

Letter No: AAP/E&S/EC/2022/ 863

Date: 21/11/2022

The Director Eastern Regional Office Ministry of Environment & Forests A/3, Chandrashekharpur Bhubaneswar – 750 023 (Odisha)

Sub: Submission of Six Monthly Compliance from April' 22 to September' 22.

Ref: Environmental Clearance Letter No: J-11011/136/2009-IA. I (I), dated 29/11/2012, J-11011/136/2009-IA. II (I), dated 14/06/2013, J-11011/136/2009-IA. II (I), dated 14/08/2018 & J-11011/136/2009-IA. I (I) dated 20/07/2020 and 12/08/2022.

Dear Sir,

As a part of the compliance to the Environmental Clearance accorded by MoEF&CC to Aditya Aluminium for 0.72 MTPA Smelter and 1650 MW CPP at Lapanga in Sambalpur district, please find enclosed herewith the six monthly compliance reports of aluminium smelter and captive power plant for the period April' 22 to September' 22.

Kindly acknowledge receipt of the reports.

Thanking You

Yours faithfully For Aditya Aluminium

Saner Wayak

(Sameer Nayak) President & Unit Head

Copy for kind information to:

- 1. The Member Secretary, SPCB, Bhubaneswar
- 2. The Regional Director, Zonal office of CPCB, Kolkata
- 3. The Regional Officer, SPCB, Sambalpur

Hindalco Industries Limited

Aditya Aluminium: At/P.O.: Lapanga - 768 212, District: Sambalpur, Odisha, India T: +91 663 2536 247 | Fax: +91 663 2536 499 | E: hindalco@adityabirla.com | W: www.hindalco.com Registered Office: Ahura Centre, 1st Floor, B-Wing, Mahakali Caves Road, Andheri (East), Mumbai 400 093 Tel: +91 22 6691 7000 | Fax: + 91 222 6691 7001 Corporate ID No.: L27020MH1958PLC011238

Name of the Project		:	M/s. Aditya Aluminium (A Division of Hindalco Industries Ltd.) at village: Lapanga, Tehsil: Rengali, District: Sambalpur (Odisha).
Environment Clearance Letter No and date		:	J-11011/136/2009-IA.II(1), Dated 29 th November 2012, EC amendment dated 14 th June 2013,14 th Aug 2018, 20 th July 2020 & 12 th August 2022. For 7,20,000 TPA ALUMINIUM SMELTER & 1650
Period	of Compliance Report	:	April 2022 to September 2022
Sr. No.	r. Specific Conditions		Compliance Status
i)	The streams passing through the project site not be disturbed w.r.t their quantity and qu of flow.	sha alit	II The streams passing through the project site is not being disturbed.
ii)	Alumina shall be obtained from those refine which have been accorded environme clearance by the Ministry of Environment Forests.	eries enta an	 Alumina is being obtained from refineries which have been accorded environmental clearance. At Present, the Alumina is being obtained from Utkal Alumina International Limited (UAIL), Rayagada Distt. and it has been accorded environmental clearance from MoEFCC. We have kept an option of importing Alumina in case of any shortage in supply from the above source.
iii)	The gaseous emissions (PM, SO ₂ , NOx, PAH, VOCs and Fluoride) from various process of shall confirm to the standards prescribed by concerned authorities from time to time. SPCB may specify more stringent standards the relevant parameters keeping in view nature of the Industry and its size and loca At no time the emissions level should go bey the prescribed standards. In the event of fa of any pollution control system adopted by unit, the respective unit should not be resta until the control measures are rectified achieve the desired efficiency. The particulate emissions from the bake of plant shall not exceed 50 mg/Nm ³ .	HC unit th Th fo th ilur th ilur th to ve	C.OnlineMonitoringequipmentshavebeeninstalled at the outlet of following stacks foremonitoring of particulate matter and gaseouseemissions. The online data has been connectedto the Servers of OSPCB and CPCB.a)a)smelter GTC 1 & 2- 2 Nos.b)Smelter FTC 1 & 2 - 2 Nos.c)c)CPP Unit 1 to 6- 6 Nos.eadparticulate matter emission from the bake ovendoes not exceed the prescribed limit of 50mg/Nm3. The summarized monitoring reportw.r.t. particulate matter emission from April2022 to September 2022 in Anode bakingFurnace stacks of stated belowStackPM Emission (mg/Nm3)attached to(Min)(Min)(Max)(Avg)FTC # 16.811.28.96FTC # 25.913.68.89The monitoring report of Fume treatment Plantstacks is attached as Annexure-1.

iv)	Particulate fluoride emissions should not be more than 0.65 mg/Nm3 and fugitive particulate fluoride emissions from pot room should not be more than 1.85 mg/Nm ³ .	Online monitor Centre (GTC) a installed for m (HF), Particulat fluoride emissio is within th summarized September 202	ring equi nd Fume nonitorin te Matte on from t ne pres report 2 is state	pment at Treatment g of Hyd r (PM). the gas tre cribed s from Append below:	Gas Treatment nt Centre (FTC) rogen Fluoride The particulate eatment system standard. The pril 2022 to
		Stack attached to	Particu	late Fluor (mg/Nr	ide Emission n3)
			(Min)	(Max)	(Avg)
		GTC # 1	0.10	0.11	0.11
		GTC # 2	0.10	0.11	0.10
		The average emission from September 20 produced.	fugitive pot rooi)22 is	e partici ms during 0.06 kg/	ulate fluoride g April 2022 to ton of metal
		The monitoring stacks is attached	g reports ed as Anr	of Gas Tre nexure-2.	eatment Centre
v)	The poly aromatic hydrocarbons (PAH) from the carbon plant (anode bake oven) should not exceed 2 mg/Nm ³ . The data on PAH should be monitored quarterly and report submitted regularly to the Ministry/Regional Office at Bhubaneswar and SPCB.	The poly aroma carbon plant monitored on the standard. (f	atic hydro (anode quarterly Ref: Anne	ocarbons bake ov basis an exure 1).	(PAH) from the en) are being d found within
vi)	In plant, control measures like fume extraction and dust extraction system for controlling fugitive emissions from all the materials handling/transfer points shall be provided to control dust emissions. Fugitive Fluoride emissions from the pot room and in the forage around the smelter complex and the data submitted regularly to the Ministry Regional Office at Bhubaneswar and SPCB.	Fume Extractic furnace, Gas Tr and bag filters Anode Baking, carbon recycli cathode sealin coal handing, power plant is emissions.	on Centre reatment in raw Roding ng area g shop o ash hau installed	e (FTC) in Plant (G material areas, l butts butts etc in sm ndling pla to contro	Anode Baking GTC) in potlines handling, GAP, bath recycling, recycling area, elter area and ant in captive ol fugitive dust
	Further dry scrubbing system to control the emissions from the pot lines should be provided.	Online Roof Top Fugitive fluoric the concentra- varies betweer and average is 0 September 200 report during Annexure-3. Forage fluoride	o Monito le (HF) r tion of n 0.223 r 0.258 mg 22. The these e analysi	ring analy monitoring hydrogen mg/m3 to ;/m3 durin daily ave period is s around	zer installed for g in potrooms, fluoride (HF) o 0.306 mg/m3 ng April 2022 to erage emission s attached as the smelter is
		being carriedo	ut on c	quarterly	basis and the

		concentratio	on of the forage fluor	ide (analysed in
		August 2022	2) are listed below:	. ,
			,	
		Location	Species	Fluoride (in ppm)
		Bomaloi	Aegle marmelos, Oryza Sativa,	1.8
		Gurupali	Cynodon dactylon, Azadirachta Indica	1.4
		Plant Site	Dalbergia Sissoo, Cynodon dactylon	2.8
		Thelkolai	Pongame oil tree, Cynodon dactylon	1.7
		Gumukarma	Bambuso ideade, Oryza Sativa	2.1
		Ghichamura	Mimusops elengi, Orvza Sativa	1.2
		Tileimal	Oryza Sativa, Cynodon dactylon	1.3
		Lapanga	Azadirachta Indica Oryza Sativa	2.1
		Jangala	Cynodon dactylon, Oryza Sativa,	1.1
		Bhadrapali	Pongame oil tree Cynodon dactylon, Oryza Sativa,	1.2
		Dry scrubbi treatment c pot room to	ng system is being p entre (GTC) to each o control fugitive emiss	provided as gas f the pots in the sion.
vii)	Electrostatic Precipitators (ESP) will be provided to Captive Power Plant (CPP) to control particulate emissions below 50 mg/Nm3. The company shall provide bag filters, dry scrubbing system and dust suppression system to	Electrostation efficiency in (CPP) to res mg/Nm ³ . Two nos.	c Precipitators (ESP s installed in Captiv strict particulate emis of Gas Treatment) of adequate ve Power Plant ssions within 50 Centre (GTC)
	control all the emissions including fluoride emissions from all melting and casting units. Tar, Dust and fluoride in the fumes shall be controlled in baking furnace by providing dry scrubber. The emissions shall conform to the standards prescribed by the Ministry CPCB/SPCB whichever is more stringent.	provided a Besides, Ba handling & treatment o Baking Furr gaseous ar during Anoo	nd connected to e g filters installed in a transfer points in centre (FTC) provided naces to treat the ta nd particulate fluori de Baking.	Aach 180 pots. all the material Smelter. Fume to each Anode ar fumes, dust, ides generated
		The results units from stated below	of the stack emission April 2022 to Sept N:	n from the CPP ember 2022 is

		CPP Stack	PM E	mission (mg	(/Nm3)
			(Min)	(Max)	(Avg)
		CPP 1	41.3	43.4	42.7
		CPP 2	41.6	43.6	42.9
		CPP 3	40.4	43.0	41.8
		CPP 4	42.7	46.2	44.1
		CPP 5	40.5	43.4	42.2
viii)	Provision for installation of FGD shall be provided for future use.	Installation o in CPP Unit-6 started after	f Semi-dry and Comr obtaining 1	FGD system rissioning ac the CTO orde	43.3 is completed ctivities will be er from SPCB.
ix)	Three tri-flue and one bi-flue stack of 275 m height with flue gas velocity not less than 22 m/s shall be installed and provided with continuous online monitoring equipment's for SO ₂ , NO _x , and PM ₁₀ .	Two (02) nu height is inst stacks will be Continuous installed for all the stacks flue gas is be	umbers of alled in ph e installed emission r monitorin s of CPP an ing mainta	tri-flue stan base-I, anoth during Phase nonitoring s g of SO ₂ , NC nd the veloc bined above	cks of 275 m er two nos. of e-II. ystem (CEMS) Dx, and PM in city of the exit 22 m/s.
x)	Adequate dust extraction system such as cyclones/ bag filters and water spray system in dusty areas such as in coal handling and ash handling points, transfer areas and other vulnerable dusty areas shall be provided.	Dust extract suppression handling pl Captive Pow	ion systen (DFDS) s ant and er Plant.	ns (DE) and system insta ash handlir	Dry fog dust alled in coal ng system of
xi)	xi) Utilization of 100% fly ash generated shall be made from 4 th year of operation. Status of implementation shall be reported to the Regional Office of the Ministry from time to time.		ted is bein to M/s M/s ACC, for cemen og Ash to fly ash br t of low ly remises w a. The low- as per the reas and A Odisha.	ng utilized Ultratecl , Bargarh a t manufactu the brick n ick units ar ving areas w ith the prio lying areas Guideline fo Abandoned	by means of h Cements, nd M/s OCL, uring. Also we manufactures, nd utilizing for with ash inside or approval of is being filled- or Reclamation Quarries with
		 The efforts I utilization as Increase Ultratech Unit; M/s Use in ov plant & manufact Low Iving 	stated bel supply to , Jharsugu OCL, Rajg vn ash brid increased curing Unit	e for achiev ow: Cement Pl da unit; M/s angpur Unit ck unit insta supply to t s elopment. as	ing target ash lants like M/s s ACC, Bargarh lled inside the he local brick sh dyke raising

		 and road making inside and premises A dedicated team is working areas of Ash utilization I Abandoned mines/q infrastructure projects etc. 	d outside the plant ng to explore more ike Road making, uarry filling,
		Fly ash dispatched through Rakes to various cement ma (Dalmia Cement, Shree Cemer Ambuja, Nuvoco vistas et manufacturing. This has result utilization.	BOXN Wagon in anufacturing units nt, Ultratech, ACC, tc.) for cement red increase in ash
		The status of ash utilization fo	r the period from
		April 2022 to September 2022	is stated below:
		April' 22 to September' 22	Quantity in MT
		Total Ash Utilised	740539
		Utilization (%)	107.18%
		Details of the ash utilization f	rom April 2022 to
		September 2022 is attached as	Annexure- 4.
xii)	Fly ash shall be collected in dry form and storage facility (silos) shall be provided. Unutilized ash shall be disposed-off in the ash pond in the form of slurry. Mercury and other heavy metals (Ag, Hg, Cr, Pb etc) will be monitored in the bottom ash and also in the effluent emanating from the existing ash pond. No ash shall be disposed-off in low laying area.	Fly ash & bottom ash are coll and 3x2500 MT Fly ash silo bottom ash silo have been exploring maximum utilizati unutilized ash is being discha pond through High Concentrati (HCSD) system, which is the r friendly conveying system Monitoring of Mercury and of (Ag, Hg, Cr, Pb etc) is being do and bottom ash. The analysis as Annexure-5.	ected in dry form and 1x3000 MT installed. We are on of Ash and arged to the Ash ion Slurry Disposal most environment n at present. ther heavy metals one for the fly ash report is enclosed
		The ash filling in the low lyin plant premises is being carrie the guideline for disposal/util for reclamation of Low Lyin stowing of Abandoned mine CPCB guideline published in Ma	ig area inside the d out in line with lization of fly ash ng Areas and in es/Quarries. (Ref: arch 2019).
xiii)	Fluoride (as F) consumption shall be less than 10 kg/ton of Aluminium produced as specified by the CREP.	The specific fluoride (as F) con period April 2022 to Septem kg/ton of Aluminium produced	nsumption for the Iber 2022 is 7.29 I.
xiv)	Anode butts generated from the pots shall be	Anode butts generated from	the pots is being
	cleaned and recycled to the Anode Plant.	cleaned and recycled compl green anode in green anode pl	etely for making ant.
	The spent pot lining generated from the smelter	The Carbon part of SPL is beir	ig supplied to M/s

	shall be properly treated in spent pot lining treatment plant to remove fluoride and cyanide and disposed-off in secured landfill.	Green Energy Limited, Sambalpur for reprocessing/detoxification and in this way the carbon part is completely recycled. M/s Re Sustainability 1td has established the
	The location and design of the land fill site shall be approved by the SPCB as per the Hazardous Waste (Management, Handling and Trans- boundary Movement) Rules, 2008. Leachate collection facilities shall be provided to the secured land fill facilities (SLF).	facility for detoxification and disposal as per the protocol given by CPCB in its CHW-TSDF at kanchichuhan, Dist- Jajpur site. M/s Re Sustainability Ltd has started lifting the refractory part of SPL for the trial run permission given by OSPCB. Around 14500 MT SPL
	The dross shall be recycled in the cast house.	stock till end of September- 2022 and kept inside
	STP sludge shall be utilized as manure for greenbelt development.	disposal to CHW-TSDF/Actual users.
	All the used oil and batteries shall be sold to the authorized recyclers/ re-processors.	We are waiting for OSPCB Consent/ Permission to M/s Re Sustainability Ltd. For regular lifting of SPL Refractory materials to their CHW-TSDF. Besides, we are also exploring the option for co- processing of SPL in cement plants. We have applied for issue of Consent to Establish (CTE) for the proposed SPL Crushing & Screening Unit at Aditya Aluminium. The crushed SPL will be supplied to authorized Cement Plants for co- processing in cement kiln.
		The location and design of the land fill site has been prepared as per the Hazardous Waste (Management, Handling and Trans-boundary Movement) Rules, 2008 and approved from SPCB.
		The dross recycling is being done in the inhouse dross processing unit and the residue generated is sent to OSPCB authorized reprocessing for manufacture of Alum/synthetic slag.
		STP is in operation at township & Plant area separately, the sludge generated is being used for gardening/greenbelt development.
		The used oil and batteries are being sold/supplied to authorized recyclers/reprocessors only.
xv)	As proposed, spent pot lining waste shall also be provided to cement and steel industries for further utilization.	The Carbon part of SPL is being supplied to the OSPCB authorized recycler M/s Green Energy Resources, Sambalpur.
		We have applied for issue of Consent to

xvi)	Ash pond shall be lined with HDP/LDPE lining or any other suitable impermeable media such that no leachate takes place at any point of time. Adequate safety measures shall also be implemented to protect the ash dyke from getting breached. Ash pond water shall be recirculated and reused.	Establish(CTE) for the proposed SPL Crushing & Screening Unit at Aditya Aluminium. The crushed SPL will be supplied to authorized Cement Plants for co-processing in cement kiln. The ash pond is provided with HDPE liner and adequate safety measures have been taken to minimize the risk to the ash dyke. The ash disposal through HCSD system to the ash pond started from January 2017. The decanted water from the ash pond is being completely recycled and reused for ash disposal.
		The ash pond and water decantation system is constructed in line with the design & drawings provided by NIT-Rourkela. The assessment of safety, strength and stability of ash dyke has been checked by Dr. CR Patra of NIT Rourkela and at present condition it is found, the dyke is stable,safe and has sufficient material strength.
xvii)	Cycle of concentration (CoC) of 5.0 shall be adopted.	We are maintaing the average CoC of cooling tower above 5.
xviii)	Regular monitoring of ground water shall be carried out by establishing a network of existing wells and constructing new piezometers.	Regular monitoring of ground water is being carried out through establishing a network of existing wells and constructing two nos new piezometer wells near ash pond areas and the analysis report is enclosed as Annexure-6.
	Monitoring around the ash pond area shall be carried out particularly for heavy metals (Hg, Cr, As, Pb) and records maintained and submitted to the regional office of this Ministry. The data so obtained should be compared with the baseline data so as to ensure that the ground water quality is not adversely affected due to the project.	Monitoring of heavy metals (Hg, Cr, As, Pb) around the Ash pond area is being carried and record maintained. Please refer annexure-5 for the analysis report.
xix)	Regular ground water monitoring shall be carried out by installing peizometers all around the secured land fill site in consultation with the SPCB, Central Ground Water Authority and State Ground Water Board and data submitted to the Ministry's Regional Office and SPCB.	Secured landfill (SLF) has not yet been established inside the plant. Therefore, ground water quality monitoring shall be carried out after establishment of the SLF.
xx)	Total water requirement for the expansion from Hirakud Reservoir shall not exceed 5,200 m3/hr and prior permission for the existing and proposed expansion shall be obtained from the concerned department before commissioning of the plant	No additional fresh water will be sourced from Hirakud Reservoir for the proposed expansion. The water requirement estimated for the expansion is within 52.73 cusec, as approved.
	All the effluent including from the cooling tower and de-mineralization plant shall be treated in	mineralization plant is being treated in Double Stage RO based effluent treatment plant and is being reused/reutilized in the process of CPP.

