mg/l		<0.03	<0.03	< 0.03	< 0.03	< 0.03
	on (as Fe)	APHA 3500Fe, B	mg/l	0.5	0.051	0.13	0.047	0.12	0.055
	romium (as Cr ⁺⁶)	APHA 3500Cr B	mg/l	0.05	<0.02	<0.02	<0.02	<0.02	< 0.02
	lenium (as Se)	APHA 3114 B	mg/l	0.05	<0.001	<0.001	<0.001	<0.001	<0.001
	nc (as Zn)	APHA 3111 B,C	mg/l	15	<0.01	<0.01	<0.01	<0.01	<0.01
	uminium as(Al)	APHA 3500Al B	mg/l		<0.1	<0.1	<0.1	<0.1	<0.1
	ercury (as Hg)	APHA 3500 Hg	mg/l		<0.004	<0.004	<0.004	<0.004	< 0.004
	ineral Oil	APHA 5220 B	mg/l		<0.001	<0.001	<0.001	<0.001	<0.001
34 Pest	sticides	APHA 6630 B,C	mg/l		Absent	Absent	Absent	Absent	Absent
35 E.C	Coli	APHA 9221-F	MPN/ 100 ml		Absent	Absent	Absent	Absent	Absent
36 Tota Note: Cl		АРНА9221-В	MPN/ 100 ml	5000	220	260	320	280	320

Prepared by:

Verified by

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Infrastructure Enginering Water Resource Management

• Environmental & Social Study

• Surface & Sub-Surface Investigation Quality Control & Project Management • Renewable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Ref: VCSPL/22/R-4162

Date: 05.12.2022

SURFACE WATER QUALITY ANALYSIS REPORT NOVEMBER-2022

- M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga :
- 1. Name of Industry 2. Sampling location
- SW-6: Bhedan River Near Khinda Village;SW-7:Matwadinadi-D/S;

SW-8: Hirakud Reservoir Near Gurupali village;

- SW-9: Salepali village Pond; SW-10: Sanamal village Pond
- 14.11.2022 : :

:

- 3. Date of sampling Date of analysis 4.
- Sample collected by 5.
- 15.11.2022 TO 22.11.2022
- VCSPL Representative :

SI. No.	Parameter	Testing Methods	Unit	Standards as per IS-2296:1992		An	alysis Resul	lts	
110.				Class – 'C'	SW-6	SW-7	SW-8	SW-9	SW-10
1	pH at 25⁰C	APHA 4500H ⁺ B		6.0-9.0	7.35	7.89	7.42	7.41	7.26
2	Colour	APHA 2120 B, C	Hazen	300	<1.0	<1.0	<1.0	<1.0	<1.0
3	Taste	APHA 2160 C			Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
4	Odour	APHA 2150 B			Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
6	Turbidity	APHA 2130 B	NTU		4.3	3	2.6	5.9	5.7
7	Total Dissolved Solids	APHA 2540 C	mg/l	1500	104	96	106	116	132
8	Total Hardness (as CaCO ₃)	APHA 2340 C	mg/l		64	60	96	76	82
9	Total Alkalinity	APHA 2320 B	mg/l		58	66	60	74	78
10	Calcium (as Ca)	APHA 3500Ca B	mg/l		19.2	18.4	27.2	22.4	24.8
11	Magnesium (as Mg)	APHA 3500Mg B	mg/l		3.9	3.4	6.8	4.9	4.9
12	Residual, free Chlorine	APHA 4500Cl, B	mg/l		BDL	BDL	BDL	BDL	BDL
13	Boron (as B)	APHA 4500B, B	mg/l		<0.01	<0.01	<0.01	<0.01	<0.01
14	Chloride (as Cl)	APHA 4500Cl ⁻ B	mg/l	600	28	26	32	59	62
15	Sulphate (as SO ₄)	APHA 4500 SO42- E	mg/l	400	14	12	12	32.1	26.9
16	Fluoride (as F)	APHA 4500F-C	mg/l	1.5	0.36	0.38	0.41	0.41	0.38
17	Nitrate (as NO3)	APHA 4500 NO3- E	mg/l	50	2.81	2.43	2.31	3.16	3.29
18	Sodium as Na	APHA 3500-K	mg/l		9.9	8.9	9.4	9.1	8.9
19	Potassium as K	APHA3500-Na	mg/l		2.8	2.8	2.9	3.2	2.9
20	Phenolic Compounds (as C ₆ H ₅ OH)	APHA 5530 B,D	mg/l	0.005	<0.05	<0.05	<0.05	<0.05	<0.05
21	Cyanide (as CN)	APHA 4500 CN- C,D	mg/l	0.05	BDL	BDL	BDL	BDL	BDL
22	Anionic Detergents (as MBAS)	APHA 5540 C	mg/l	1.0	<0.2	<0.2	<0.2	<0.2	<0.2
23	Cadmium (as Cd)	APHA 3111 B,C	mg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
24	Arsenic (as As)	APHA 3114 B	mg/l	0.2	<0.004	< 0.004	< 0.004	< 0.004	< 0.004
25	Copper (as Cu)	АРНА 3111 В,С	mg/l	1.5	<0.02	<0.02	<0.02	<0.02	<0.02
26	Lead (as Pb)	APHA 3111 B,C	mg/l	0.1	<0.02	<0.02	<0.02	<0.02	<0.02
27	Manganese (as Mn)	APHA 3500Mn B	mg/l		< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
28	Iron (as Fe)	APHA 3500Fe, B	mg/l	0.5	0.043	0.061	0.063	0.11	0.12
29	Chromium (as Cr ⁺⁶)	APHA 3500Cr B	mg/l	0.05	<0.02	<0.02	<0.02	<0.02	< 0.02
30	Selenium (as Se)	APHA 3114 B	mg/l	0.05	<0.001	<0.001	<0.001	<0.001	<0.001
31	Zinc (as Zn)	APHA 3111 B,C	mg/l	15	<0.01	<0.01	<0.01	<0.01	<0.01
32	Aluminium as(Al)	APHA 3500Al B	mg/l		<0.1	<0.1	<0.1	<0.1	<0.1
33	Mercury (as Hg)	APHA 3500 Hg	mg/l		<0.004	< 0.004	< 0.004	<0.004	< 0.004
34	Mineral Oil	APHA 5220 B	mg/l		<0.001	<0.001	<0.001	<0.001	<0.001
35	Pesticides	APHA 6630 B,C	mg/l		Absent	Absent	Absent	Absent	Absent
36	E.Coli	АРНА 9221-F	MPN/ 100 ml		Absent	Absent	Absent	Absent	Absent
37	Total Coliform	APHANCE1-B	MPN/ 100 ml	5000	280	1. 340	(SH)	350	430
5	Note: CL: Colourly, AL: Ag	greeable, Co: Unobjection	able, ND: No	t detected.		AICERATI	Ver		Nag-

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Infrastructure Enginering
- Water Resource Management
- Environmental & Social Study

• Surface & Sub-Surface Investigation Quality Control & Project Management • Renewable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Date: 05.12.2022

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Ref: VCSPL/22/R-4163

3.

4.

5.

GROUND WATER QUALITY ANALYSIS REPORT NOVEMBER-2022

1. Name of Industry M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga. :

Sampling location 2.

Sample collected by

- GW-1: Lapanga Village; GW-2: Pandoloi Village; :
- GW-3:Bamloi Village; GW-4: Tilaimal Village 14.11.2022
- Date of sampling : Date of analysis
 - 15.11.2022 to 22.11.2022 :
 - VCSPL Representative :

Sl. No.	Parameter	Testing Methods	Unit	IS -105	rd as per 500:2012 1 2015 & 2018		Analysis	s Result	
				Acceptable Limit	Permissible Limit	GW-1	GW-2	GW-3	GW-4
1	pH Value at 25°C	APHA 4500H ⁺ B		6.5-8.5	No Relaxation	7.41	7.35	7.46	7.49
2	Colour	APHA 2120 B, C	Hazen	5	15	CL	CL	CL	CL
3	Taste	APHA 2160 C		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
4	Odour	APHA 2150 B		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
5	Turbidity	APHA 2130 B	NTU	1	5	<1.0	<1.0	<1.0	<1.0
6	Total Dissolved Solids	APHA 2540 C	mg/l	500	2000	169	176	146	173
7	Total Hardness (as CaCO ₃)	АРНА 2340 С	mg/l	200	600	94	100	84	102
8	Total Alkalinity	APHA 2320 B	mg/l	200	600	88	80	94	88
9	Calcium (as Ca)	APHA 3500Ca B	mg/l	75	200	26.4	28.8	24.8	28.8
10	Magnesium (as Mg)	APHA 3500Mg B	mg/l	30	100	6.8	6.8	5.4	7.3
11	Residual, free Chlorine	APHA 4500Cl, B	mg/l	0.2	1	BDL	BDL	BDL	BDL
12	Boron (as B)	APHA 4500B, B	mg/l	2.4	No Relaxation	<0.1	<0.1	<0.1	<0.1
13	Chloride (as Cl)	APHA 4500Cl-B	mg/l	250	1000	26.2	28.1	27.9	25.6
14	Sulphate (as SO ₄)	APHA 4500 SO42- E	mg/l	200	400	4.5	4.3	5.1	4.6
15	Fluoride (as F)	APHA 4500F-C	mg/l	1.0	1.5	0.39	0.24	0.23	0.31
16	Nitrate (as NO ₃)	APHA 4500 NO3 ⁻ E	mg/l	45	No Relaxation	2.6	3.1	3.2	2.6
17	Sodium as Na	APHA3500-Na	mg/l			14.2	13.6	15.1	14.2
18	Potassium as K	АРНА 3500-К	mg/l			3.4	3.1	3.8	4.1
19	Phenolic Compounds (as C_6H_5OH)	APHA 5530 B,D	mg/l	0.001	0.002	<0.001	<0.001	<0.001	<0.001
20	Cyanide (as CN)	APHA 4500 CN ⁻ C,D	mg/l	0.05	No Relaxation	<0.01	<0.01	<0.01	<0.01
21	Anionic Detergents (as MBAS)	АРНА 5540 С	mg/l	0.2	1.0	<0.2	<0.2	<0.2	<0.2
22	Cadmium (as Cd)	APHA 3111 B,C	mg/l	0.003	No Relaxation	<0.01	<0.01	<0.01	<0.01
23	Arsenic (as As)	APHA 3114 B	mg/l	0.01	No Relaxation	< 0.004	< 0.004	< 0.004	< 0.004
24	Copper (as Cu)	APHA 3111 B,C	mg/l	0.05	1.5	<0.02	<0.02	<0.02	<0.02
25	Lead (as Pb)	APHA 3111 B,C	mg/l	0.01	No Relaxation	<0.02	<0.02	<0.02	< 0.02
26	Manganese (as Mn)	APHA 3500Mn B	mg/l	0.1	0.3	<0.03	<0.03	<0.03	<0.03
27	Iron (as Fe)	APHA 3500Fe, B	mg/l	1	No Relaxation	0.13	0.15	0.17	0.13
28	Chromium (as Cr)	APHA 3500Cr B	mg/l	0.05	No Relaxation	<0.05	<0.05	<0.05	<0.05
29	Selenium (as Se)	APHA 3114 B	mg/l	0.01	No Relaxation	<0.001	<0.001	<0.001	<0.001
30	Zinc (as Zn)	APHA 3111 B,C	mg/l	5	15	<0.01	<0.01	<0.01	<0.01
31	Aluminium as(Al)	APHA 3500Al B	mg/l	0.03	0.2	<0.1	<0.1	<0.1	<0.1
32	Mercury (as Hg)	APHA 3500 Hg	mg/l	0.001	No Relaxation	<0.004	<0.004	< 0.004	<0.004
33	Mineral Oil	APHA 5220 B	mg/l	0.5	No Relaxation	<0.001	<0.001	<0.001	<0.001
34	Pesticides	APHA 6630 B,C	mg/l	Absent		Absent	Absent	Absent	Absent
35	E.Coli	APHA 9221-F	MPN/ 100 ml	Shall not be detectable in any 100 ml sample		Absent	Absent	Absent	Absent
36	Total Coliforms	ABIONTELE	MPN/ 100 ml	Shall not be detectable in any 100 ml sample	(VISIO	TEACO	<1.1	<1.1	<1.1
Note.	CL: Colorless, AL: Agreeable	D: Not Detected			E THE	AN A	fagn errified By	naly Nag-	