	the offluent treatment plant and treated offluent	
	shall be recycled/reutilized in the process in smelter and CPP and also for fire protection, dust suppression, greenbelt development etc.	Separate Sewage Treatment Plant (STP) is installed @ capacity 25 m ³ /hr for Smelter & Captive Power Plant, STP of 300 KLD capacity is installed at Township area and the treated water
	treatment plant (STP) and treated in sewage waste water will be used for greenbelt development.	being used for greenbert development.
xxi)	No effluent shall be discharged outside the premises of smelter during non-monsoon period and shall be discharged during the monsoon period only after treatment and meeting the norms of the OSPCB/CPCB.	We are operating a Double Stage Reverse Osmosis based effluent treatment plant (ETP) of 300 m ³ /hr capacity and therefore no effluent water is being discharged to outside without treatment from Smelter.
xxii)	Greenbelt of adequate width and density around the project site shall be developed in 33% area in consultation with the DFO as per the CPCB guidelines having density of 2,000 trees/Ha.	Aditya Aluminium has developed 33% Greenbelt over an area of 1098 acres inside the plant, ash pond area and township areas. Around 7,01,930 saplings planted till September 2022.
xxiii)	Occupational Health Surveillance of the workers should be done on a regular basis and records maintained as per the Factories Act.	Occupational Health Surveillance of the workers is being done as per the Odisha Factories Act.
xxiv)	The company shall develop rain water structures in the township area for recharge of ground water in consultation with the Central Ground Water Authority/Board.	Rain water recharging arrangement is being made in the township buildings, besides a rain water harvesting pond (60,000 cum capacity)has been developed inside the township area. A rain water harvesting scheme has been submitted to CGWA for approval vide our letter no. AA/E&F/EC/2016/131, dated 09/04/2016.
xxv)	Rehabilitation and Resettlement Action Plan as prepared and submitted to the State Govt. shall be implemented as per the R & R Policy of the State Government.	Rehabilitation and Resettlement Action Plan is being implemented as per the R & R policy, 2006 of the State Govt.
	All the recommendations mentioned in the R&R Plan shall be strictly followed including suitable employment and other facilities to all the oustees.	All the recommendations mentioned in the R&R plan are being followed/complied.
xxvi)	All the recommendations made in the Charter on Corporate Responsibility for Environment Protection (CREP) for the Aluminium Sector shall be strictly implemented.	All the conditions of CREP guideline for Aluminium sector is being followed. The point wise compliance to the CREP guideline is attached as Annexure-7.
xxvii)	The company shall adopt well laid down corporate policy and identified and designate responsible officers at all levels of its hierarchy for ensuring adherence to the policy and compliance with environmental clearance, environmental laws and regulations.	The company has adopted a well laid down Corporate Environment Policy. The Environment policy has been revised and approved by the Board on 30 th June 2020. The copy of the revised environment policy is attached as Annexure-8.
xxviii)	All the commitments made to the public during public hearing /public consultation meeting held	All the commitments made to the public during public hearing/public consultation meeting held

	on 2 nd march 2012 should be satisfactorily implemented and a separate budget for implementing the same should be allocated and information submitted to the Ministry's Regional Office at Bhubaneswar	on 2 nd march 2012 is being complied. (Status of implementation is enclosed as Annexure-9).
xxix)	At least 5% of the total cost of the project shall be earmarked for towards the Enterprise Social Commitment and item-wise details along with time bound action plan should be prepared and submitted to the Ministry's office at Bhubaneswar. Implementation of such program should be ensured accordingly in a time bound	The expenses under Enterpise Social Commitment (ESC) till Sep-2022 is Rs 63.97 Crores.The details of the expenditure made under Enterpise Social Commitment (ESC) till Sep -2022 is attached as Annexure-10.
xxx)	manner. The company shall provide housing for construction labour within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP, safe drinking water, medical health care, crèche etc. the housing may be in the form of temporary structures to be ensured accordingly in a time bound manner.	The construction activities are completed after the plant is installed & commissioned. However, in case of any construction & maintainance activities from time to time we are providing all necessary infrastructure and facilities to the workers as per rules & guidelines.
xxxi)	The company shall submit within three months their policy towards Corporate Environment Responsibility which should inter-alia address (i) standard operating process/procedure to being into focus any infringement/deviation/violation of environmental or forests norms/ conditions (ii) Hierarchical system or administrative order of the company to deal with environmental issues and ensuring compliance to the environmental clearance and (iii) system of reporting of non- compliance/violation environmental norms to the Board of Directors of the company and/or stakeholders or shareholders.	The Corporate Environment Policy prepared and approved by the company Board of Directors, Organizational Structure for Hindalco Corporate Environment, Deployment of Corporate Policy in manufacturing Plants & communication of Policy as regards Corporate Environment is already submitted to MoEF. The organizational structure of Corporate Sustainability cell is being revised and the modified one will be submitted after the formal structure is published by Hindalco Management.
	GENERAL CONDITIONS	
i)	The project authorities must strictly adhere to the stipulations made by the OSPCB and the State Government.	We have been following the stipulations made by OSPCB and the State Government. The compliance to CTO conditions is being submitted to OSPCB as per requirement.
ii)	No further expansion or modification in the plant shall be carried out without prior approval of the Ministry of Environment and Forests.	We will not carry out any expansion or modification in the plant without prior approval of MoEFCC.
iii)	The gaseous emissions from various process units shall conform to the load/mass based standards notified by this Ministry on 19 th May, 1993 and standards prescribed from time to time. The SPCB may specify more stringent standards for the relevant parameters keeping in	We have noted and accepted the stipulated condition.

	view the nature of the industry and its size and	
	location.	
iv)	At least four number of ambient air quality monitoring stations shall be established in the downward direction as well as where maximum ground level concentration of SPM, SO ₂ and NO _x are anticipated in consultation with the OSPCB. Data on ambient air quality and stack emission should be regularly submitted to this Ministry including its Regional Office at Bhubaneswar and Orissa State Pollution Control Board once in Six months.	Installation of four (04) CAAQM Stations completed and commissioned. Data connectivity established with the servers of OSPCB and CPCB. Installation of the continuous stack emission monitoring system in all the major stacks completed. All the CAAQMS & CEMS synchronized with the webserver of the SPCB & CPCB. Six-monthly compliance along with the monitoring data is being submitted to the concerned authorities regularly.
v)	The overall noise levels in and around the plant area should be kept well within the standards (85 dBA) by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels should conform to the standards prescribed under EPA Rules, 1989 viz 75 dBA (daytime) and 70 dBA (nighttime).	The overall noise levels in and around the plant area is within the prescribed standards and it is being made possible by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The overall noise level is within the standard, regular monitoring is being done. All necessary PPEs are provided to the workers and engineers working in the factory.
vi)	Occupational Health Surveillance of the workers	Occupational Health Surveillance of the workers
	should be done on a regular basis and records maintained as per the Factories Act.	is being done as per the Factories Act.
vii)	The company shall develop surface water harvesting structures to harvest the rain water for utilization in the lean season besides recharging the ground water table.	The company has developed surface water harvesting structures to the tune of 22 lakhs cum to store water in the lean season and it will harvest the rain water during rainy season in the same reservoirs.
viii)	The project proponent shall also comply with all the environmental protection measures and safeguards recommended in the EIA report. Further the company must undertake socio- economic development activities in the surrounding villages like community development progammes, drinking water supply and health care etc.	We have noted and accepted all the conditions and will comply in a time bound manner. The economic development activities are going on regularly as a part of our corporate social responsibility. A team of personnel working dedicatedly for peripheral development work like conducting health camps, community developed programmes, formation SHG groups, supply of drinking water and other common infrastructural development works. Details of the CSR, R&R activities undertaken is attached as Annexure-11.
ix)	Requisite fund shall be earmarked towards capital cost and recurring cost/annum for environment pollution control measures to implement the conditions stipulated by the Ministry of Environment & Forests as well the State Government. An implementation schedule	Requisite fund was allocated and has been spent towards capital cost and recurring cost/annum is also allotted & spent for environment pollution control measures & environmental management in each year.

	for implementing all the conditions stipulated	
	herein shall be submitted to Regional Office of	
	the Ministry at Bhubaneswar. The funds so	
	provided shall not be diverted for any other	
	purpose.	
x)	A copy of the clearance letter shall be send by	Copy of the clearance letter has already been
	the proponent to concerned Panchavat	communicated to all concerned as mentioned in
	Zillanarishad/Municipality corporation urban	the condition. Scanned conv of the letter is also
	local boby and the local NGO if any from whom	displayed in our official website
	suggestions (representations if any work	displayed in our official website.
	suggestions/representations, in any, were	
	received while processing the proposal. The	
	clearance letter also be put on the web site of	
	the company by the proponent.	
xi)	The project proponent shall upload the status of	The status of compliance to the EC conditions is
	compliance of the stipulated environment	being submitted to the Regional office of the
	clearance conditions, including results of	MOEF regularly on 1 st June and 1 st Dec
	monitoring data on their website and shall	respectively with a copy to CPCB & OSPCB and
	update the same periodically. It shall	the same is being uploaded into the Company
	simultaneously be sent to the Regional Office of	website.
	the MoEF at Bhubaneswar. The respective zonal	(http://www.hindalco.com/sustainability/regulat
	office of CPCB and SPCB. The criteria pollutant	<u>ory-compliances</u>).
	levels namely' PM10, SO2, NOx (ambient levels	
	as well as stack emissions) or critical sectoral	All the stack emission and ambient air
	parameters, indicated for the project shall be	monitoring stations are synchronized with the
	monitored and displayed at a convenient location	webserver of the SPCB & CPCB. The online
	near the main gate of the company in the public	monitoring data w.r.t. stack emission, ambient air
	domain.	quality and effluent water quality is being
		digitally displayed at main entrance gate for
		information to the public.
xii)	The project proponent shall also submit six	We are submitting the six monthly compliance
	monthly reports on the status of the compliance	reports of the stipulated environmental
	of the stipulated environmental conditions	conditions (both in hard & soft conies as well as
	including results of monitoring data (both in hard	by e_{-} mail) to the Regional Office of MOEE the
	8 soft copies as well as by a mail to the Pagional	respective Zenal Offices of CDCP and the SDCP
	Office of MOEE the respective Zenel Offices of	Pefere 1 st lune and 1 st December everywear
	Chep and the Chep. The Designal office of this	Belore 1" Julie and 1" December every year.
	CPCB and the SPCB. The Regional office of this	The months in a data as wird, such that will be a
	Ministry at Bhubaneswar. CPCB/SPCB shall	The monitoring data carried out through NABL
	monitor the stipulated conditions.	Accredited Laboratory in respect of AAQ, water,
		soil, noise etc is enclosed as Annexure-12.
xiii)	The environmental statement for each financial	The environmental statement for each financial
	year ending 31 st March in Form-V as is mandated	year ending 31 st March in Form-V is being
	to be submitted by the project proponent to the	submitted to the concerned authorities of SPCB
	concerned State Pollution Control Board as	and MoEF. Last environmental statement report
	prescribed under the Environment (protection)	has been submitted vide our letter no.
	Rules, 1986, as amended subsequently, shall also	AA/E&S/EC/2022/840, dated 15.09.2022.
	be put on the website of the company along with	
	the status of compliance of environmental	
	conditions and shall also be sent to the	

	respective Regional Office at Bhubaneswar by e-	
	mail.	
xiv)	The project proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the SPCB and may also be seen at website of the Ministry of Environment & Forest at http/www.envfor.nic.in. This shall be advertised within seven days from the date of issue of the clearance letter, at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same should be forwarded to the Regional office at Bhubaneswar.	Information to Public has been made through advertisement of the environmental clearance in two widely circulated daily newspapers i.e. "The New Indian Express" on 04-12-2012 & "The Samaja" on 05-12-2012, within seven days of receiving the clearance letter. The copy of the advertisement was submitted to the Ministry's Regional Office at Bhubaneswar vide our office letter no. AAP/E&F/786, dated 07- 12-2012.
xv)	The authorities shall inform the regional office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of commencing the land development work.	Financial closure for Phase-1 of the Project is completed on 17 th September 2012 and Construction activities for Phase-I completed and operating 360 pots out of 360 pots in Smleter and 6 units (6x150 MW) in CPP.
Sr.N	EC Amendmnet Additional Conditions	Compliance Status
i)	The project proponent shall develop in-house facilities for treatment of Spent Pot Lining (SPL) generated in the Aluminium smelter. Meanwhile, Refractory part may be sent to CHWTSDF as per the provisions of Hazardous and Other Waste Amendment Rules, 2016.	We have applied for issue of Consent to Establish (CTE) for the proposed SPL Crushing & Screening Unit at Aditya Aluminium. The crushed SPL will be supplied to authorized Cement Plants for co-processing in cement kiln.
ii)	The PP shall ensure 100% utilization of Fly ash generated.	Ash generated is being utilized by means of supplying to M/s Ultratech Cements, Jharsuguda, M/s ACC, Bargarh and M/s OCL, Rajgangpur for cement manufacturing. Also we are supplying Ash to the brick manufactures, using in own fly ash brick units and utilizing for development of low lying areas inside the Plant premises with the prior approval of SPCB, Odisha. The low-lying areas is being filled-up with Ash as per the Guideline for Reclamation Low Lying Areas and Abandoned Quarries with Ash of SPCB, Odisha. Besides, we are also exploring other modes/areas for more ash utilization. Please refer to Annexure-4 for ash utilization from April' 22 to Sep' 22. Fly ash dispatched through BOXN Wagon in Rakes to various cement manufacturing units (Dalmia Cement, Shree Cement, Ultratech, ACC, Ambuja, Nuvoco vistas etc.) for cement

		manufacturing. This has resulte utilization.	ed increase in ash	
		The status of ash utilization for April' 22 to September' 22 is st	r the period from ated below:	
		April' 22 to September' 22	Quantity in MT	
		Total ash generated	740539	
		Total Ash Utilised	793684	
		Utilization (%)	107.18%	
111)	All the measures proposed during the presentation and application shall be implemented.	We have noted and will be imp	lemented.	
iv)	Sale of baked anodes; sale of bath material; and sale of molten metal is permitted following the provisions of Hazardous and Other Waste Management Rules, 2016, applicable if any.	We have noted and accepted.		
v)	The project proponent shall develop in-house facilities for treatment of SPL in 2 to 3 years.	Carbon part is being suppled to M/s Green Energy Resurces for detoxification and reuse as carbon fuel. M/s Re Sustainability Itd has started lifting the refractory part of SPL for the trail run, Permission given by OSPCB. Around 14500 MT SPL Refractory part & 1626 MT Carbon part is in stock till end of September-2022 and kept inside the well ventilitated permanent covered shed for disposal to CHW-TSDF/Actuacl user		
		We are in the process of e technology for treatment and a (co-processing in cement p applied for issue of Consent for the proposed SPL Crushing at Aditya Aluminium. The cru supplied to authorized Ceme processing in cement kiln.	exploring suitable areas of utilization lants). We have to Establish (CTE) & Screening Unit ushed SPL will be nt Plants for co-	
vi)	All the conditions prescribed in the environmental clearance letter No.J- 11011/136/2009-IA-II(I) dated 29.11.2012 shall be strictly complied with.	It is being Complied.		
vii)	The Project Proponent shall take fresh environment clearance in case of any change in the scope of the project.	There is no change in the scope	of the project.	