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Infrastructure Enginering

- Water Resource Management
- Environmental & Social Study

• Surface & Sub-Surface Investigation Quality Control & Project Management • Renewable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Date: 05.12.2022

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Ref: VCSPL/22/R-4164

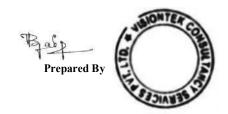
3.

4.

5.

GROUND WATER QUALITY ANALYSIS REPORT NOVEMBER-2022

1.	Name of Industry	
----	------------------	--


- 2. Sampling location
- : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga.
- GW-5: Thelkoloi Village, GW-6: Ghichamura Village,
- GW-7: Gumkarma Village, GW-8: Chalatikra Village
- Date of sampling 14.11.2022 : Date of analysis
 - 15.11.2022 to 22.11.2022 :

:

- Sample collected by :
- VCSPL Representative

SI. No.	Parameter	Testing Methods	Unit	Standard IS -1050 Amended on	00:2012		Analysis	Result	
110.				Acceptable Limit	Permissible Limit	GW-5	GW-6	GW-7	GW-8
1	pH Value at 25°C	APHA 4500H+B		6.5-8.5	No Relaxation	7.32	7.41	7.39	7.33
2	Colour	APHA 2120 B, C	Hazen	5	15	CL	CL	CL	CL
3	Taste	APHA 2160 C		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
4	Odour	APHA2510-B	µs/cm	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
5	Turbidity	APHA 2130 B	NTU	1	5	<1.0	<1.0	<1.0	<1.0
6	Total Dissolved Solids	APHA 2540 C	mg/l	500	2000	152	218	166	224
7	Total Hardness (as CaCO ₃)	АРНА 2340 С	mg/l	200	600	84	114	90	118
8	Total Alkalinity	APHA 2320 B	mg/l	200	600	88	92	96	90
9	Calcium (as Ca)	APHA 3500Ca B	mg/l	75	200	24.8	33.6	26.4	34.4
10	Magnesium (as Mg)	APHA 3500Mg B	mg/l	30	100	5.4	7.3	5.9	7.8
11	Residual, free Chlorine	APHA 4500Cl, B	mg/l	0.2	1	BDL	BDL	BDL	BDL
12	Boron (as B)	APHA 4500B, B	mg/l	2.4	No Relaxation	<0.1	<0.1	<0.1	<0.1
13	Chloride (as Cl)	APHA 4500Cl ⁻ B	mg/l	250	1000	24.2	28.1	23.9	29.6
14	Sulphate (as SO ₄)	APHA 4500 SO42- E	mg/l	200	400	5.1	5.5	4.8	5.9
15	Fluoride (as F)	APHA 4500F C	mg/l	1.0	1.5	0.36	0.33	0.28	0.35
16	Nitrate (as NO ₃)	APHA 4500 NO3 E	mg/l	45	No Relaxation	2.7	3.1	2.6	2.9
17	Sodium as Na	APHA3500-Na	mg/l			13.9	12.1	13.1	13.2
18	Potassium as K	APHA 3500-K	mg/l			3.9	6.2	5.9	4.8
19	Phenolic Compounds (as C6H5OH)	APHA 5530 B,D	mg/l	0.001	0.002	<0.001	<0.001	<0.001	<0.001
20	Cyanide (as CN)	APHA 4500 CN° C,D	mg/l	0.05	No Relaxation	<0.01	< 0.01	< 0.01	<0.01
21	Anionic Detergents (as MBAS)	APHA 5540 C	mg/l	0.2	1.0	<0.2	<0.2	<0.2	<0.2
22	Cadmium (as Cd)	APHA 3111 B,C	mg/l	0.003	No Relaxation	<0.01	<0.01	<0.01	<0.01
23	Arsenic (as As)	APHA 3114 B	mg/l	0.01	No Relaxation	<0.004	< 0.004	< 0.004	< 0.004
24	Copper (as Cu)	APHA 3111 B,C	mg/l	0.05	1.5	<0.02	<0.02	< 0.02	<0.02
25	Lead (as Pb)	APHA 3111 B,C	mg/l	0.01	No Relaxation	<0.02	< 0.02	<0.02	<0.02
26	Manganese (as Mn)	APHA 3500Mn B	mg/l	0.1	0.3	<0.03	<0.03	<0.03	<0.03
27	Iron (as Fe)	APHA 3500Fe, B	mg/l	1	No Relaxation	0.13	0.19	0.18	0.16
28	Chromium (as Cr)	APHA 3500Cr B	mg/l	0.05	No Relaxation	<0.05	<0.05	< 0.05	<0.05
29	Selenium (as Se)	APHA 3114 B	mg/l	0.01	No Relaxation	<0.001	<0.001	<0.001	<0.001
30	Zinc (as Zn)	APHA 3111 B,C	mg/l	5	15	<0.01	<0.01	<0.01	<0.01
31	Aluminium as(Al)	APHA 3500Al B	mg/l	0.03	0.2	<0.1	<0.1	<0.1	<0.1
32	Mercury (as Hg)	APHA 3500 Hg	mg/l	0.001	No Relaxation	<0.004	<0.004	< 0.004	<0.004
33	Mineral Oil	APHA 5220 B	mg/l	0.5	No Relaxation	<0.001	<0.001	<0.001	<0.001
34	Pesticides	APHA 6630 B,C	mg/l	Absent		Absent	Absent	Absent	Absent
35	E.Coli	APHA 9221-F	MPN/ 100 ml	Shall not be detectable in any 100 ml sample		Absent	Absent	Absent	Absent
36	Total Coliforms	АРНА9221-В	MPN/ 100 ml	Shall not be detectable in any 100 ml sample		<1.1	<1.1	<1.1	<1.1

Note: CL: Colorless, AL: Agreeable, ND: Not Detected.

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Infrastructure Enginering

Water Resource Management

• Environmental & Social Study

 Surface & Sub-Surface Investigation Quality Control & Project Management • Renewable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Ref: VCSPL/22/R-4165

Date: 05.12.2022

GROUND WATER LEVEL MONITORING REPORT NOVEMBER-2022

 Name of Industry Sampling Location 	 M/s Hindalco Industries Limited (Unit-Aditya Aluminium), Sambalpur GW-1:Near Ash Pond, GW-2:Near Proposed Pond, GW-3:Near RR Colony, GW-4: Bomaloi Village
3. Date of Sampling	: 14.11.2022
4. Monitoring By	· VCSPL Representative

SL No.	Date of Sampling	Name of Location	Unit	Water Level
01	14.11.2022	GW1	Mbgl	1.0
02	14.11.2022	GW2	Mbgl	7.2
03	14.11.2022	GW3	Mbgl	1.6
04	14.11.2022	GW4	Mbgl	4.4

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Infrastructure Enginering

 Water Resource Management • Environmental & Social Study

 Surface & Sub-Surface Investigation Quality Control & Project Management • Renewable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Ref: VCSPL/22/R-4166

Date: 05.12.2022

GROUND WATER QUALITY (Heavy Metals) ANALYSIS REPORT NOVEMBER-2022

1. Name of Industry 2. Sampling Location	: M/s Hindalco Industries Limited (Unit-Aditya Aluminium), Sambalpur : GW-1:Near Ash Pond,
3. Date of Sampling	: 14.11.2022
4. Date of Analysis	15.11.2022 to 22.11.2022
5. Monitoring By	: VCSPL Representative

SL No.	Parameters	Test Method	Unit	Standard	Result
01	Mercury as Hg	APHA 3112 B	Mg/l	0.001	<0.001
02	Arsenic as As	APHA 3112 B	Mg/l	0.01	<0.005
03	Lead as Pb	APHA 3112 B	Mg/l	0.01	<0.005
04	Chromium as Cr	APHA 3112 B	Mg/l	0.05	<0.01

Prepared By JIAT

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Infrastructure Enginering

Water Resource Management

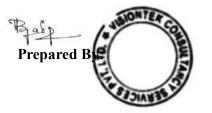
• Environmental & Social Study

• Surface & Sub-Surface Investigation Quality Control & Project Management • Renewable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Ref: VCSPL/22/R-4167


Date: 05.12.2022

GROUND WATER QUALITY ANALYSIS REPORT NOV-2022

 Name of Industry Sampling Location 	 M/s Hindalco Industries Limited (Unit-Aditya Aluminium), Sambalpur GW-1:Near Ash Pond, GW-2:Near Proposed Pond, GW-3:Near RR Colony, GW-4: Ash Pond Area Bore well
3. Date of Sampling	: 14.11.2022
4. Date of Analysis	: 15.11.2022 to 22.11.2022
5. Sample Collected By	: VCSPL Representative