Encl: As above

Samer Nayal (Authorised Signatory)

MINISTRY OF ENVIRONMENT & FORESTS EASTERN REGIONAL OFFICE, A/3, CHANDRASEKHARPUR, BHUBANESWAR-751023

FORMAT FOR PROVIDING PARTICULARS ON GREENBELT /PLANTATION UNDER F(C) ACT 1980 AND E(P) ACT 1986.

b) Envt. /Forest Clearance Nos.	i. Env Clearance vide letter No: J-11011/136/2009-IA-II(I), Dated 29/11/2012, amendment dated 14 June 2013, 14 Aug 2018, 20
	July 2020 & 12 Aug 2022 ii. Forest Clearance vide letter No: 8-27/2009-FC, 10.02.2011
Location/ Block/ Sub-Divn./ Dist/	Aditya Aluminium
State	(A Div. of Hindalco Industries Limited)
	At/Po- Lapanga, Dist Sambalpur
	Pin - 768 212. Odisha
Address for communication	Aditva Aluminium
	(A Div. of Hindalco Industries Limited)
	At/Po-Lapanga, Dist Sambalpur
	Pin - 768 212, Odisha
Existing vegetation in the area/ region	At present several types of vegetation available in the area, however some of the names mentioned as follows- Aegle marmelo, Albizia lebbeck, Albizia procera, Alstonia scholaris, Annona squamosa, Artocarpus heterophyllus, Azadirachta indica, Bauhinia alba, Butea monosperma, Bauhinia purpurea, Cassia fistula, Dalbergia sissoo, Delonix regia, Ficus benghalensis, Ficus religiosa, Madhuca indica, Mangifera indica, Peltophorum ferrugineum, Pongamia pinnata, Syzygium cumini, Tectona grandis, Terminalia arjuna, Terminalia bellirica, Terminalia bellirica, Termanilia catappa, Thevetia peruviana, Mimusops elangi, Psidium gujava, Samanea saman, Anthocephalus kadamba, Casia seamea, Acasia , Neerium oleander, Anacardium occidentale, etc
 a) Species: (trees/shrubs/grasses/climbers) b) Major prevalent species of each type: 	Aegle marmelo, Albizia lebbeck, Albizia procera, Alstonia scholaris, Annona squamosa, Artocarpus heterophyllus, Azadirachta indica, Bauhinia alba, Butea monosperma, Bauhinia purpurea, Cassia fistula, Dalbergia sissoo, Delonix regia, Ficus benghalensis, Ficus religiosa, Madhuca indica, Mangifera indica, Peltophorum ferrugineum, Pongamia pinnata, Syzygium cumini, Tectona grandis, Terminalia arjuna, Terminalia bellirica, Terminalia bellirica, Termanilia catappa, Thevetia peruviana, Mimusops elangi, Psidium gujava, Samanea saman, Anthocephalus kadamba, Casia seamea, Acasia , Neerium oleander, Anacardium occidentale , Butea monosperma etc species available.
	species found. Butea monosperma, Madhuca indica etc
	Address for communication Existing vegetation in the area/ region a) Species: (trees/shrubs/grasses/climbers) b) Major prevalent species of each type:

6	Land coverage by the project:	1347.35 Ha
	a.Name and number of tree/species felled	2002 nos of trees felled through OFDC, Sambalpur (CKL) Division.
	b.Name and number of plant species still available in the area	Plant species and number will be counted after completion of all the project activities and will be submitted to your good office
	c. By protecting the area will indigenous stock come up	Nil
	d.Extent of greenbelt developed	1098 acres covered under greenbelt.
7	Plantations required to be carried o	but as per
	a) Conditions of Environmental Clearance in Ha/Nos.	33% of total project area
	 b) Conditions of Forest Act (c) Clearance in Ha/Nos. 	25 % of total project area
	c. Voluntarily in Ha/Nos.	NA

8. Details of plantation

a) Total area available for plantation in each category

GreenbeltDumpsBack filled areaRoad sidesBlock plantationThe 33% of the project area will be covered under greenbelt/green cover and the plant. The phase- I facilities
completed and Phase-II construction work not started. Till date 1098 acres of land has been covered under
greenbelt.

b) Plantation details (category wise & methodology used)

Year of plantation	Species Planted	Spacing	Height	Total area	Area still
			attained(feet)	covered	available
2010-11 &	Aegle marmelo, Albizia	2*2	32'-36'	14.7 Ha	33% of the
2011-12	lebbeck, Albizia procera,				project area
2012-13	Alstonia scholaris, Annona	3*3	25'-27'	38.2 Ha	covered
2013-14	squamosa, Artocarpus	3*3	22'-25'	11.2 Ha	under Green
2014-15	heterophyllus, Azadirachta	3*3	20'-22'	16.8 Ha	Belt.
2015-16	indica, Bauhinia alba, Butea	4*4	18'-20'	24.36 Ha	
2016-17	monosperma, Bauhinia	2*2	17'-20'	20.0 Ha	
2017-18	purpurea, Cassia fistula,	2*2	14'-18'	46.8 Ha	
2018-19	Dalbergia sissoo, Delonix	2*2	13'-15'	45.0 Ha	
2019-20	regia, Ficus benghalensis,	2*2	8'- 10'	82.96 Ha	
2020-21	Ficus religiosa, Madhuca	2*2	6'-8'	80.94 Ha	
2021-22	Indica, Mangifera Indica,	2*2	5'-6'	63.67 Ha	
2022-23	Peitophorum ferrugineum,	2*2	3'-5'	Density	
	Pongamia pinnata, Syzygium			Enhancement	
	arminalia ariuna Torminalia			in existing	
	bellirica Terminalia bellirica			plantation	
	Termanilia estanna Thevetia			area	
Total	peruviana Mimusons elangi			444.63 Ha	
	Psidium guiava Samanea				
	saman Anthocenhalus				
	kadamba. Casia seamea.				
	Acasia Neerium oleander				
	Anacardium occidentale.				
	Dalbergia latifolia. Sterculia				
	foetida etc				

c) Survival of Plantation:

Total Plantation (No.)	7,01,930
Survival (No.)	6,31,737
Survival rate	Approx. 90%

9. Agency carrying out plantation and maintenance: NA

SI. No.	Year	Fund allocated(Rs)	Expenditure made(Rs)	Average cost of each surviving plant in Rs.	
1	2010-11	81,62,000	81,62,000.00	245.00	
2	2011-12				
3	2012-13	46,21,600	46,21,600.00	121.00	
4	2013-14	13,62,500	13,62,500.00	121.00 -	
5	2014-15	18,53,000	18,53,000.00	115.00	
6	2015-16	18,65,000	18,65,000	109.00	
7	2016-17	49,00,000	49,00,000	100.00	
8	2017-18	68,00,000	68,00,000	71.00	
9	2018-19	70,00,000	70,00,000	77.00	
10	2019-20	70,00,000	72,00,000	84.00	
11	2020-21	75,00,000	75,00,000	70.00	
12	2021-22	85,00,000	85,00,000	126.00	
13	2022-23	85,00,000	40,00,000 (till Sep 22)	80.00 (till Sep 2022)	

10. Financial details (year wise) plantation wise and item wise:

11. Inspection of plantation by field experts and their comments and follow up actions:

Forest officials from Divisional Forest Office, Sambalpur and Forest Range Office, Rengali are visiting to our location at periodic intervals and giving their technical guidance from time to time. Joint Director/Director of Regional Office of MoEF &CC, Bhubaneswar also visit our plant site periodically.

12. Remarks/ any other information:

Indigenous species have been planted as per the Guideline of CPCB.

Samen Nayak (Signature)

Report-II

PROFORMA FOR PROVIDING INFORMATION ON REHABILITATION

- 1. No. of villages affected : 11
- 2. Families Affected : 1450

Families affected	SC	ST	ОТН	TOTAL	
	1.00	-	*	1450	

3. Compensation package offered per family:

State/ Centre norms	Project package
As per the R&R Policy 2006, Govt. of Odisha	As per the R&R Policy 2006 and 2013, Govt. of Odisha. Aditya Aluminium follows the RR Policy and subsequent Compensation Revision also.

4. Budget estimate for rehabilitation:

a)	Total outlay	: 84.59 Crores
b)	Amount paid/used	: 80.81 Crores

5. Employment details

- a) Total employment to be provided : 61
- b) Employment given so far : 60
- 6. Rehabilitation & Resettlement details: Total Displaced Persons Numbers 430

а	No. of families rehabilitated					
i.	Name of the Site	Aditya Aluminium				
ii	Families rehabilitated	SC	ST	OTH	Total	
		08	378	18	404	
b	Families yet to be rehabilitated			11		
1	Name of the Site(s)	Aditya Aluminium				
ii	No. of families (Total - 430)	SC	ST	ОТН	Total	
		00	32	14	46	

7. Any other information

: NIL

Same Noyak (Authorised Signatory)

** *			nneru	ne-1
isiontek	Consultancy	Services	Pvt	I td
	Constantes	Net trees	A	TTEET

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Initrastructure Engineering
 Water Resource Management
 Environmental & Social Mudy

Surface & Sub-Surface Investigation
 Quality Control & Project Management
 Renewable Energy

Agricultural Development
 Information Technology
 Public Health Engineering

Mine Planning & Design
 Mineral/Sub-Suil Exploration
 Waste Management Services

Laberatery Services Environment Lab Free Lab Naterial Lab Miseral Lab A Microbiology Lab

Ref : Envlab/22/R-1146

Date: 28.04.2022

STACK EMISSION MONITORING REPORT FOR APRIL-2022

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

: VCSPL Representative in presence of Aditya Aluminium Representative

2. Date of Sampling

: 19.04.2022

3. Sampling Location

: ST-7: Stack attached to FTC-1 (ABF-1)

70 Meter

2.06 Meter

504 Anode/Day

40 Meter

4. Name of sampling Instrument ; Stack Sampler

5. Sample Collected by

6. Date of Analysis

: 20.04.2022 TO 22.04.2022

Stack Description

Stack Height

Stack Diameter

Height of Sampling Point

Capacity

Pollution Control Device Attached with the Stack Bag Filter

Parameters	Unit of Methodology		Emission Prescribe	Analysis Results
, an annexes a	Measurement	Archiodonigy	Standard (OSPCB)	ST-7
Stack Temperature	°C	IS 11255; Part 3 :1985 (Reaff 2008)		101.0
Velocity of Flue Gas	misee	IS 11255; Part 3 (1985 (Reaff 2008)		13.4
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)		123847.8
Barometric Pressure	mm of Hg	18 11255; Part 3 :1985 (Reaff 2008)		737.3
Concentration of Particulate Matter as PM	mg/Nm ⁴	18 11255: Part 1 :1985 (Reaff 2003)	50	11.2
Sulphur dioxide as SO2	mg/Nm ¹	EPA Method 6C		376.5
Oxides of Nitrogen as NO,	mg/Nm ³	EPA Method 7E	+	82.2
Particulate Fluoride	mg/Nm ¹	Distillation followed by Ion Electrode method		0.11
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.39
Total Fluoride as F	mg/Nm ³	Calculation		0.50
Fluoride Emission	Kg/T	Calculation		0.0015
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatogrphy		BDL
Poly Aromatic Hydrocarbon as PAHs	µg/Nm ³	Gas Chromatography		BDL.
Note: Bit Office of Contraction	Person Limit	ale Ry which	All oved By	Contraction of the second

· Water Resource Management · Environmental & Social Study Quality Control & Project Management. Renewable Energy

 Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Sail Exploration Waste Management Services

Laboratory Services Earlmoneut Lab Food Lab Meterial Lab **Not Lab** Mineral Lab A Microbiology Lab

Date: 28.04.2022

Ref : Envlab/22/R-1148

STACK EMISSION MONITORING REPORT FOR APRIL-2022

- 1. Name of Industry
- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- 2. Date of Sampling : 19.04.2022
- 3. Sampling Location
- : ST-8: Stack attached to FTC-2 (ABF-2)
- 4. Name of sampling Instrument: Stack Sampler : VCSPL Representative in presence of Aditya Aluminium Representative
- 5. Sample Collected by 6. Date of Analysis
- ÷ 20.04.2022 TO 22.04.2022

Stack Description	
Stack Height	70 Meter
Stack Diameter	1.6 Meter
Height of Sampling Point	40 Meter
Capacity	336 Anode/Day
Pollution Control Device Attached with the Stack	Bag Filter

Pollution Control Device Attached with the Stack

Parameters	Unit of Measurement	Methodology	Emission Prescribe Standard	Analysis Results
	-		(OSPCB)	ST-8
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	2	97.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	13.1
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)	2	73674.3
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	1	735.8
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	13.6
Sulphur dioxide as SO2	mg/Nm ³	EPA Method 6C	-	344.2
Oxides of Nitrogen as NOx	mg/Nm ³	EPA Method 7E	-	81.2
Particulate Fluoride	mg/Nm ³	Distillation followed by lon Electrode method		0.12
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.40
Total Fluoride as F	mg/Nm ³	Calculation	-	0.52
Fluoride Emission	Kg/T	Calculation		0.0009
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatogrphy	JUNTER C	BDL
Poly Aromatic	Up/Nm ³	Gas Chromatography	6	BDL

Vis	Certified for : 180 9001:2015, 180 1400 Accredited by : NABET-A Gr	k Consultancy Services Pv (Committed For Better Environment) 0 9001:2015, 1SO 14001:2015, 1SO 45001:2018 (OH&S), ISO/IEC 17025;2017 dited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade			
Infrastructure Engineering Water Resource Management Environmental & Social Study	Surface & Sub-Surface Investigation Quality Control & Project Management Renewable Energy	Agricultural Development Information Technology Public Health Engineering	Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services	Soil Lab Mineral Lab A Microhiology Lab	
Ref : En	vlab/22/R-2711		Date : 02.06.2	2022	

STACK EMISSION MONITORING REPORT FOR MAY-2022

: ST-7: Stack attached to FTC-1 (ABF-1)

- Name of Industry
 Date of Sampling
- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- 3. Sampling Location
- 4. Name of sampling Instrument
- 5. Sample Collected by
- 6. Date of Analysis

: Stack Sampler

: 23.05.2022

- : VCSPL Representative in presence of Aditya Aluminium Representative
- : 24.05.2022 TO 26.05.2022

Stack Description		
Stack Height	70 Meter	
Stack Diameter	2.06 Meter	
Height of Sampling Point	40 Meter	
Capacity	504 Anode/Day	
	Constrained and the second	

Pollution Control Device Attached with the Stack Bag I	filter
--	--------

11255: Part 3 :1985 (Reaff 2008) 11255: Part 1 :1985 (Reaff 2003) EPA Method 6C	(OSPCB) - - - - 50	ST-7 97.0 12.0 111033.0 731.1 7.8
11255: Part 3 :1985 (Reaff 2008) 11255: Part 1 :1985 (Reaff 2003) EPA Method 6C		97.0 12.0 111033.0 731.1 7.8
11255: Part 3 :1985 (Reaff 2008) 11255: Part 3 :1985 (Reaff 2008) 11255: Part 3 :1985 (Reaff 2008) 11255: Part 1 :1985 (Reaff 2003) EPA Method 6C	50	12.0 111033.0 731.1 7.8
11255: Part 3 :1985 (Reaff 2008) 11255: Part 3 :1985 (Reaff 2008) 11255: Part 1 :1985 (Reaff 2003) EPA Method 6C	50	111033.0 731.1 7.8
11255: Part 3 :1985 (Reaff 2008) 11255: Part 1 :1985 (Reaff 2003) EPA Method 6C	50	731.1 7.8
11255: Part 1 :1985 (Reaff 2003) EPA Method 6C	50	7.8
EPA Method 6C		
	e .	391.6
EPA Method 7E	12	81.8
Distillation followed by Ion Electrode method		0.10
Ion Electrode method		0.38
Calculation	-	0.48
Calculation	0.1	0.0013
Extraction followed by Gas Chromatogrphy	25	BDL
Gas Chromatography	NONTER .	BDL
	Calculation 0.1 Extraction followed by Gas Chromatogrphy Gas Chromatography	

Vis Vis	Committed for : 180 9001:2015, 180 1400 Accredited by : NABET-A Gr	Iltancy Se For Better Environme 1:2015, ISO 45001:2018 (OH ade, MOEF & CC/CPCB &	ervices Pv nt) (&S), ISO/IEC 17025:2017 SPCB-A Grade	Laboratory Services Environment Lab Teed Lab Material Lab
Infrastructure Engineering Water Resource Management Environmental & Social Study	Surface & Sub-Surface Investigation Quality Control & Project Management Renewable Energy	Agricultural Development Information Technology Public Health Engineering	Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services	Soil Lab Mineral Lab A Microbiology Lab
Ref : Env	/lab/22/R-2712		Date : 02.06.2	022

ReI: Envia0/22/R-2/12

STACK EMISSION MONITORING REPORT FOR MAY-2022

- 1. Name of Industry : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- 2. Date of Sampling : 23.05.2022
- 3. Sampling Location : ST-8: Stack attached to FTC-2 (ABF-2)
- 4. Name of sampling Instrument : Stack Sampler
- 5. Sample Collected by
- : VCSPL Representative in presence of Aditya Aluminium Representative
- 6. Date of Analysis
- : 24.05.2022 TO 26.05.2022

Stack Description

Stack Height	70 Meter
Stack Diameter	1.6 Meter
Height of Sampling Point	40 Meter
Capacity	336 Anode/Day
Pollution Control Device Attached with the Stack	Bag Filter

Parameters	Unit of Measurement	Methodology	Emission Prescribe Standard	Analysis Results
			(OSPCB)	ST-8
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)		88.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	11.2
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)		63942.0
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	729.8
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	10.8
Sulphur dioxide as SO2	mg/Nm ³	EPA Method 6C	(1)	347.4
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	1	84.7
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	85	0.11
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	12	0.36
Total Fluoride as F	mg/Nm ³	Calculation	3. 4 0	0.47
Fluoride Emission	Kg/T	Calculation	0.1	0.0007
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatogrphy	JUNION TEN	BDL
Poly Acomatic	mg/Nm ³	Gas Chromatography	2.0	BDL

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhuhaneswar, Khurda, Odisha-751024, India 7Tel.: 0674-3511721 -E-mail: vksiontek@vcspl.org, visiontekin@gmail.com

Visit us at: www.vcspl.org

Certified for : ISO Accredition sectore Engineering esource Management mental & Social Study • Renewable Ener	(Committed 9001:2015, ISO 1400 ited by : NABET-A G Sorface Investigation 4 Project Management	For Better Env 91:2015, 1SO 45001: rade, MOEF & CC • Agricultural Deve • Information Tech • Public Resht Eng	ironment) 2018 (OH&S), ISO/I (CPCB & SPCB-A G logment • Mine P nology • Minera jouering • Waste 3	EC 17025:2017 rade lanning & Design USub-Soil Exploration lanugement Services	Laboratory Service Environment Lab Food Lab Miserral Lab Miserral Lab & Miserral Lab & Miserral Lab
Ref. Enu STACK EM	SSION MON	FORING RI	EPORT FOR	JUNE-2022	Date:04
1. Name of Industry	: M/s	s Hindalco Indus	tries Ltd (Unit-Ad	itya Aluminium)	; Lapanga
2. Date of Sampling	: 16.	06.2022			
3. Sampline Location	: ST	-8: Stack attached	d to FTC-2 (ABF-2	2)	
3. Samping Location	deumont - Cha	ck Sumpler	an a		
4. Name of sampling In	summent : Su	CDI Departmental	un in mounte of l	dites Aluminium	Representativ
5. Sample Collected by	: VC	SPL Representati	ve in presence or z	Autoya Perunitarian	a representativ
Date of Analysis	: 17.	06.2022 TO 20.06	.2022		
Stack Description					
Stack Height			70 Meter		
Stack Diameter			1.6 Meter	_	
Height of Sampling Point			336 Anode/Day		
Capacity Reliestore Control Daylor Attrol	had solid the Stark		Bag Filter		
Pollution Control Device Attaics	act while the charge	1	- mp x min	Emission	Analysis Results
Parameters	Unit of	Metho	dology	Standard	Internet
Parameters	Unit of Measurement	Metho	dology	Standard (OSPCB)	ST-8
Parameters Stack Temperature	Unit of Measurement ⁹ C	Metho 1S 11255: Part 3 :	dology 1985 (Reaff 2008)	Standard (OSPCB)	ST-8 101.0
Parameters Stack Temperature Velocity of Flue Gas	Unit of Measurement ³ C m/sec	Metho 1S 11255: Part 3 : IS 11255: Part 3 :	1985 (Reaff 2008)	Standard (OSPCB)	ST-8 101.0 12.4
Parameters Stack Temperature Velocity of Flue Gas Quantity of Gas Flow	Unit of Measurement ³ C m/sec Nm ³ /Hr	Metho IS 11255: Part 3 : IS 11255: Part 3 : IS 11255: Part 3 :	dology 1985 (Reaff 2008) 1985 (Reaff 2008) 1985 (Reaff 2008)	Standard (OSPCB)	ST-8 101.0 12.4 69306.4
Parameters Stack Temperature Velocity of Flue Gas Quantity of Gas Flow Barometric Pressure	Unit of Measurement ³ C m/sec Nm ³ /Hr mm of Hg	Metho IS 11255: Part 3 : IS 11255: Part 3 : IS 11255: Part 3 : IS 11255: Part 3 :	dology 1985 (Reaff 2008) 1985 (Reaff 2008) 1985 (Reaff 2008) 1985 (Reaff 2008)	Standard (OSPCB)	ST-8 101.0 12.4 69306.4 736.9
Parameters Stack Temperature Velocity of Flue Gas Quantity of Gas Flow Barometric Pressure Concentration of Particulate Matter as PM	Unit of Measurement ³ C m/sec Nm ³ /Hr mm of Hg mg/Nm ³	Metho 1S 11255: Part 3 : 1S 11255: Part 3 : 1S 11255: Part 3 : 1S 11255: Part 3 : 1S 11255: Part 3 :	dology 1985 (Reaff 2008) 1985 (Reaff 2008) 1985 (Reaff 2008) 1985 (Reaff 2008) 1985 (Reaff 2008)	Standard (OSPCB)	ST-8 101.0 12.4 69306.4 736.9 7.5
Parameters Stack Temperature Velocity of Flue Gas Quantity of Gas Flow Barometric Pressure Concentration of Particulate Matter as PM Sulphur dioxide as SO-	Unit of Measurement ³ C m/sec Nm ³ /Hr mm of Hg mg/Nm ³	Metho IS 11255: Part 3 : IS 11255: Part 1 : EPA M	dology 1985 (Reaff 2008) 1985 (Reaff 2008) 1985 (Reaff 2008) 1985 (Reaff 2008) 1985 (Reaff 2008) 1985 (Reaff 2003) tethod 6C	Standard (OSPCB)	ST-8 101.0 12.4 69306.4 736.9 7.5 353.6

Distillation followed by Ion

Electrode method

Ion Electrode method

Calculation

Calculation

Extraction followed by Gas

Chromatogrphy

Gas Chromatognephy

Note: BDL: Below Detectly

Particulate Fluoride

Gaseous Fluoride

Total Fluoride as F

Fluoride Emission

Poly Aromatic

Hydrocarbon as PAHs

Tar Furnes

mg/Nm³

mg/Nm²

mg/Nm⁵

Kg/T

mg/Nm3

mg/Nm3

.

-

-

0.1

÷

2.0

0.10

0.38

0.48

0.0008

BDL

BDL

3

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511721 E-mail: visiontek@vcspl.org, visiontekin@gmail.com

While the steenl or

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade Surface & Sub-Surface Investigation

 Quality Control & Project Management · Renewable Energy

 Agricultural Development Information Technology Public Health Engineering

: ST-7: Stack attached to FTC-1 (ABF-1)

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Date : 30.07.2022

Laboratory Services Environment Lab Food Lab

Material Lab Soil Lab

Mineral Lab

A Microhiology Lab

Ref: Envlab/22/R-5406

STACK EMISSION MONITORING REPORT FOR JULY-2022

1. Name of Industry 2. Date of Sampling

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

VCSPL Representative in presence of Aditya Aluminium Representative

: 21.07.2022

2

- 3. Sampling Location
- : Stack Sampler
- 5. Sample Collected by

4. Name of sampling Instrument

6. Date of Analysis

: 22.07.2022 TO 25.07.2022

Stack Description					
Stack Height			70 Meter		
Stack Diameter			2.06 Meter		
Height of Sampling Point	-		40 Meter	-	
Capacity			504 Anode/Day		
Pollution Control Device /	Attached with the	Stack	Bag Filter	1	
Parameters	Unit of Measurement	Methodology		Emission Prescribe Standard/OSPCR)	Analysis Results
	9271	March of Market Concerning		Standaru(OSI CD)	81-7
Stack Temperature	٥C	IS 11255; Part 3 :1985 (Reaff 2008)		¥ .	101.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)		-	12.4
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)		*	114262.6
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)		× .	732.9
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)		50	6.8
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C		-	396.3
Oxides of Nitrogen as NO ₈	mg/Nm ³	EPA Method 7E			77.4
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method		2	0.10
Gaseous Fluoride	mg/Nm ³	Ion Elect	Ion Electrode method		0.37
Total Fluoride as F	mg/Nm ³	Calculation		-	0.47
Fluoride Emission	Kg/T	Calc	culation	0.1	0.0013
Tar Fumes	mg/Nm ³	Extraction f Chron	ollowed by Gas natogrphy	5	BDL
Poly Aromatic Hydrocarbon as PAHs	mg/Nm ³	Gas Chro	omatography	2.0	BDL.

Relaw Detection Limit.

Prepar by:

ontek Consultancy Services Pvt. 1 (Committed For Better Environment) Laboratory Services

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering · Water Resource Management

Environmental & Social Study

 Surface & Sub-Surface Investigation Quality Control & Project Management · Renewable Energy

 Agricultural Development Information Technology

Public Health Engineering

Mine Planning & Design

 Mineral/Sub-Soil Exploration A Microhiology Lab Waste Management Services

Ref: Envlab/22/R-5407

Date : 30.07.2022

Environment Lab Food Lab

Material Lab Soil Lab

Mineral Lab

STACK EMISSION MONITORING REPORT FOR JULY-2022

- 1. Name of Industry 2. Date of Sampling
- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- : 21.07.2022

2

- 3. Sampling Location
- : Stack Sampler
- 4. Name of sampling Instrument 5. Sample Collected by
- 6. Date of Analysis
- : VCSPL Representative in presence of Aditya Aluminium Representative : 22.07.2022 TO 25.07.2022

ST-8: Stack attached to FTC-2 (ABF-2)

Stack Description		
Stack Height	70 Meter	
Stack Diameter	1.6 Meter	
Height of Sampling Point	40 Meter	
Capacity	336 Anode/Day	
Pollution Control Device Attached with the Stack	Bag Filter	

Parameters	Unit of Measurement	Methodology	Emission Prescribe Standard	Analysis Results
	Second Wildow Constraints		(OSPCB)	ST-8
Stack Temperature	°C	IS 11255: Part 3 :1985 (Reaff 2008)	(40)	102.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	100	12.6
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)		69630.1
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	731.7
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	5.9
Sulphur dioxide as SO2	mg/Nm ³	EPA Method 6C	-	361.8
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	80.4
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method		0.10
Gaseous Fluoride	mg/Nm ¹	Ion Electrode method		0.36
Total Fluoride as F	mg/Nm ³	Calculation	121	0.46
Fluoride Emission	Kg/T	Calculation	0.1	0.0008
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatogrphy	÷.	BDL
Poly Aromatic Hydrocarbon as PAHs	mg/Nm ³	Gas Chromatography	2.0	BDL

Note: BDL: Below Detection Limit.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering · Water Resource Management * Environmental & Social Study

 Surface & Sub-Surface Investigation · Quality Control & Project Management · Renewable Energy

 Agricultural Development Information Technology

* Mine Planning & Design · Mineral/Sub-Suil Exploration · Weste Management Services

Laboratory Services Front Lab Material Lab Solitab Mineral Lais 4 Manufidulings Lab

Test Report No.: Enviab/22/R- 6643

· Public Health Engineering

Date: 30.08.2022

STACK EMISSION MONITORING REPORT FOR AUGUST-2022

1. Name of Industry : M/s Hindalco Industrics Ltd (Unit-Aditya Aluminium); Lapanga

: ST-7: Stack attached to FTC-1 (ABF-1)

2. Date of Sampling

3. Sampling Location

4. Name of sampling Instrument

5. Sample Collected by

6. Date of Analysis

Stack Sampler

19.08.2022

5

VCSPL Representative in presence of Aditya Aluminium Representative

20.08.2022 TO 23.08.2022

Stack Description	
Stack Height	70 Meter
Stack Diameter	2.06 Meter
Height of Sampling Point	40 Meter .
Capacity	504 Anode/Day
Pollution Control Device Attached with the Stack	Bag Filter

Parameters	Unit of	Methodology	Emission Prescribe	Analysis Result	
	MEANUTEMENT		(OSPCB)	8T-7	
Stack Temperature	"C	IS 11255: Part 3 :1985 (RealY 2008)		104.0	
Velocity of Flue Gas	misec	IS 11255: Part 3 :1985 (Reaff 2008)		12.8	
Quantity of Gas Flow	Nm ³ /Hr	18 11255: Part 3 :1985 (Reaff 2008)		116786.4	
Barometric Pressure	mm of Hg	18 11255: Part 3 :1985 (Reaff 2008)	- 6	732.0	
Concentration of Particulate Matter as PM	mg/Nm*	IS 11255: Part 1 :1985 (Reaff 2003)	50	10.2	
Sulphur dioxide as SO2	mg/Nm ⁷	EPA Method 6C		388.0	
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E		80.2	
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method		0.10	
Gaseous Fluoride	mg/Nm ²	Ion Electrode method		0.39	
Total Fluoride as F	mg/Nm ³	Calculation		0.49	
Fluoride Emission	Kg/T	Calculation	0.1	0.0014	
Tur Fumes	mg/Nm3	Extraction followed by Gas Chromatogrphy		BDL	
Poly Aromatic Hydrocarbon as PAH	mg/Nm ¹	Gas Chromatography	2.0	BDL	

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511721 E-mail: visiontek@vespl.org, visiontekin@gmail.com

Approved by nicy

~	
\leq	

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/TEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering · Water Resource Management

· Environmental & Social Study

 Surface & Sub-Surface Investigation · Quality Control & Project Management · Renewable Energy

· Agricultural Development

* Mine Planning & Design · Mineral/Sub-Seil Exploration * Waste Management Services

Laboratory Services Final Lab Material Lab Soil Lab Mineral Lafe 4 Wirralbickogy Lak

Date: 30.08.2022

Test Report No.: Envlab/22/R- 6644

Information Technology · Public Health Engineering

: ST-8: Stack attached to FTC-2 (ABF-2)

STACK EMISSION MONITORING REPORT FOR AUGUST-2022

1. Name of Industry M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

> 19.08.2022 ŝ.