SI.	Parameter	Testing Method	Unit	IS -10	ard as per 500:2012 n 2015 & 2018		Analys	is Results	
No.				Permissible Limit	Permissible Limit	GW-1	GW-2	GW-3	GW-4
1.	pH Value	APHA 4500 H ⁺ B		6.5-8.5	No Relaxation	7.41	7.52	7.29	7.34
2.	Turbidity	APHA 2130B	NTU	1	5	2.5	2.1	2.3	1.9
3.	Total Hardness(as CaCO ₃)	APHA 2340 C	mg/l	200	600	86	75	135	88
4.	Iron (as Fe)	APHA 3500 Fe B	mg/l	1.0	No Relaxation	0.23	0.19	0.22	0.21
5.	Chloride (as Cl)	APHA 4500 Cl ⁻ B	mg/l	250	1000	19	14	18	23
6.	Dissolved Solids	APHA 2540 C	mg/l	500	2000	152	108	211	146
7.	Calcium (as Ca)	APHA 3500 Ca B	mg/l	75	200	24.2	21.6	43.5	23.8
8.	Magnesium (as Mg)	APHA 3500 Mg B	mg/l	30	100	6.2	5.1	6.4	6.9
9.	Copper (as Cu)	APHA 3111Cu B	mg/l	0.05	1.5	<0.001	<0.001	<0.001	<0.001
10.	Sodium (as Na)	APHA 3500Na B	mg/l			16.1	9.7	14.3	12.6
11.	Potassium (as K)	APHA 3500 K B	mg/l			4.5	3.6	6.1	4.9
12.	Manganese (as Mn)	APHA 3111 B	mg/l	0.1	0.3	<0.005	<0.005	< 0.005	< 0.005
13.	Sulphate (as SO ₄)	APHA 4500 SO42- E	mg/l	200	400	9.1	5.5	15.2	11.7
14	Nitrate (as NO ₃)	APHA 4500 NO3 ⁻ B	mg/l	45	No Relaxation	0.86	0.52	0.61	0.44
15.	Fluoride (as F)	APHA 4500 F ⁻ D	mg/l	1.0	1.5	1.18	0.96	1.02	0.32
16.	Phenolic Compounds (as C ₆ H ₅ OH)	APHA 5530 C	mg/l	0.001	0.002	<0.001	<0.001	<0.001	<0.001
17.	Mercury (as Hg)	APHA 3112B	mg/l	0.001	No Relaxation	<0.001	<0.001	<0.001	<0.001
18.	Cadmium (as Cd)	APHA 3111 B	mg/l	0.003	No Relaxation	<0.001	<0.001	<0.001	<0.001
19.	Selenium (as Se)	APHA 3114 B	mg/l	0.01	No Relaxation	<0.001	<0.001	<0.001	<0.001
20	Arsenic (as As)	APHA 3114 B	mg/l	0.01	No Relaxation	<0.001	<0.001	<0.001	<0.001
21.	Cyanide (as CN)	APHA 4500 CN ⁻ C,D	mg/l	0.05	No Relaxation	ND	ND	ND	ND
22.	Lead (as Pb)	APHA 3111 B	mg/l	0.01	No Relaxation	<0.001	<0.001	<0.001	<0.001
23.	Zinc (as Zn)	APHA 3111 B	mg/l	5	15	<0.005	<0.005	< 0.005	<0.005
24.	Chromium (as Cr)	APHA 3500 Cr B	mg/l	0.05	No Relaxation	<0.005	<0.005	<0.005	<0.005
25.	Alkalinity	APHA 2320 B	mg/l	200	600	85	62	97	66
26.	Aluminium as(Al)	APHA 3500 Al B	mg/l	0.03	0.2	<0.001	<0.001	<0.001	<0.001
27.	Boron (as B)	APHA 4500 B	mg/l	2.4	No Relaxation	<0.001	<0.001	<0.001	<0.001

Note : ND: Not Detected ,BDL :Below Detection Limit

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Infrastructure Engineering

- Water Resource Management
- Environmental & Social Study

Surface & Sub-Surface Investigation
 Quality Control & Project Management
 Renewable Energy

Agricultural Development
 Information Technology
 Public Health Engineering

Mine Planning & Design
Mineral/Sub-Soil Exploration
Waste Management Services

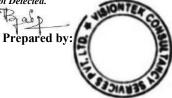
Date: 05.12.2022

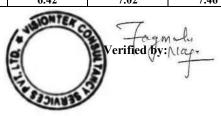
Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Ref: VCSPL/22/R-4168

SOIL QUALITY ANALYSIS REPORT NOVEMBER-2022

Name of Industry
 Date of Sampling


M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga


stry : M/s Hinda ling : 23.11.2022

- 3. Sampling Location
- S-1: Project Site; S-2: Thelkoloi; S-3: Ghichamura;
 - S-4: Lapanga; S-5: Bamloi 24.11.2022 to 30.11.2022
- Date of Analysis
 Sample Collected E
 - Sample Collected By : VCSPL representative

SI. No.	Parameters	Unit	S-1	S-2	S-3	S-4	S-5
1	P ^H at 25 ^o C		7.11	7.02	7.32	7.18	7.43
2	Conductivity		142	135	129	158	137
3	Soil Texture		Sandy Loamy	Clay Loamy	Clay Loamy	Sandy Loamy	Sandy Loamy
4	Sand	%	51.9	23.6	25.4	52.6	50.7
5	Silt	%	15.3	24.1	26.9	21.5	23.6
6	Clay	%	32.3	51.6	49.6	29.6	30.1
7	Bulk Density	gm/cc	1.79	1.42	1.64	1.52	1.66
8	Exchangeable Calcium as Ca	%	33.9	31.8	39.6	35.8	43.2
9	Exchangeable Magnesium as Mg	%	50.2	54.9	53.8	58.7	56.2
10	Available Sodium as Na	%	0.023	0.035	0.027	0.043	0.036
11	Available Potassium as K	%	0.056	0.063	0.057	0.052	0.054
12	Available phosphorous as P	%	0.026	0.029	0.027	0.023	0.036
13	Available Nitrogen as N	%	0.35	0.33	0.28	0.39	0.32
14	Organic Matter	%	4.1	6.2	4.5	3.9	4.7
15	Organic Carbon as OC	%	1.75	1.58	1.61	1.66	1.75
16	Water soluble Chlorides as Cl	%	0.31	0.36	0.29	0.25	0.31
17	Water soluble Sulphates as SO ₄	%	0.19	0.16	0.21	0.23	0.21
18	Aluminium as Al	%	0.00011	0.00016	0.00015	0.00018	0.0002
19	Total Iron as Fe	%	0.074	0.048	0.042	0.071	0.066
20	Manganese as Mn	%	0.0027	0.0024	0.0029	0.0031	0.0023
21	Boron as B	%	0.00022	0.00027	0.00031	0.00029	0.00024
22	Zinc as Zn	%	0.00035	0.00029	0.00026	0.00033	0.00029
23	Silica as SiO ₂	%	6.5	5.9	7.7	6.6	7.3
24	Ferric Oxide as Fe ₂ O ₃	%	0.049	0.055	0.053	0.047	0.046
25	Calcium Oxide as CaO	%	31.2	31.9	30.8	31.6	32.4
26	Magnesium Oxide as MgO	%	24.6	25.9	24.1	26.1	23.1
27	Aluminium Oxide as Al ₂ O ₃	%	0.00008	0.00011	0.00019	0.00024	0.00022
28	Iron Oxide as FeO	%	0.045	0.029	0.037	0.035	0.036
29	Manganese Oxide as MnO	%	0.0053	0.0024	0.0019	0.0022	0.0041
30	Potassium Oxide as K2O	%	0.0511	0.0439	0.0421	0.0511	0.0523
31	Phosphorus Oxide as P ₂ O ₅	%	0.0084	0.0082	0.0079	0.0081	0.0099
32	Fluoride as F	%	6.69	7.15	6.42	7.02	7.46