3. Sampling Location

2. Date of Sampling

4. Name of sampling Instrument

- 5. Sample Collected by 6. Date of Analysis
- £ Stack Sampler

VCSPL Representative in presence of Aditya Aluminium Representative

: 20.08.2022 TO 23.08.2022

Stack Description	
Stack Height	70 Meter
Stack Diameter	1.6 Meter
Height of Sampling Point	40 Meter -
Capacity	336 Anode/Day
Pollution Control Device Attached with the Stack	Bag Filter

Parameters	Unit of Measurement	Methodology	Emission Prescribe Standard	Analysis Results
			(OSPCB)	ST-8
Stack Temperature	"C	IS 11255: Part 3 :1985 (Reaff 2008)		101.0
Velocity of Flue Gas	m/scc	IS 11255: Part 3 -1985 (Reaff 2008)	-	11.8
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)	•	65353.2
Barometric Pressure	mm of Hg	IS 11255: Part 3 (1985 (Reaff 2008)	*	730.2
Concentration of Particulate Matter as PM	mg/Nm3	IS 11255: Part 1 :1985 (Reaff 2003)	50	6.6
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C		358.6
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	82.6
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method		0.11
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	*	0.38
Total Fluoride as F	mg/Nm ³	Calculation	-	0.49
Fluoride Emission	Kg/T	Calculation	0.1	0.0008
Tar Fumes	mg/Nm ²	Extraction followed by Gas Chromatogrphy	*	BDL
Poly Aromatic Hydrocarbon as PAKenoy Se	mg/Nm ³	Gas Chromatography	2.0	BDL

00 NO Approved h

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Englaceing · Water Resource Management Eavironmental & Social Study · Surface & Sul-Surface Investigation Quality Control & Project Management · Renewable Energy

#Agricultural Development · Information Technology Public Health Engineering

: ST-7: Stack attached to FTC-1 (ABF-1)

· Mine Planning & Design Mineral Sel-Soil Exploration Waste Management Services

M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

VCSPL Representative in presence of Aditya Aluminium Representative

Material Lab Sail Lab Misersi Lab 4 whicfagy Lab

Date: 38.09.2022

Laboratory Services

Food Lab

Test Report No.: Enviab/22/R- 7632

STACK EMISSION MONITORING REPORT FOR SEPTEMBER-2022

1. Name of Industry 2. Date of Sampling

16.09.2022

3. Sampling Location

6. Date of Analysis

4. Name of sampling Instrument

: Stack Sampler

5. Sample Collected by

- 17.09.2022 TO 20.09.2022
- Stack Description 70 Meter Stack Height 2.06 Meter Stack Diameter 40 Meter Height of Sampling Point 504 Anode/Day Capacity Pollution Control Device Attached with the Stack Bag Filter

Parameters	Unit of	Methodology Enumeration		Analysis Result	
	Measurement		(OSPCB)	ST-7	
Stack Temperature	*C	IS 11255: Part 3 :1985 (RealT 2008)		104.0	
Velocity of Flue Gas	m/sec	1S 11255: Part 3 :1985 (Reaff 2008)		12.4	
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)	12	113709.1	
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	2	735.0	
Concentration of Particulate Matter as PM	mg/Nm ²	IS 11255: Part 1 :1985 (Realf 2003)	50	9,4	
Sulphur dioxide as SO ₃	mg/Nm3	EPA Method 6C		375.2	
Oxides of Nitrogen as NO _x	mg/Nm3	EPA Method 7E	÷	82.4	
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	¥	0.11	
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.40	
Total Fluoride as F	mg/Nm ³	Calculation	*	0.51	
Fluoride Emission	Kg/T	Calculation	0.1	0.0014	
Tar Funes	mg/Nm ³	Extraction followed by Gas Chromatogrphy		BDL.	
Poly Aromatic Hydrocarbon as PAHs	mg/Nm ³	Gas Chromatography	2,0	BDL.	

00

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering · Weter Resource Management · Environmental & Social Study Surface & Sub-Surface Investigation · Quality Control & Project Management Renewable Energy

 Agricultural Development Information Technology · Public Health Engineering

ST-8: Stack attached to FTC-2 (ABF-2)

Mice Plansing & Design Mineral/Sub-Soil Exploration · Waste Management Services

Laboratory Services Orsessor Lab Fred Lab. Material Lub Sold East **Mineral Lab** ٨ Wershieler Lab

Test Report No.: Envlab/22/R- 7633

Date: 30.09.2022

STACK EMISSION MONITORING REPORT FOR SEPTEMBER-2022

1. Name of Industry 2. Date of Sampling

M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga 16.09.2022

3. Sampling Location

4. Name of sampling Instrument

Stack Sampler

VCSPL Representative in presence of Aditya Aluminium Representative

- 5. Sample Collected by 6. Date of Analysis
- 17.09.2022 TO 20.09.2022

Stack Description	22
Stack Height	70 Meter
Stack Diameter	1.6 Meter
Height of Sampling Point	40 Meter
Capacity	336 Anode/Day
Pollution Control Device Attached with the Stack	Bag#ilter

Parameters	Unit of Measurement	Methodology	Emission Prescribe Standard	Analysis Results
			(OSPCB)	ST-8
Stack Temperature	"C	IS 11255: Part 3 :1985 (Realf 2008)		99.8
Velocity of Flue Gas	m/see	IS 11255: Part 3 :1985 (Reaff 2008)		12.2
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Realf 2008)		68341.2
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	734.6
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	10.1
Sulphur dioxide as SO2	mg/Nm ³	EPA Method 6C	-	352.4
Oxides of Nitrogen as NO ₈	mg/Nm ³	EPA Method 7E	-	80.2
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	*	0.10
Gaseous Fluoride	mg/Nm ²	Ion Electrode method		0.38
Total Fluoride as F	mg/Nm ³	Calculation		0.48
Fluoride Emission	Kg/T	Calculation	0.1	8.0008
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatogrphy		BDL
Poly Aromatic Hydrocarbon as PAHs	mg/Nm3	Gas Chromatography	2.0	BDL

· lat Hardened by

Piot No.- M-122, 23, Changala Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-75/224, India E-mail: visiontek@vcspl.org, visiontekin@gmail.com Nopi * D)

Tel./ 0674-3511721

Mary

2	Visiontek	Consultancy	Services	Pvt.	Lto
		(Committed For Better Enviro	onment)	Lab	oratory Service
	C	AL. 10031 (031 3100. 10011 (331 3105. 10	TO WATER A TOWNER TRADA	C.3017 E	evironment Lub

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

· Surface & Sub-Surface Investigation · Quality Control & Project Management · Renewable Energy

 Agricultural Development Information Technology · Pablic Health Engineering Mine Planning & Design
 Mineral/Sali-Seil Exploration · Waste Management Services

Miseral Lab Microbiology Lab

Ref : Envlab/22/R-1148

Date: 28.04.2022

Annewerce - 2

los

Food Lab

Material Lab Soil Lab

.6

STACK EMISSION MONITORING REPORT FOR APRIL-2022

: ST-9: Stack attached to GTC-1 (Pot room)

1. Name of Industry

· Infrastructure Engineering

· Water Resource Management

· Environmental & Social Study

M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

VCSPL Representative in presence of Aditya Aluminium Representative

2. Date of Sampling

3. Sampling Location

4. Name of sampling Instrument : Stuck Sampler

5. Sample Collected by 6. Date of Analysis

22.04.2022 TO 23.04.2022

: 21.04.2022

Stack Description	
Stack Height	100 Meter
Stack Diameter	10.4 Meter
Height of Sampling Point	65 Meter
Number of POT in operation	180 No.
Pollution Control Device Attached with the Stack	Bag Filter

Processing	Unit of	Bentand	Emission Prescribe	Analysis Results	
Farameters	Measurement	Protocol	Standard (OSPCB)	ST-9	
Stack Temperature	ⁿ C	IS 11255: Part 3 :1985 (Reaff 2008)		102.0	
Velocity of Flue Gas	m/scc	IS 11255: Part 3 :1985 (RealT 2008)	-	8.6	
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	2012014.7	
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	736.3	
Concentration of Particulate Matter as PM	mg/Nm ³	15 11255: Part 1 :1985 (Reaff 2003)	50	2.2	
Sulphur dioxide as SO ₂	mg/Nm ²	EPA Method 6C		75.2	
Oxides of Nitrogen as NO ₄	mg/Nm ³	EPA Method 7E	1.	46,8	
Particulate Fluoride	mg/Nin ³	Distillation followed by Ion Electrode method	-	0.11	
Gaseous Fluoride	mg/Nm3	Ion Electrode method		0.42	
Total Fluoride	mg/Nm ³	Calculation	-	0.53	
Fluoride Emission	Kg/T	Calculation	-	0.052	

Reviewed By

Maria JIAN

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511721 E-mail: visiontek@vcspl.org, visiontekin@gmail.com

Canala

Visit us at: www.vcspl.org

Approved By

ontek Consultancy Services Pvt.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Infrastructure Engineering

Environmental & Social Study

 Surface & Sub-Surface Investigation Quality Control & Project Management Renewable Energy

 Agricultural Development Information Technology

Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Service Environment Lab Feed Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Ref : Envlab/22/R-1149

Date: 28.04.2022

STACK EMISSION MONITORING REPORT FOR APRIL-2022

- 1. Name of Industry
- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

: VCSPL Representative in presence of Aditya Aluminium Representative

- 2. Date of Sampling
- 3. Sampling Location
- : 20.04.2022
- : ST-10: Stack attached to GTC-2 (Pot room)
- 4. Name of sampling Instrument : Stack Sampler
- 5. Sample Collected by
- 6. Date of Analysis
- : 21.04.2022 TO 23.04.2022

Stack Description	
Stack Height	100 Meter
Stack Diameter	10.4 Meter
Height of Sampling Point	65 Meter
Number of POT in operation	180 No.
Pollution Control Device Attached with the Stack	Bag Filter

Donometors	Unit of	Protocol	Emission Prescribe	Analysis Results
r arameters	Measurement	Trotocor	Standard (OSPCB)	ST-10
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	107.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	9.0
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	2079843.1
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	736.8
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	2.7
Sulphur dioxide as SO2	mg/Nm ³	EPA Method 6C		74.5
Oxides of Nitrogen as NOx	mg/Nm ³	EPA Method 7E	_	59.0
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.10
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.43
Total Fluoride	mg/Nm ³	Calculation	-	0.53
Fluoride Emission	Kg/T	Calculation	-	0.048

 Infrastructure Engineering Water Resource Management Environmental & Social Study Surface & Sub-Surface Investigation Quality Control & Project Management Renewable Energy

:

 Agricultural Development Information Technology

Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration & Microbiology Lab Waste Management Services

Date : 02.06.2022

Environment Lab Food Lab

Material Lab Soil Lab

Mineral Lab

Ref : Envlab/22/R-2713

STACK EMISSION MONITORING REPORT FOR MAY-2022

- 1. Name of Industry
- 2. Date of Sampling
- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

VCSPL Representative in presence of Aditya Aluminium Representative

- : 24.05.2022
- 3. Sampling Location : ST-9: Stack attached to GTC-1 (Pot room)
- 4. Name of sampling Instrument : Stack Sampler
- 5. Sample Collected by

6. Date of Analysis

: 25.05.2022 TO 27.05.2022

Stack Description	
Stack Height	100 Meter
Stack Diameter	10.4 Meter
Height of Sampling Point	65 Meter
Number of POT in operation	180 No.
Pollution Control Device Attached with the Stack	Bag Filter

Parameters	Unit of	Protocol	Emission Prescribe	Analysis Results
	Measurement		(OSPCB)	ST-9
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	97.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	8.4
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	1985357.7
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	731.4
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	2.6
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	72.7
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E		43.9
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.11
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.39
Total Fluoride	mg/Nm ³	Calculation	-	0.50
Fluoride Emission	Kg/T	Calculation	0.3	0.048

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511721 E-mail: visiontek@vcspl.org, visiontekin@gmail.com

Prepared By

Pija Makandy

STACK EMISSION MONITORING REPORT FOR MAY-2022 1. Name of Industry

٠

- 2. Date of Sampling
- 3. Sampling Location
- 4. Name of sampling Instrument

Ref : Envlab/22/R-2714

- 5. Sample Collected by
- 6. Date of Analysis

- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- : 23.05.2022
 - : ST-10: Stack attached to GTC-2 (Pot room)
 - : Stack Sampler
 - VCSPL Representative in presence of Aditya Aluminium Representative
 - 24.05.2022 TO 27.05.2022

Stack	Descript	ion						
Stack Height					1	00 Meter	r	
Stack Diameter					1	0.4 Mete	r	
Height of Samplin	g Point				6	5 Meter		
Number of POT in	operatio	n			1	80 No.		
Pollution Control I	Device A	ttached with the Sta	ck		В	ag Filter		
Parameters Unit of		Unit of	Protocol		Emis Pres	ssion cribe	Analysis Results	
1 01 00110		Measurement				Stan (OSI	dard PCB)	ST-10
Stack Temperature		0C	IS 112	55: Part 3	3 :1985 (Reaff 2008)	-		104.0
Velocity of Flue Gas		m/sec	IS 112	55: Part 3	3 :1985 (Reaff 2008)	-		7.7
Quantity of Gas Flow		Nm3/Hr	IS 112	55: Part 3	3 :1985 (Reaff 2008)	-		1787934.7
Barometric Pressure		mm of Hg	IS 112	55: Part 3	3 :1985 (Reaff 2008)	-		730.4
Concentration of Partic Matter as PM	ulate	mg/Nm3	IS 112	55: Part 1	1 :1985 (Reaff 2003)	5	0	2.1
Sulphur dioxide as SO2	2	mg/Nm3		EPA N	Method 6C		-	73.5
Oxides of Nitrogen NOx	as	mg/Nm3		EPA N	Method 7E	-	-	61.2
Particulate Fluoride		mg/Nm3	Distillation followed by Ion Electrode method		-	-	0.10	
Gaseous Fluoride		mg/Nm3		Ion Elec	trode method	-	-	0.42
Total Fluoride		mg/Nm3		Cal	culation	-	-	0.52
Fluoride Emission		Kg/T		Cal	culation	10100	BITC	0.045
1.	2				/	•/	12	

iontek Consultancy Services Pvt. Surface & Sub-Surface Investigation Infrastructure Engineering Water Resource Management Quality Control & Project Management Environmental & Social Study Renewable Energy

(Committed For Better Environment) Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

- Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade
 - Agricultural Development Information Technology
 - Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Date : 02.06.2022

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab

& Microbiology Lab

Certified for : ISO Accred e Engineering ree Management al & Social Study • Renewable For	(Commuted 9001:2015, ISO 140 ited by : NABET-A C Surface Investigation & Project Management	I F OF Better En 101:2015, ISO 4500 Grade, MOEF & C • Agricultural De • Information Tes • Public Health E	tvironment) (1:2018 (OH&S), ISC C/CPCB & SPCB-A velopment • Min chnology • Min spincering • Was)/IEC 17025:20 Grade e Planning & Desig eral/Sub-Soil Explo to Management Ser	17 a paration pices Laborat Easiev Fin Min Min Min Min
Rep: Emulas	221 R-450	ITORING R	EPORT FOR	JUNE-202	22 Dale
1 Name of Industry	: M/s Hindal	co Industries Lto	l (Unit-Aditya Ali	uminium); La	panga
7. Data of Compling	- 15.06.2022		9 2 0 0 10 10 10 10 10 10 10 10 10 10 10 10		
2. Date of Samping	- ST_10-Stark	attached to GTC	-2 (Pot room)		
3. Sampling Location	. 31-10. State	anacaca to ore			
4. Name of sampling Instrument	: Stack Sample			Instation Per	management
5. Sample Collected by	: VCSPL Rep	resentative in pr	esence of Aditya A	duminium Re	presentative
6. Date of Analysis	: 16.06.2022 T	O 18.06.2022			
Stack Description					
Stack Height			100 Meter		
Stack Diameter			10.4 Meter		
Height of Sampling Point			65 Meter		
Number of POT in operation			180 No.		1.11.11
Pollution Control Device Att	ached with the Stack	-	Bag Filter	Partector	Anatonia
Parameters	Unit of Measurement	Protocol		Prescribe Standard	Results ST-10
Stack Temperature	0C	IS 11255: Part 3	:1985 (Reaff 2008)	(OSPCB)	99.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3	:1985 (Reaff 2008)	-	8.0
Quantity of Gas Flow	Nm3/Hr	IS 11255: Part 3	:1985 (Reaff 2008)		1887314.3
Barometric Pressure	mm of Hg	1S 11255: Part 3	18 11255: Part 3 :1985 (Reaff 2008)		735.0
Concentration of Particulate Matter as PM	mg/Nm3	18 11255: Part 1	IS 11255: Part 1 :1985 (Reaff 2003)		2.4
Sulphur dioxide as SO2	mg/Nm3	EPA N	fethod 6C		70.7
Oxides of Nitrogen as NOx	mg/Nm3	EPA Method 7E		-	63.0
Particulate Fluoride	mg/Nm3	Distillation followed by Ion Electrode method		-	0.10
Gaseous Fluoride	mg/Nm3	Ion Elect	rode method	•	0.40
		Calculation			0.50
Total Fluoride	mg/Nm3	Call	connecti	12	Area

siontek Consultancy Services Pvt.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation Quality Control & Project Management Renewable Energy

 Agricultural Development Information Technology

 Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Soil Lab Mineral Lab & Microbiology Lab

Laboratory Services Environment Lab Food Lab

Material Lab

Ref: Envlab/22/R-5408

Public Health Engineering

Date : 30.07.2022

STACK EMISSION MONITORING REPORT FOR JULY-2022

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

VCSPL Representative in presence of Aditya Aluminium Representative

- 2. Date of Sampling : 19.07.2022
- 3. Sampling Location : ST-9: Stack attached to GTC-1 (Pot room)

:

- 4. Name of sampling Instrument : Stack Sampler
- 5. Sample Collected by

6. Date of Analysis

: 20.07.2022 TO 25.07.2022

Stack Description	
Stack Height	100 Meter
Stack Diameter	10.4 Meter
Height of Sampling Point For Visiontek Consultancy Services Pyt. Ltd	65 Meter
Number of POT in operation	180 No.
Pollution Control Device Attached with the Stack	Bag Filter

Dovomotovs	Unit of	Drotocol	Emission Prescribe	Analysis Results
rarameters	Measurement	FTOLOCOL	Standard (OSPCB)	ST-9
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	103.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	8.8
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	2061130.5
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	734.8
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	3.2
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C		72.5
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	43.8
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.10
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.40
Total Fluoride	mg/Nm ³	Calculation	-	0.50
Fluoride Emission	Kg/T	Calculation	0.3	0.049

isiontek Consultancy Services Pvt. Ltd.