ND: Not Detected.

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511721 E-mail: visiontek@vcspl.org, visiontekin@gmail.com

Visit us at: www.vcspl.org

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Infrastructure Enginering

 Water Resource Management Environmental & Social Study

2.

• Surface & Sub-Surface Investigation Quality Control & Project Management • Renewable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Date: 05.12.2022

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Ref: VCSPL/22/R-4169

SOIL QUALITY ANALYSIS REPORT NOVEMBER-2022

1. Name of Industry Date of Sampling


M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

23.11.2022 :

:

- 3. Sampling Location
- S-6: Tileimal; S-7: Jangala; S-8: Gurupali; S-9: Gumkarama; : S-10: Bhadarpali.
- 4. Date of Analysis
- 24.11.2022 to 30.11.2022 : :
- 5. Sample Collected By
- VCSPL representative

Sl. No.	Parameters	Unit	S-6	S-7	S-8	S-9	S-10
1	P ^H at 25 ⁰ C		7.36	7.29	6.89	7.32	7.28
2	Conductivity		142	129	147	128	123
3	Soil Texture		Clay	Sandy	Sandy	Sandy	Clay
3	Son Texture		Loamy	Loamy	Loamy	Loamy	Loamy
4	Sand	%	25.6	47.2	49.3	50.1	26.5
5	Silt	%	26.4	19.2	20.1	18.6	19.8
6	Clay	%	60.5	36.4	37.8	35.2	52.1
7	Bulk Density	gm/cc	1.69	1.72	1.45	1.58	1.84
8	Exchangeable Calcium as Ca	%	46.5	45.8	44.2	49.6	42.1
9	Exchangeable Magnesium as Mg	%	51.4	52.6	56.9	61.4	57.6
10	Available Sodium as Na	%	0.029	0.031	0.033	0.035	0.029
11	Available Potassium as K	%	0.059	0.051	0.053	0.047	0.055
12	Available phosphorous as P	%	0.029	0.022	0.024	0.026	0.031
13	Available Nitrogen as N	%	0.35	0.37	0.39	0.28	0.26
14	Organic Matter	%	4.3	3.9	4.2	4	3.9
15	Organic Carbon as OC	%	1.58	1.81	1.79	1.74	1.32
16	Water soluble Chlorides as Cl	%	0.36	0.33	0.31	0.42	0.38
17	Water soluble Sulphates as SO ₄	%	0.25	0.27	0.18	0.22	0.2
18	Aluminium as Al	%	0.00016	0.00012	0.00021	0.00019	0.00015
19	Total Iron as Fe	%	0.058	0.049	0.061	0.055	0.053
20	Manganese as Mn	%	0.0021	0.0031	0.0026	0.0022	0.0031
21	Boron as B	%	0.00021	0.00023	0.00028	0.00031	0.00024
22	Zinc as Zn	%	0.00028	0.00026	0.00028	0.00021	0.00023
23	Silica as SiO2	%	6.8	7.4	6.5	7.2	6.8
24	Ferric Oxide as Fe ₂ O ₃	%	0.033	0.039	0.036	0.045	0.041
25	Calcium Oxide as CaO	%	30.6	31.7	31.2	31.5	32.1
26	Magnesium Oxide as MgO	%	21.9	28.7	26.5	20.5	23.1
27	Aluminium Oxide as Al ₂ O ₃	%	0.00037	0.00034	0.00026	0.00024	0.00028
28	Iron Oxide as FeO	%	0.0185	0.0179	0.0186	0.0211	0.021
29	Manganese Oxide as MnO	%	0.0023	0.0025	0.0027	0.0019	0.0023
30	Potassium Oxide as K ₂ O	%	0.0413	0.0425	0.0513	0.0378	0.0481
31	Phosphorus Oxide as P ₂ O ₅	%	0.0084	0.0093	0.0094	0.0092	0.0086
32	Fluoride as F	%	7.38	6.71	TEATER	6.88	6.92

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Infrastructure Engineering

Water Resource Management
 Environmental & Social Study

Environmental & Social Stud

Surface & Sub-Surface Investigation
 Quality Control & Project Management
 Renewable Energy

Agricultural Development
 Information Technology
 Public Health Engineering

Mine Planning & Design
Mineral/Sub-Soil Exploration
Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Ref: VCSPL/22/R-4172

Date: 05.12.2022

NOISE MONITORING REPORT NOVEMBER-2022

- 1. Name of Industry : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga
- 2. Monitored By : VCSPL representative