: ST-9: Stack attached to GTC-1 (Pot room)

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering. Water Resource Management

· Environmental & Social Study

 Quality Control & Project Management · Renewable Energy

· Surface & Sal-Surface Investigation

 Agricultural Development Information Technology Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Food Lab Material Lab Soll Lab Mineral Lab A Microbiology Lab

Test Report No.: Envlab/22/R-6645

Date: 30.08.2022

STACK EMISSION MONITORING REPORT FOR AUGUST-2022

1. Name of Industry

2. Date of Sampling

3. Sampling Location

4. Name of sampling Instrument

- 5. Sample Collected by
- 6: Date of Analysis

: Stack Sampler

: 18.08.2022

: VCSPL Representative in presence of Aditya Aluminium Representative

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

: 19.08.2022 TO 22.08.2022

Stack Description	
Stack Height	100 Meter
Stack Diameter	10,4 Meter
Height of Sampling Point	65 Meter
 Number of POT in operation	180 No.
Pollution Control Device Attached with the Stack	Bag Filter

Purameters	Unit of	Protocol	Emission Prescribe	Analysis Results
	Measurement	1.00000	Standard (OSPCB)	ST-9
Stack Temperature	^a C	IS 11255: Part 3 :1985 (Reaff 2008)	-	105.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (RealT 2008)	- C-22	7.9
Quantity of Gas Flow	Nm³/Hr	IS 11255; Part 3 :1985 (Reaff 2008)	-	1842503.6
Barometric Pressure	mm of Hg	1S 11255; Part 3 :1985 (Reaff 2008)	(e)	732.8
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	2.8
Sulphur dioxide as SO ₂	mg/Nm ¹	EPA Method 6C	-	73.1
Oxides of Nitrogen as NO ₄	mg/Nm ¹	EPA Method 7E	-	44.5
Particulate Fluoride	mg/Nm ²	Distillation followed by Ion Electrode method		0,10
Gaseous Fluoride	mg/Nm ⁹	Ion Electrode method	100	0,38
Total Fluoride	mg/Nm ³	Calculation	1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 -	0.48
Fluoride Emission	Kg/T	Calculation	0.3	0.042

/isiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Infrastructure Engineering
- Water Resource Management
- · Environmental & Social Study
- Surface & Sub-Surface Investigation Quality Control & Project Management · Renewable Energy

 Agricultural Development Information Technology · Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services fromment Lab Food Lab Material Lab Soil Lab Mineral Lab 4. Microbiology Lab

Date: 30.08.2022

Test Report No.: Envlab/22/R- 6646

STACK EMISSION MONITORING REPORT FOR AUGUST-2022

- 1. Name of Industry 2. Date of Sampling
- M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- 22.08.2022

λ.

- 3. Sampling Location
- : ST-10: Stack attached to GTC-2 (Pot room)
- 4. Name of sampling Instrument
 - Stack Sampler
- 5. Sample Collected by
- 6. Date of Analysis
- VCSPL Representative in presence of Aditya Aluminium Representative
- 23.08.2022 TO 25.08.2022

Stack Des	cription							
Stack Heig	hα		100 Meter					
Stack Dian	neter		10.4 Meter					
Height of S	Sampling Point			65 Meter				
Number of	POT in operation			180 No.				
Pollution (Bag Filter						
Parameters	Unit of	Protoc	ol	Emission Prescribe	Analysis Results			
242 Manual (Measurement			(OSPCB)	ST-10			
Stack Temperature	.0C		108.0					
Velocity of Flue Gas	misec	IS 11255: Part 3 :19	-	9.3				
Quantity of Gas Flow	Nm3/Hr	IS 11255: Part 3 :19	85 (Reaff 2008)	8	2135361.2			
Barometric Pressure	mm of Hg	18 11255: Part 3 :19	85 (Reaff 2008)	-	730.7			
Concentration of Particulate Matter as PM	mg/Nm3	IS 11255: Part 1 :19	85 (Reaff 2003)	50	2,2			
Sulphur dioxide as SO2	mg/Nm3	EPA Meth	od.6C		73.1			
Oxides of Nitrogen as NOx	mg/Nm3	EPA Meth	od 7E		60.5			
Particulate Fluoride	mg/Nm3	Distillation follo Electrode n	÷	0.10				
Gaseous Fluoride	mg/Nm3	Ion Electrode	method		0.41			
Total Fluoride	mg/Nm3	Calculat		0.51				
Fluoride Emission	ion	0.3	0.052					

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering · Water Resource Management · Environmental & Social Study

Sorface & Sub-Surface Investigation ·Quality Control & Project Management · Renewable Energy

 Agricultural Development +Information Technology · Public Health Engineering

: ST-9: Stack attached to GTC-1 (Pot room)

· Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Laboratory Services Food Law Moterial Lab Soll Lab Misseral Lab Δ Microbiology Lab

Date: 30.09.2022

Test Report No.: Envlab/22/R-7634

STACK EMISSION MONITORING REPORT FOR SEPTEMBER-2022

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

: 16.09.2022

Stack Sampler

5

- 2. Date of Sampling 3. Sampling Location
- 4. Name of sampling Instrument
- : VCSPL Representative in presence of Aditya Aluminium Representative
- 5. Sample Collected by 6. Date of Analysis
- : 17.09.2022 TO 20.09.2022

_	Staak Description		
	Stack Description	Contraction of the second seco	
	Stack Height	100 Meter	
	Stack Diameter	10.4 Meter	
	Height of Sampling Point	65 Meter	
	Number of POT in operation	180 No.	
_	Pollution Control Device Atlached with the Stack	Bag Filter	

Deservations	Unit of	Destroyal	Emission Prescribe	Analysis Results
Farameters	Measurement	Protocol	Standard (OSPCB)	ST-9
Stack Temperature	"C	IS 11255: Part 3 :1985 (Reaff 2008)	1.	109.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	3.00	9.2
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)		2105674.6
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	(#)	729.5
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	3.13
Sulphur dioxide as SO2	mg/Nm3	EPA Method 6C	-	72.4
Oxides of Nitrogen as NO ₈	mg/Nm ³	EPA Method 7E		40.2
Particulate Fluoride	mg/Nm ³	Distillation followed by lon Electrode method	2.50	0.10
Gaseous Fluoride	mg/Nm ³	Ion Electrode method		0.39
Total Fluoride	mg/Nm ³	Calculation		0.49
Fluoride Emission	Kg/T	Calculation	0.3	0.050

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Infrastructure Engineering
 Water Resource Management
 Environmental & Social Study

Surface & Sub-Surface Investigation
 Quality Control & Project Management
 Renewable Energy

Agricultural Development
 Information Technology
 Public Health Engineering

Mine Planning & Design
 Mineral/Sub-Soil Exploration
 Waste Management Services

Laboratory Services Eavironment Lab Food Lab Minterial Lab Soil Lab Mineral Lab Mineral Lab Mineraliology Lab

Test Report No.: Envlab/22/R- 7635

Date: 30.09.2022

STACK EMISSION MONITORING REPORT FOR SEPTEMBER-2022

1. Name of Industry

M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
 19.09.2022

Date of Sampling
 Sampling Location

: ST-10: Stack attached to GTC-2 (Pot room)

4. Name of sampling Instrument

: Stack Sampler

Sample Collected by
 Date of Analysis

VCSPL Representative in presence of Aditya Aluminium Representative
 20.09.2022 TO 22.09.2022

Stack Des	cription					
Stack Heig	shit		100 Meter			
Stack Dian	neter		10.4 Meter			
Height of S		65 Meter				
Number of	POT in operation		180 No.			
Pollution (Control Device Attacl	ned with the Stack	Bag Filter			
Parameters	Unit of	Protocol	Emission Prescribe	Analysis Results		
	Measurement		Standard (OSPCB)	ST-10		
Stack Temperature	0C	IS 11255: Part 3 :1985 (Reaff 2008)		106.0		
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	8.0		
Quantity of Gas Flow	Nm3/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	1842276.8		
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	4	732.8		
Concentration of Particulate Matter as PM	mg/Nm3	IS 11255: Part 1 :1985 (Reaff 2003)	50	2.7		
Sulphur dioxide as SO2	mg/Nm3	EPA Method 6C		72.6		
Oxides of Nitrogen as NOx	mg/Nm3	EPA Method 7E	÷	64.2		
Particulate Fluoride	mg/Nm3	Distillation followed by Ion Electrode method	*	0,10		
Gaseous Fluoride	mg/Nm3	Ion Electrode method	-	0.41		
Total Fluoride	mg/Nm3	Calculation		0.51		
Fluoride Emission	Kg/T	Calculation	0.3	0.045		

30

						POTROO	M ONLINE F	UGITIVE MO	NITORING(H	F) REPORT A	ril '22 TO Sea	tember '22																				Anne	ure-3
		Friday	Saturday	Sunday	Monday	Tuesday	Wednesda	v Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesda	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday		
Apr-22		01-04-22	02-04-22	03-04-22	04-04-22	05-04-22	06-04-22	07-04-22	08-04-22	09-04-22	10-04-22	11-04-22	12-04-22	13-04-22	14-04-22	15-04-22	16-04-22	17-04-22	18-04-22	19-04-22	20-04-22	21-04-22	22-04-22	23-04-22	24-04-22	25-04-22	26-04-22	27-04-22	28-04-22	29-04-22	30-04-22		Avg. in PP
FUGITIVE EMISSION CH#1 (B001-B090) HF	PPM	0.134	0.141	0.137	0.167	0.177	0.181	0.151	0.202	0.175	0.205	0.165	0.167	0.188	0.218	0.173	0.228	0.197	0.146	0.168	0.141	0.176	0.264	0.196	0.224	0.167	0.148	0.115	0.196	0.204	0.168		0.177
FUGITIVE EMISSION CH#2 (B091-B180) HF	PPM	0.314	0.353	0.434	0.388	0.425	0.399	0.332	0.378	0.233	0.366	0.344	0.346	0.354	0.425	0.358	0.344	0.339	0.339	0.341	0.39	0.389	0.507	0.251	0.304	0.317	0.359	0.234	0.244	0.248	0.197		0.342
FUGITIVE EMISSION CH#3 (A091-A180) HF	PPM	0.319	0.379	0.346	0.446	0.398	0.492	0.422	0.467	0.425	0.448	0.379	0.315	0.365	0.458	0.394	0.395	0.388	0.435	0.295	0.376	0.401	0.642	0.401	0.49	0.286	0.41	0.25	0.387	0.335	0.448		0.400
FUGITIVE EMISSION CH#4 (A001-A090) HF	PPM	0.197	0.198	0.243	0.189	0.474	0.301	0.292	0.339	0.494	0.318	0.308	0.35	0.403	0.32	0.312	0.418	0.431	0.289	0.295	0.294	0.441	0.292	0.139	0.322	0.268	0.197	0.298	0.173	0.408	0.297		0.310
																														N	Anthly Average	e(ppm)	0.307
																														Mo	onthly Average (mg/M3)	0.256
May 22		Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesda	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesda	y Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Aver in Dr
Way-22		01-05-22	02-05-22	03-05-22	04-05-22	05-05-22	06-05-22	07-05-22	08-05-22	09-05-22	10-05-22	11-05-22	12-05-22	13-05-22	14-05-22	15-05-22	16-05-22	17-05-22	18-05-22	19-05-22	20-05-22	21-05-22	22-05-22	23-05-22	24-05-22	25-05-22	26-05-22	27-05-22	28-05-22	29-05-22	30-05-22	31-05-22	Avg. in Pr
FUGITIVE EMISSION CH#1 (B001-B090) HF	PPM	0.104	0.188	0.139	0.271	0.108	0.251	0.154	0.151	0.147	0.252	0.226	0.15	0.095	0.123	0.106	0.221	0.098	0.163	0.1867	0.163	0.099	0.194	0.07	0.206	0.108	0.103	0.07	0.071	0.156	0.079	0.072	0.146
FUGITIVE EMISSION CH#2 (B091-B180) HF	PPM	0.159	0.217	0.21	0.279	0.263	0.405	0.381	0.281	0.299	0.334	0.479	0.281	0.222	0.152	0.182	0.193	0.206	0.225	0.2516	0.209	0.136	0.241	0.219	0.386	0.309	0.256	0.236	0.201	0.215	0.241	0.219	0.254
FUGITIVE EMISSION CH#3 (A091-A180) HF	PPM	0.293	0.527	0.33	0.541	0.388	0.656	0.361	0.508	0.296	0.622	0.474	0.506	0.389	0.501	0.292	0.476	0.266	0.524	0.4986	0.496	0.261	0.565	0.221	0.702	0.302	0.494	0.354	0.393	0.365	0.319	0.337	0.428
FUGITIVE EMISSION CH#4 (A001-A090) HF	PPM	0.319	0.139	0.359	0.122	0.176	0.248	0.193	0.217	0.253	0.275	0.435	0.213	0.292	0.302	0.238	0.129	0.34	0.292	0.6282	0.216	0.288	0.148	0.065	0.172	0.135	0.339	0.324	0.189	0.173	0.073	0.266	0.244
																														N	Aonthly Average	(ppm)	0.268
																														Mo	onthly Average (,mg/M3)	0.223
lun-22		Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesda	y Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesda	y Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesda	y Thursday		Ave in P
		01-06-22	02-06-22	03-06-22	04-06-22	05-06-22	06-06-22	07-06-22	08-06-22	09-06-22	10-06-22	11-06-22	12-06-22	13-06-22	14-06-22	15-06-22	16-06-22	17-06-22	18-06-22	19-06-22	20-06-22	21-06-22	22-06-22	23-06-22	24-06-22	25-06-22	26-06-22	27-06-22	28-06-22	29-06-22	30-06-22		Av8
FUGITIVE EMISSION CH#1 (B001-B090) HF	PPM	0.086	0.04	0.06	0.062	0.109	0.117	0.123	0.159	0.062	0.138	0.135	0.129	0.133	0.1001	0.2255	0.1331	0.1235	0.1384	0.1932	0.2136	0.1701	0.1755	0.2064	0.1727	0.2808	0.2794	0.221	0.1479	0.2598	0.2052		0.153
FUGITIVE EMISSION CH#2 (B091-B180) HF	PPM	0.243	0.206	0.114	0.148	0.213	0.274	0.258	0.213	0.121	0.284	0.276	0.241	0.237	0.2092	0.4291	0.3386	0.2523	0.3925	0.4233	0.5378	0.409	0.4009	0.4029	0.3026	0.4104	0.4727	0.4453	0.3784	0.3296	0.4376		0.313
FUGITIVE EMISSION CH#3 (A091-A180) HF	PPM	0.394	0.208	0.282	0.343	0.313	0.321	0.451	0.308	0.183	0.389	0.451	0.34	0.444	0.2717	0.672	0.5169	0.5684	0.5755	0.6397	0.5008	0.6565	0.451	0.6571	0.7491	0.709	0.5012	0.6076	0.68	0.7725	0.4843		0.481
FUGITIVE EMISSION CH#4 (A001-A090) HF	PPM	0.215	0.139	0.122	0.337	0.167	0.091	0.379	0.286	0.119	0.418	0.275	0.257	0.216	0.2986	0.2694	0.3725	0.2366	0.2178	0.0808	0.1525	0.3059	0.0898	0.2709	0.2475	0.2047	0.4571	0.2659	0.4082	0.4635	0.455		0.261
																														N	Ionthly Average	:(ppm)	0.302
																														Mo	unthly Average (mg/M3)	0.251
Jul-22		Friday	Saturday	Sunday	Monday	Tuesday	Wednesda	y Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesda	y Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Avg. in P
		01-07-22	02-07-22	03-07-22	04-07-22	05-07-22	06-07-22	07-07-22	08-07-22	09-07-22	10-07-22	11-07-22	12-07-22	13-07-22	14-07-22	15-07-22	16-07-22	17-07-22	18-07-22	19-07-22	20-07-22	21-07-22	22-07-22	23-07-22	24-07-22	25-07-22	26-07-22	27-07-22	28-07-22	29-07-22	30-07-22	31-07-22	-
FUGITIVE EMISSION CH#1 (B001-B090) HF	PPM	0.2772	0.2789	0.2005	0.1628	0.1525	0.3305	0.2213	0.2048	0.356	0.374	0.371	0.343	0.361	0.347	0.34	0.426	0.397	0.189	0.247	0.214	0.132	0.236	0.221	0.21	0.152	0.257	0.252	0.102	0.104	0.178	0.112	0.250
FUGITIVE EMISSION CH#2 (B091-B180) HF	PPM	0.404	0.4672	0.4909	0.4831	0.3668	0.5452	0.3942	0.4998	0.483	0.472	0.454	0.489	0.391	0.508	0.449	0.557	0.459	0.441	0.45	0.498	0.391	0.379	0.298	0.222	0.215	0.295	0.262	0.204	0.198	0.296	0.334	0.400
FUGITIVE EMISSION CH#3 (A091-A180) HF	PPM	0.628	0.5646	0.7517	0.5955	0.6272	0.5289	0.6008	0.4127	0.574	0.484	0.665	0.613	0.532	0.481	0.618	0.628	0.679	0.499	0.615	0.465	0.664	0.528	0.755	0.651	0.646	0.548	0.479	0.355	0.449	0.494	0.501	0.569
FUGITIVE EMISSION CH#4 (A001-A090) HF	PPM	0.3315	0.1578	0.243	0.3176	0.2801	0.3541	0.1578	0.1429	0.134	0.382	0.242	0.403	0.204	0.242	0.14	0.138	0.321	0.326	0.263	0.283	0.358	0.149	0.19	0.307	0.233	0.292	0.156	0.249	0.156	0.402	0.338	0.25
																														N	ionthly Average	(ppm)	0.368
										1																				IVIC	Athiy Average (r	mg/IVI3)	0.300
Aug-22		Nionday 01.08.32	10esday	02 08 22	04 08 22	Priday	OF OF 22	07.09.22	Nionday	nuesday	10.08.22	11 08 22	12.08.22	12 OR 22	14 08 22	15 08 22	16 08 22	17 08 22	18.08.22	10.08.22	30 08 22	31.09.22	22.08.22	10esday	24 08 22	25 08 22	26 08 22	37 08 32	Sunday	20 08 22	20.08.22	21 08 22	Avg. in P
ELICITIVE EMISSION CH#1 (R001 R000) HE	DDM	0145	0.167	0.332	04-08-22	0.159	0.170	0.200	03-08-22	0.224	0.197	0.221	0.351	0.224	0.359	0.12	0.103	0.148	0.185	0.271	0.206	0.163	0.153	0.135	0.162	0.108	0.000	0.059	0.188	0.169	0.119	0.105	0.173
ELIGITIVE EMISSION CH#2 (B001-B090) HE	DDA4	0.145	0.107	0.222	0.104	0.158	0.1/5	0.255	0.244	0.224	0.107	0.221	0.231	0.324	0.238	0.12	0.235	0.256	0.242	0.306	0.266	0.331	0.278	0.198	0.202	0.100	0.000	0.055	0.100	0.205	0.169	0.187	0.1/7
FUCITIVE EMISSION CH#2 (6001-6180) HE	PPIVI	0.245	0.233	0.280	0.198	0.257	0.249	0.508	0.283	0.39	0.329	0.348	0.32	0.386	0.315	0.298	0.255	0.456	0.608	0.500	0.572	0.551	0.649	0.490	0.710	0.506	0.620	0.105	0.500	0.416	0.512	0.536	0.267
FUGITIVE EMISSION CH#3 (A091-A180) HE	PPIVI	0.42	0.577	0.488	0.449	0.452	0.548	0.552	0.04/	0.035	0.685	0.576	0.732	0.476	0.005	0.545	0.303	0.430	0.235	0.309	0.676	0.559	0.048	0.465	0.715	0.300	0.039	0.408	0.037	0.410	0.138	0.044	0.555
FUGITIVE ENIISSION CH#4 (A001-A090) HF	PPM	0.539	0.405	0.519	0.156	0.331	0.124	0.309	0.384	0.025	0	0.118	0.551	0.751	0.394	0.686	0.207	0.151	0.235	0.324	0.070	0.335	0.315	0.208	0.333	0.282	0.110	0.074	0.205	0.202	0.138	0.044	0.31:
																														Mo	onthis Average ((ppin) (mg/M3)	0.328
		Thursday	Eriday	Coturday	Sundau	Monday	Tuerdau	Modporda	Thursday	Eridou	Coturdou	Sundau	Monday	Tuerday	Wednerda	Thursday	Exident	Coturdou	Sunday	Monday	Tuorday	Wodporda	Thursday	Eridau	Coturdou	Sunday	Monday	Tuesday	Wednesday	Thursday	Eriday	16/113/	0.273
Sep-22		01-09-22	02-09-22	03-09-22	04-09-22	05-09-22	06-09-22	07-09-22	08-09-22	09-09-22	10-09-22	11-09-22	12-09-22	13-09-22	14-09-22	15-09-22	16-09-22	17-09-22	18-09-22	19-09-22	20-09-22	21-09-22	22-09-22	23-09-22	24-09-22	25-09-22	26-09-22	27-09-22	28-09-22	29-09-22	30-09-22		Avg. in P
FUGITIVE EMISSION CH#1 (8001-8090) HE	DDM	0.078	0.116	0.072	0.091	0.077	0.101	0.166	0.149	0.102	0.141	0.307	0.197	0.129	0.117	0.095	0.080	0.114	0.145	0.306	0.220	0.114	0.070	0.047	0.049	0.020	0.141	0.152	0.322	0.151	0.144	<u> </u>	0.120
ELIGITIVE EMISSION CH#2 (8001-8090) HE	DDM	0.078	0.110	0.072	0.081	0.077	0.060	0.100	0.148	0.103	0.141	0.297	0.187	0.128	0.117	0.085	0.039	0.025	0.145	0.1200	0.142	0.114	0.079	0.047	0.048	0.089	0.141	0.153	0.101	0.151	0.144	<u> </u>	0.12
ELIGITIVE EMISSION CH#2 (8091-8180) HF	PPIVI	0.208	0.183	0.098	0.076	0.080	0.009	0.188	0.441	0.14	0.253	0.200	0.212	0.1/9	0.151	0.670	0.453	0.085	0.107	0.121	0.143	0.135	0.07	0.075	0.050	0.224	0.1/2	0.142	0.191	0.12/	0.139	<u>+</u>	0.13
ELICITIVE EMISSION CH#4 (A001 A000) HE	DDM	0.310	0.435	0.001	0.435	0.721	0.307	0.345	0.303	0.33/	0.359	0.049	0.353	0.420	0.30/	0.029	0.432	0.375	0.453	0.003	0.43/	0.603	0.338	0.309	0.901	0.047	0.437	0.003	0.404	0.024	0.300	t	0.33
1001110 EN1331014 CH#4 (A001-A090) HP	PPIVI	0.207	0.176	0.207	0.534	0.315	0.297	0.227	0.202	0.190	0.308	0.348	0.352	0.439	0.221	0.239	0.119	0.190	0.404	0.003	0.5/4	0.002	0.334	0.287	0.280	0.247	0.277	0.399	0.300	0.289	0.239		0.320
																														N	ionuny Average	4Pbini	3.280