Daytime Noise monitoring results (Noise Level in dB (A) NOVEMBER-2022

TIME (6.00AM to 9.00PM)	N1:Gumkarma (08.11.2022)	N2:Ghichamura (08.11.2022)	N3:Bomaloi (15.11.2022)	N4:Tileimal (15.11.2022)	N5:Thelkoli (22.11.2022)	N6:Khadiapali (22.11.2022)	N7:Kapilas (29.11.2022)	N8:Phulchanghal (29.11.2022)
06.00am	48.6	50.2	44.6	45.8	48.6	54.8	45.6	44.6
07.00am	46.7	50.1	49.8	48.6	49.7	53.4	44.9	47.8
08.00am	50.2	50.6	50.2	49.7	52.5	53.9	46.1	47.9
09.00am	51.9	51.4	54.6	49.2	57.1	52.1	45.8	46.5
10.00am	53.4	52.9	53.1	48.7	58.6	52.8	47.6	48.2
11.00am	49.8	52.1	54.8	49.3	52.8	51.4	46.2	49.5
12.00 noon	46.7	52.3	49.6	48.5	50.1	51.6	48.5	47.8
01.00pm	48.2	51.8	52.5	47.2	55.1	50.9	47.9	49.2
02.00pm	52.6	52.9	53.6	46.5	59.6	51.1	49.2	48.3
03.00pm	48.7	54.1	52.9	45.9	54.2	50.4	48.5	50.5
04.00pm	51.3	53.6	54.1	49.7	50.9	49.9	47.6	51.4
05.00pm	51.9	52.4	53.3	49.2	52.8	51.2	49.3	52.1
06.00pm	53.4	53.2	54.2	51.2	56.4	50.9	48.9	51.6
07.00pm	50.1	52.1	51.6	50.9	54.8	51.6	47.5	52.8
08.00pm	51.7	53.7	54.1	51.8	53.5	51.5	48.3	53.3
09.00pm	52.6	50.1	54.6	52.5	54.1	52.4	47.2	52.6
Average	50.5	52.1	52.4	49.0	53.8	51.9	47.4	49.6
Standard as per CPCB				55				

Night time Noise monitoring results (Noise Level in dB (A) NOVEMBER-2022

TIME (10.00PM to 5.00AM)	N1:Gumkarma (08.11.2022)	N2:Ghichamura (08.11.2022)	N3:Bomaloi (15.11.2022)	N4:Tileimal (15.11.2022)	N5:Thelkoli (22.11.2022)	N6:Khadiapali (22.11.2022)	N7:Kapilas (29.11.2022)	N8:Phulchanghal (29.11.2022)
10.00pm	44.5	42.9	43.1	44.6	47.5	44.5	39.9	43.6
11.00pm	44.9	41.1	44.6	44.9	46.1	43.9	38.6	44.1
12.00 Midnight	41.8	40.5	42.9	43.7	43.6	43.8	39.1	43.5
01.00am	40.2	38.6	43.1	42.5	42.1	42.7	38.9	42.6
02.00am	40.1	40.3	42.1	42.6	42.9	42.9	39.8	41.7
03.00am	41.5	39.2	41.6	41.5	43.1	44.1	39.6	41.3
04.00am	43.6	41.7	43.2	44.9	43.6	44.6	39.4	42.1
05.00am	44.7	42.5	43.7	43.8	44.5	44.8	39.7	43.5
Average	42.7	40.9	43.0	43.6	44.2	43.9	39.4	42.8
Standard as per CPCB		1	1	45	;	1		1

Visit us at: www.vcspl.org

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Infrastructure Enginering

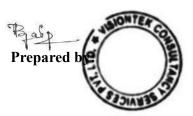
Water Resource Management

• Environmental & Social Study

• Surface & Sub-Surface Investigation • Quality Control & Project Management • Renewable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab


Ref: VCSPL/22/R-4173

Date: 05.12.2022

FORAGE FLUORIDE ANALYSIS REPORT NOVEMBER-2022

1	Name of Industry	:	M/s Hindalco Industries Ltd, (Unit-Aditya Aluminium); Lapanga
2	Date of Sampling	:	23.11.2022 & 24.11.2022
3	Date of Analysis	:	25.11.2022 to 27.11.2022
4	Name of the Sample	:	Vegetation Sample
5	Sample Collected By	:	VCSPL Representative

Date of Sampling	Name of the Location	Type of Species	Scientific Name	Method of Analysis	Result (PPM)
23.11.2022	Bomaloi	Bela Tree, Rice Plant	Aegle marmelo, Oryza Sativa	AOAC 975.04	1.6
23.11.2022	Gurupali	Duba Ghasa, Neem Tree	Cynodon dactylo, Azadirachta Indica	AOAC 975.04	1.5
23.11.2022	Plant Site	Sisu Tree, Duba Ghasa	Dalbergia sissoo, Cynodon dactylon	AOAC 975.04	2.4
23.11.2022	Thelkolai	Bamboo Tree, Rice Plant	Pongame oil tree, Cynodon dactylon	AOAC 975.04	1.9
23.11.2022	Gumukarma	Bamboo Tree, Rice Plant	Bambusoideae, Oryza Sativa	AOAC 975.04	2.3
23.11.2022	Ghichamura	Baulakoli Tree, Rice Plant	Mimusops elengi, Oryza Sativa	AOAC 975.04	1.3
23.11.2022	Tileimal	Rice Plant, Duba Ghasa	Oryza Sativa, Cynodon dactylon	AOAC 975.04	1.2
23.11.2022	Lapanga	Neem tree, Rice Plant	Azadirachta indica, Oryza Sativa	AOAC 975.04	2.0
23.11.2022	Jangala	Duba Ghasa, Rice Plant	Cynodon dactylon, Oryza Sativa	AOAC 975.04	1.4
23.11.2022	Bhadrapali	Karanj Tree, Duba Grass, Rice Plant	Pongame oil tree, Cynodon dactylon, Oryza Sativa	AOAC 975.04	1.3

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Infrastructure Enginering

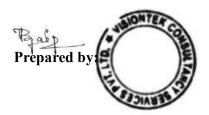
Water Resource Management

• Environmental & Social Study

• Surface & Sub-Surface Investigation • Quality Control & Project Management • Renewable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab


Ref: VCSPL/22/R-4174

Date: 05.12.2022

FORAGE FLUORIDE ANALYSIS REPORT FEBRUARY-2023

1	Name of Industry	:	M/s Hindalco Industries Ltd, (Unit-Aditya Aluminium); Lapanga
2	Date of Sampling	:	13.02.2023 & 14.02.2023
3	Date of Analysis	:	15.02.2023 to 17.02.2023
4	Name of the Sample	:	Vegetation Sample
5	Sample Collected By	:	VCSPL Representative

Date of Sampling	Name of the Location	Type of Species	Scientific Name	Method of Analysis	Result (PPM)
13.02.2023	Bomaloi	Bela Tree, Rice Plant	Aegle marmelo, Oryza Sativa	AOAC 975.04	1.9
13.02.2023	Gurupali	Duba Ghasa, Neem Tree	Cynodon dactylo, Azadirachta Indica	AOAC 975.04	1.3
13.02.2023	Plant Site	Sisu Tree, Duba Ghasa	Dalbergia sissoo, Cynodon dactylon	AOAC 975.04	2.6
13.02.2023	Thelkolai	Bamboo Tree, Rice Plant	Pongame oil tree, Cynodon dactylon	AOAC 975.04	1.9
14.02.2023	Gumukarma	Bamboo Tree, Rice Plant	Bambusoideae, Oryza Sativa	AOAC 975.04	2.2
14.02.2023	Ghichamura	Baulakoli Tree, Rice Plant	Mimusops elengi, Oryza Sativa	AOAC 975.04	1.5
14.02.2023	Tileimal	Rice Plant, Duba Ghasa	Oryza Sativa, Cynodon dactylon	AOAC 975.04	1.4
13.02.2023	Lapanga	Neem tree, Rice Plant	Azadirachta indica, Oryza Sativa	AOAC 975.04	2.3
14.02.2023	Jangala	Duba Ghasa, Rice Plant	Cynodon dactylon, Oryza Sativa	AOAC 975.04	1.3
14.02.2023	Bhadrapali	Karanj Tree, Rice Plant	Pongame oil tree, Oryza Sativa	AOAC 975.04	1.1

Reference: - MoEF&CC Office memorandum F. No. IA3-22/8/2021-1A.III [150512] dated 18/07/2022 <u>Glimpses of Sensitization & Awareness of ban on Single Use Plastic Inside Plant,</u> <u>Township and Nearby Villages</u>

SUP Ban Awareness in Tileimal Upgraded primary school.

SUP Ban Awareness in Benjipali village

Reference: - MoEF&CC Office memorandum F. No. IA3-22/8/2021-1A.III [150512] dated 18/07/2022

Reference: - MoEF&CC Office memorandum F. No. IA3-22/8/2021-1A.III [150512] dated 18/07/2022

SUP Ban Awareness to Workmen inside Plant & Township

SUP Ban Awareness Boards displayed at common Places.

Reference: - MoEF&CC Office memorandum F. No. IA3-22/8/2021-1A.III [150512] dated 18/07/2022

	HINDALCO Date: 25.07.2022
	OFFICE ORDER
Subject	: Discontinuation of Single Use Plastic ("SUP") items.
Dear Co	olleague,
conscio consun	all know, plastic items are not good for sustainable environment. We are hereby making a sus effort in accordance with the Plastic Waste Amendment Rule, 2021 to refuse/ reduce the option of plastic items, including packaging but wherever unavoidable will be separately binned ever rejected), collected and send it to disposal for its proper recycling.
stakeh townsl	regularly creating awareness campaigns for all our employees, family members, vendors and olders to reduce the generation of plastic waste. For safer, healthier and inclusive plant and ip for all we hereby prohibit the following plastic items inside the plant and all public building va Aluminium effective immediately.
1.	Thermocol/ Plastic items like plates, cups, glasses, cutlery such as forks, spoons, knives,
	straws, etc.
	Barricading strips
	Plastic Folders
	Plastic sample bags
	Mineral Water Bottles
	Single use plastic bottles for drinking purposes
	Plastic used for packing of motors/ value
	Gift wrapping plastic films
	Plastic carry bag Plastic or PVC banners (Flex Banners)
	i instructions shall be given to vendors while procuring items to substitute single use plastic ing with sustainable options. All are requested to cooperate and use alternate biodegradable
substit	
Thanki	ng You
Yours f	aithfully
1	
-<	
Dr. Viv	ekanand Mishra h-
Vice Pr	resident and HR Head
	Hindakso industries Limited
	Aditya Aluminium: AL/P.O.: Lapanga - 768 212, District: Sambalput, Odisha, India
	T. +91.663.2536.247 Fax: +91.663.2536.499 E: hindalcolikadityabirla.com W: www.hindalco.com Registered Ciffice: Anuna Centre, NJ Floor, B-Wing, Mahakali Caves Road, Andhen (East), Mumbai 400.093
	Tel: +9122 66917000 [Fax: + 91222 66917001 Corporate ID No: L27020MH1958PLC011238

SUP Ban Communication to Employee, Workmen and Contactors