Monthly Average (mg/M3) 0.23

																								ANNEXURE-4
-										5	ATUS OF LITH		F THE INDU	STRY:- ADITYA	ALUMINI	UM for EV-22-23 (linto Sen-2	2)						
S N	. Mont	n Ye	ar Coal Consum (MT)	otion P Ins Ca (I	Power istalled apacity (MW)	Power Generated (MW)	Qunatity of Fly Ash generated (MT)	Quantity of Bottom Ash Generated (MT)	Total Ash Generated (MT)	Disposal Method	Brick Manufacturing (MT)	Supplied to cement industries (M/s UTCL, M/s ACC Ltd & M/s DBCL) in (MT)	Mine Void Filling (MT)	Utilization in Embankment/ Dyke Raising (MT)	Road Making (MT)	Low Lying area filling/land development (MT)	Aggregates (MT)	Agriculture/Ho rticulture Sector (MT)	Sent to Ash Pond through HCSD & stock in Ash Silo	Ash Utilized from Previous Stock in Ash Pond/Silo/CHP Siding (MT)	Ash Utilized from Current Month generation (MT) (Col. 20=Sum of col. 10 to 17)	Total Ash Utilized (MT) (Col. 21=Col. 19+ Col.20)	% of ash Utilization (Col. 22=Col. 21/ Col.8*100)	. Remarks
	1	1	3		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	. Apri	20	310506.	96 9	900	607.23	118746.37	5476	124222.0		0	112137.10	0	0	0	5476	0	0	6609.27	26229.6	117612.7	143842.3	115.79	Total 26229.57 MT pond ash supplied to Dalmia Cement (23476.77 MT),Rajganpur and Balajee Road Project,Sundargarh (2751.81 MT).
Ĩ	May	20	3,20,695	63 9	900	604.74	120060	5563	125623.0	Dry ash is	0	116316.7	0	0	0	5563	0	0	3743.16	41908.9	121879.8	163788.77	130.38	Total 41908.93 MT pond ash supplied to Dalmia Cement (24112.91 MT),Rajganpur and Balajee Road Project,Sundargarh (17796.02 MT).
-	l Jun	20	22 265062.	77 9	900	605.99	113353	5177	118530.0	being supplied to Cement Plants, fly ash Brick units and in low lying area	0	117078.5	0	0	0	5177	0	0	-3725.48	27161.2	122255.5	149416.63	126.06	Total 27161.15 MT pond ash supplied to Dalmia Cement (18380.68 MT),Rajganpur and Balajee Road Project,Sundargarh (8780.47 MT).
2	lut 4	20	22 338151.	98 9	900	612.59	123495	4777	128272.0	development,R oad Project and remaining ash is being send through HCSD system	0	119655.9	0	0	0	4777	0	0	3839.07	5300.9	124432.9	129733.87	101.14	Total 5300.94 MT pond ash supplied to Dalmia Cement (5196.60 MT),Rajganpur and Balajee Road Project,Sundargarh (104.34 MT).
5	i Aug	20	349006.	39 9	900	618.45	127581	4561	132142.0	to ash pond.	0	99364.4	0	0	0	4561	0	0	28217.03	5321.1	103925.0	109246.07	82.67	Total 5321.10 MT pond ash supplied to Dalmia Cement (5321.10 MT),Rajganpur and Balajee Road Project,Sundargarh (0.00 MT).
6	i Sep	20	22 294067.0	76 9	900	607.07	107120	4630	111750.0		404.38	88122.2	0	0	0	4630	0	0	20516.00	4500.0	93156.6	97656.57	87.39	Total 4500 MT fly ash utilized in Internal road development inside plant from previous stock.
	Tota	I	1877493	.3			710355.6	30183.4	740539.0		404.4	652674.7	0.0	0.0	0.0	30183.4	0.0	0.0	59199.1	110421.7	683262.5	793684.2	107.18	

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Infrastructure Engineering
 Water Resource Management
 Environmental & Social Study

Surface & Sub-Surface Investigation
 Quality Control & Project Management
 Renewable Energy

Agricultural Development
 Information Technology
 Public Health Engineering

Mine Planning & Design
Mineral/Sub-Soil Exploration
Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab &

Microbiology Lab

Ref: VCSPL/22/R-8488

Date: 07.10.2022

ASH ANALYSIS REPORT-MAY 2022

- 1. Name of Industry
- : M/s Hindalco Industries Limited (Unit- Aditya Aluminium), Lapanga.
- Sampling Location
 Date of Sampling
- : FA-01: CPP Fly Ash Silo : 23.05.2022
- 4. Date of Analysis
- 5. Sample Collected By
- : 24.05.2022 TO 02.06.2022
- : VCSPL Representative in presence of Aditya Aluminium Representative.

SI. No.	Parameters	Parameters Unit Analysis Results					
	- In this core	Cint	FA-01	Unit	FA-01		
Chemical	Analysis						
1	Na ₂ O	%	0.21	mg/kg	2100		
2	MgO	%	0.92	mg/kg	9200		
3	Al ₂ O ₃	%	21.8	mg/kg	218000		
4	SiO ₂	%	51.3	mg/kg	513000		
5	P ₂ O ₅	%	0.023	mg/kg	230		
6	SO ₃	%	2.3	mg/kg	23000		
7	K ₂ O	%	0.81	mg/kg	8100		
8	CaO	%	4.3	mg/kg	43000		
9	TiO ₂	%		mg/kg			
10	MnO	%	0.21	mg/kg	2100		
11	Fe ₂ O ₃	%	9.3	mg/kg	93000		
leavy M	etals Analysis			1	20000		
1	Mercury as Hg	%	<0.001	mg/kg	<0.001		
2	Arsenic as As	%	< 0.001	mg/kg	<0.001		
3	Lead as Pb	%	0.0162	mg/kg	162		
4	Chromium as Cr	%	< 0.002	mg/kg	< 0.002		
5	Vanadium as V	%	<0.001	mg/kg	< 0.001		
6	Iron as Fe	%	5.384	mg/kg	53840		
7	Cobalt as Co	%	<0.001	mg/kg	< 0.001		
8	Copper as Cu	%	0.068	mg/kg	680		
9	Nickel as Ni	%	0.088	mg/kg	880		
10	Zinc as Zn	%	0.0534	mg/kg	534		
11	Strontium as Sr	%		mg/kg			
12	Barium as Ba	%	<0.001	mg/kg	<0.001		

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511 E-mail: visiontek@vcspl.org, visiontekin@gmail.com Visit us at: www.vcspl.org

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Infrastructure Engineering
Water Resource Management
Environmental & Social Study

Surface & Sub-Surface Investigation
 Quality Control & Project Management
 Renewable Energy

Agricultural Development
 Information Technology
 Public Health Engineering

Mine Planning & Design
 Mineral/Sub-Soil Exploration

Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab &

Microbiology Lab

Ref: VCSPL/22/R-8489

3.

ASH ANALYSIS REPORT-MAY 2022

- 1. Name of Industry
- 2. Sampling Location
- : M/s Hindalco Industries Limited (Unit- Aditya Aluminium), Lapanga.
- ling Location : H
 - : BA-01: CPP Bottom Ash Silo
- Date of Sampling : 23.05.2022
- 4. Date of Analysis
- 5. Sample Collected By
- : 24.05.2021 TO 02.06.2022
- : VCSPL Representative in presence of Aditya Aluminium Representative.

SI. No.	Parameters	Unit	Analysis Results BA-01	Unit	Analysis Results BA-01		
Chamical	Analysis			1			
l	Na O	%	0.24	mg/kg	2400		
2	MaQ	%	2.7	mg/kg	27000		
2		%	26.4	mg/kg	264000		
3	SiO.	%	48.2	mg/kg	482000		
5	B-O-	%	0.025	mg/kg	250		
6	SO:	%	11.2	mg/kg	112000		
7	K-0	%	0.94	mg/kg	9400		
9		%	31.8	mg/kg	318000		
0	TiO	%	0	mg/kg			
10	MnO	%	0.34	mg/kg	3400		
11	Fe ₂ O ₂	%	7.5	mg/kg	75000		
Loow M	atale Analysis				and the second second		
neavy wi	Marcury as Ha	%	< 0.001	mg/kg	< 0.001		
2	Areanic as As	0/0	<0.001	mg/kg	< 0.001		
2	Lead as Ph	%	0.0155	mg/kg	155		
1	Chromium as Cr	%	< 0.002	mg/kg	< 0.002		
4	Vanadium as V	%	< 0.001	mg/kg	<0.001		
6	Iron as Fe	%	6.2	mg/kg	62000		
7	Cobalt as Co	%	< 0.001	mg/kg	< 0.001		
0	Copper as Cu	%	0.028	mg/kg	280		
0	Nickel as Ni	%	0.091	mg/kg	910		
10	Zine as Zn	%	0.0672	mg/kg	672		
10	Strontium as Sr	%		mg/kg			
12	Barium as Ba	%	< 0.001	mg/kg	< 0.001		

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511 E-mail: visiontek@vcspl.org, visiontekin@gmail.com Visit us at: www.vcspl.org

Date: 07.10.2022

Annenuke- G

TESTING #188PECTION

Mitra S. K. Private Limited

N-5/100, Ground Floor IRC Village, Nayapalii Bhubaneswar - 751015 [CIN: U51909WB1856PTC023037]

T: (0674) 2362916, 2360917 F: (0674) 2362918 Name & Address of the Customer : HINDALCO INDUSTRIES LTD. (Unit- Aditya Aluminium) At/Po: Lapanga , Beside SH-10 Sambalpur , Odisha-768212

TEST REPORT

Report No. : BBS/902 Date : 15.07.2022 Sample No. : MSKGL/ED/2021-22/06/01351 Sample Description : Ground Water Sampling Location : Piezometric Borewell-1 (Near Ash Pond) Date of Sampling : 07.06.2022

ANALYSIS RESULT

SL No.	Test Parameters	Requirement (Acceptable Limit	Permissible limit in the absence of alternate Source	Test Method / Specification	. Result
1.	pH at 26°C	6.5-8.5	No Relaxation	IS 3025 (Part 11)-1984 Rffm: 2012	6.96
2.	Turbidity in mg/l	1	5	IS 3025 (Part 10)-1984 Rffm: 2012	BDL(DL:1.0)
3.	Total Dissolved Solids as TDS in mg/l	500	2000	IS 3025 (Part 16)-1984; Rffin:2012	147.0
4.	Aluminium as Al in mg/l	0.03	0.2	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.01)
5.	Boron as B in mg/l	0.5	1.0	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.5)
6.	Calcium as Ca in mg/l	75	200	15 3025 (Part 40)- 1991 Rffin: 2014	19.2
7.	Chloride as Cl in mg/l	250	1000	IS 3025 (Part 32)-1988 Rffm: 2014	12.0
8.	Copper as Cu in mg/l	0.05	1.5	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
9.	Flouride as F in mg/l	1.0	1.5	IS 3025 (Part 60)- 2008 Rffm: 2013	0.47
10.	Iron as Fe in mg/l	0.3	No Relaxation	IS 3025 (Part 53)-1988 Rffm: 2014	0.49
11.	Magnesium as Mg in mg/l	30	100	IS 3025 (Part 46)-1994 Rffm: 2014	4,4
12.	Manganese as Mn in mg/l	0.1	0.3	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
13.	Nitrate as NO3 in mg/l	45	No Relaxation	IS 3025 (Part 34)-1988 Rffm: 2014	0.24
14.	Phenolic Compounds as C6H5OH in ma/l	0.001	0.002	IS 3025 (Part 43)- 1992; Rffm: 2014	BDL(DL:0.001)
15.	Selenium as Se in mg/l	0.01	No Relaxation	1S 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
16.	Sulphate as SO4 in mg/l	200	400	IS 3025 (Part 24)- 1986 Rifins: 2014	8.0
17.	Total Hardness as CaCO3 in mg/l	200	600	1S 3025 (Part 21)-2013	66.0
18.	Cadmium as Cd in mg/l	0.003	No Relaxation	1S 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
19.	Cyanide as CN in mg/l	0.05	No Relaxation	1S 3025 (Part 27)- 1986; Rffm:2003	BDL(DL:0.01)
20.	Lead as Pb in mg/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
21.	Mercury as Hg in mg/l	0.001	No Relaxation	1S 3025(Part 48)-1994	BDL(DL:0.001)
22.	Arsenic as As in mg/l	0.01	0.05	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
23.	Total Chromium as Cr in mg/l	0.05	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	DDL(DL:0.001)
24.	Sodium as Na in mg/l			APHA 23rd Edition, 3500 Na B	10.0
25.	Conductivity in us/cm	++++		APHA 23 ^{sd} Edition, 2510B	218.0
26.	Potassium as K in mg/l			APHA 23rd Edition, 3500 K B 2017	2.8
27.	Zinc as Zn in mg/l	5	15	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
28	Total Alkalinity as CaCO3 in mg/l	200	600	1S 3025 (Part 23)- 1986 Rffm: 2009	76.0

Report Prepared by: J. Kange

Mitra S. K. Private Limited Avanta server Rath Authorized Signatory

N-5/100, Ground Floor IRC Village, Nayapalli Bhubaneswar - 751015 [CIN: U51909WB1956PTC023037]

T : (0674) 2362916, 2360917 F : (0674) 2362918

Name & Address of the Customer : HINDALCO INDUSTRIES LTD. (Unit- Aditya Aluminium) At/Po: Lapanga, Beside SH-10 Sambalpur, Odisha-768212

TEST REPORT

Report No. : BBS/903 Date : 16.07.2022 Sample No. : MSKGL/ED/2022-23/06/01352 Sample Description : Ground Water Sampling Location : Pizometric Borewell-2 (Near Proposed Ash Pond) Date of Sampling : 07.06.2022

ANALYSIS RESULT

SI. No.	Test Parameters	Requirement Acceptable Limit	Permissible limit in the absence of alternate Source	Test Method / Specification	Result
1	pH at 26°C	6.5-8.5	No Relaxation	IS 3025 (Part 11)-1984 Rffm: 2012	7.23
2	Turbidity in mg/l	1	5	IS 3025 (Part 10)-1984 Rffin: 2012	BDL(DL:1.0)
3	Total Dissolved Solids as TDS in mg/l	500	2000	IS 3025 (Part 16)-1984; Rffm:2012	135.0
4	Aluminium as A1 in mg/l	0.03	0.2	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.01)
5	Boron as B in mg/l	0.5	1.0	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.5)
6	Calcium as Ca in mg/l	75	200	1S 3025 (Part 40)- 1991 Rffm: 2014	20.0
7	Chloride as Cl in mg/l	250	1000	IS 3025 (Part 32)-1988 Rffm: 2014	10.0
9	Concer as Cu in me/l	0.05	1.5	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
0.	Elouride as F in mu/l	1.0	1.5	IS 3025 (Part 60)- 2008 Rffm: 2013	0.36
9,	from os Fe in mol	03	No Relaxation	IS 3025 (Part 53)-1988 Rffm: 2014	BDL(D1.:0.005)
10.	Magnacium as Mo in mo/l	30	100	IS 3025 (Part 46)-1994 Rffm: 2014	6.0
11.	Magnesiani as Mg in mg/l	0.1	0.3	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
12.	Nitrate or NO3 in mp/l	45	No Relaxation	IS 3025 (Part 34)-1988 Rffm: 2014	2.1
13.	Phenolic Compounds as C6H5OH in mg/l	0.001	0.002	IS 3025 (Part 43)- 1992; Rffin: 2014	BDL(DL:0.001)
15	Selenium as Se in mo/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
1.5.	Subbute as SO4 in mg/l	200	400	IS 3025 (Part 24)- 1986 Rffm: 2014	7.0
10.	Total Hardness as CaCO3 in mg/l	200	600	IS 3025 (Part 21)-2013	75.0
19	Cadmium as Cd in mg/l	0.003	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
10.	Cuanide as CN in mp/l	0.05	No Relaxation	IS 3025 (Part 27)- 1986; Rffm:2003	BDL(DL:0.005)
20	Lead as Ph in med	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
20,	Mercury as Ho in mg/l	0.001	No Relaxation	IS 3025(Part 48)-1994	BDL(DL:0.005)
21.	Amenic as As in mu/l	0.01	0.05	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
22.	Tatal Chromium or Cr in mol	0.05	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
23.	Codium or Ma in mail	0.00		APHA 23rd Edition, 3500 Na B	8.9
24.	Sodium as Na in mg/r			APHA 23rd Edition, 2510B	211.0
25.	Conductivity in used			APHA 23rd Edition, 3500 K B 2017	- 5.2
26.	Potassium as K in mg/i		15	1S 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
27.	Zinc is Zn in ing/i	200	600	IS 3025 (Part 23)- 1986 Rffm: 2009	68.0

Report Prepared by:

Mitra S. K. Private Limited burn Rath Ananta Authorized Signatory

H.O.: Shrachi Centre (5th Floor), 74B, Acharya Jagadish Chandra Bose Road, Kolkata - 700 016, West Bengal, India T: 91 33 4014 3000 / 2265 0006 / 2265 0007, F: 91 33 2265 0008, E: Info@mitrask.com, W: www.mitrask.com

BBSR

N-5/100, Ground Floor IRC Village, Nayapalli Bhubaneswar - 751015 [CIN: U51909WB1956PTC023037]

T: (0674) 2362916, 2360917 F: (0674) 2362918

Name & Address of the Customer : HINDALCO INDUSTRIES LTD. (Unit- Aditya Aluminium) At/Po: Lapanga, Beside SH-10 Sambalpur, Odisha-768212

TEST REPORT

Report No. : BBS/904 Date : 16.07.2022 Sample No. : MSKGL/ED/2022-23/06/01353 Sample Description : Ground Water Sampling Location : Pizometric Borewell-3 (Near RR Colony) Date of Sampling : 07.06.2022

ANALYSIS RESULT

Organoleptic and Physical Parameters as per IS 10500 : 2012

SI. No.	Test Parameters	Requirement Acceptable Limit	Permissible limit in the absence of alternate Source	Test Method / Specification	Result
1	pH at 26 ⁶ C	6.5-8.5	No Relaxation	IS 3025 (Part 11)-1984 Rffm: 2012	7.34
2	Turbidity in mg/l	1	5	IS 3025 (Part 10)-1984 Rffm: 2012	BDL(DL:1.0)
3	Total Dissolved Solids as TDS in mg/l	500	2000	IS 3025 (Part 16)-1984; Rffm:2012	304.0
4	Aluminium as Al in mg/l	0.03	0.2	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.01)
4.	Boron as B in mg/l	0.5	1.0	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.5)
5.	Calcium as Ca in mg/l	75	200	IS 3025 (Part 40)- 1991 Rffm: 2014	48.0
7	Chloride as Cl in mg/l	250	1000	IS 3025 (Part 32)-1988 Rffm: 2014	67.0
0	Conner as Cu in mg/l	0.05	1.5	1S 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
0.	Elouride as F in mg/l	1.0	1.5	IS 3025 (Part 60)- 2008 Rffm: 2013	0.4
9.	Iron as Fe in mg/l	0.3	No Relaxation	IS 3025 (Part 53)-1988 Rffin: 2014	0.36
10,	Magnesium as Mg in mg/l	30	100	IS 3025 (Part 46)-1994 Rffm: 2014	10.0
12	Manageress as Mn in mg/l	0.1	0.3	1S 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
12.	Nitrate as NO3 in mg/l	45	No Relaxation	IS 3025 (Part 34)-1988 Rffm: 2014	BDL(DL:0.4)
15.	Phenolic Compounds as C6H5OH in mg/l	0.001	0.002	IS 3025 (Part 43)- 1992; Rffin: 2014	BDL(DL:0.001)
15	Selenium as Se in ma/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
15.	Subshate as SOd in mo/l	200	400	IS 3025 (Part 24)- 1986 Rffm: 2014	18.0
10.	Total Hardness as CaCO3 in mg/l	200	600	IS 3025 (Part 21)-2013	162.0
17.	Codmium as CA in mo/l	0.003	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
10.	Counida as CN in mg/l	0.05	No Relaxation	1S 3025 (Part 27)- 1986; Rffm:2003	BDL(DL:0.005)
19,	I and as Ph in mail	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
20.	Marcury as He in med	0.001	No Relaxation	IS 3025(Part 48)-1994	BDL(DL:0.005)
21.	Assentia as As in mo/	0.01	0.05	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
22.	Total Chemium as Cr in mg/	0.05	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
23.	Codium as No in mm?	0.05		APHA 23rd Edition, 3500 Na B	32.0
24.	South as is a mingri			APHA 23rd Edition, 2510B	475.0
25.	Botassium as K in med			APHA 23rd Edition, 3500 K B 2017	4.5
26,	Zine of Zn in med	5	15	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
21,	Tatal Alkalinity as CaCO3 in mail	200	600	IS 3025 (Part 23)- 1986 Rffm: 2009	135.0

Report Prepared by:

Mitra S. K. Private Limited Ananter reuman Rates

ward - manual to

Authorized Signatory

N-5/100, Ground Floor IRC Village, Nayapalii Bhubaneswar - 751015 [CIN: U51909WB1966PTC023037]

T: (0674) 2362916, 2360917 F: (0674) 2362918

Name & Address of the Customer : HINDALCO INDUSTRIES LTD. (Unit- Aditya Aluminium) At/Po: Lapanga, Beside SH-10 Sambalpur, Odisha-768212

TEST REPORT

Report No. : BBS/905 Date : 16.07.2022 Sample No. : MSKGL/ED/2022-23/06/01354 Sample Description : Ground Water Sampling Location : Pizometric Borewell-4 (Bomaloi Village) Date of Sampling : 07.06.2022

ANALYSIS RESULT

Organoleptic and Physical Parameters as per IS 10500 : 2012

SL No.	Test Parameters	Requirement Acceptable Limit	Permissible limit in the absence of alternate Source	Test Method / Specification	Result
	11 - 240	65.85	No Relaxation	IS 3025 (Part 11)-1984 Rffm: 2012	7.02
1.	pH m 26°C	0.5-0.5	5	IS 3025 (Part 10)-1984 Rffm: 2012	BDL(DL:1.0)
2.	Turbidity in mg/l	500	2000	IS 3025 (Part 16)-1984; Rffm:2012	241.0
3.	Total Dissolved Solids as 1DS m mg/	500	0.2	1S 3025 (Part 2) 2004 RA 2014	BDL(DL:0.01)
4.	Aluminium as AI in mg/l	0.03	1.0	1S 3025 (Part 2) 2004 RA 2014	BDL(DL:0.5)
5.	Boron as B in mg/l	0.5	200	IS 3025 (Part 40)- 1991 Rffm: 2014	36.0
6.	Calcium as Ca in mg/l	15	1000	IS 3025 (Part 32)-1988 Rffm: 2014	62.0
7.	Chloride as Cl in mg/l	250	1000	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
8.	Copper as Cu in mg/l	0.05	1.5	1S 3025 (Part 60)- 2008 Rffm: 2013	0.37
9.	Flouride as F in mg/l	1.0	1.5	18 3025 (Part 53)-1988 Rffm: 2014	0.26
10.	Iron as Fe in mg/l	0.3	No Relaxation	15 3025 (Part 46)-1994 Rffm: 2014	9.0
11.	Magnesium as Mg in mg/l	30	100	18 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
12	Manganese as Mn in mg/l	0.1	0.3	15 3025 (Part 2) 2004 Ref 2014	BDL(DL:0.04)
13.	Nitrate as NO3 in mg/l	45	No Relaxation	15 3025 (Part 34)-1968 Killin: 2014	hochomer .
14.	Phenolic Compounds as C6H5OH in	0.001	0.002	IS 3025 (Part 43)- 1992; Rffm: 2014	BDL(DL:0.001)
15	Salanium as Se in mo/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
15.	Selement is Se in mg/	200	400	IS 3025 (Part 24)- 1986 Rffm: 2014	13.0
16.	Suprate as SO4 in high	200	600	IS 3025 (Part 21)-2013	128.0
17.	Total Hardness as Caccos in high	0.003	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
18.	Cadmidin as Cd in mg/r	0.05	No Relaxation	IS 3025 (Part 27)- 1986; Rffm:2003	BDL(DL:0.005)
19.	Cyanide as Civ in ing/	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
20.	Lead as Po in high	0.001	No Relaxation	IS 3025(Part 48)-1994	BDL(DL:0.005)
21.	Mercury as Fig in mg/1	0.01	0.05	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
22.	Arsenic as As in mg/	0.05	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
23.	Total Chromium as Cr in mg/i	0.05		APHA 23rd Edition, 3500 Na B	21.0
24.	Sodium as Na in mg/i			APHA 23rd Edition, 2510B	376.0
25.	Conductivity in us/cm			APHA 23rd Edition, 3500 K B 2017	6.2
26.	Potassium as K in mg/l		15	IS 3025 (Part 2) 2004 RA 2014	BDL(D1.:0.02)
27.	Zinc as Zn in mg/l	5	15	15 3025 (Part 23)- 1986 Rffm: 2009	51.0
28.	Total Alkalinity as CaCO3 in mg/l	200	600	to some (second) and and	

Report Prepared by:

Mitra S. K. Private Limited Avonto koma Rate Authorized Signatory

N-5/100, Ground Floor IRC Village, Nayapalii Bhubaneswar - 751015 [CIN: U51909WB1956PTC023037]

T: (0674) 2362916, 2360917 F: (0674) 2362918 Name & Address of the Customer : HINDALCO INDUSTRIES LTD. (Unit- Aditya Aluminium) At/Po: Lapanga, Beside SH-10 Sambalpur, Odisha-768212

TEST REPORT

Report No. : BBS/902 Date : 07.10.2022 Sample No. : MSKGL/ED/2022-23/09/00552 Sample Description : Ground Water Sampling Location : Piezometric Borewell-1 (Near Ash Pond) Date of Sampling : 13.09.2022

ANALYSIS RESULT

Organoleptic and Physical Parameters as per IS 10500 : 2012

SI. No.	Test Parameters	Requirement (Acceptable Limit	Permissible limit in the absence of alternate Source	Test Method / Specification	Result
1.	pH at 26°C	6.5-8.5	No Relaxation	15 2025 (D 11) 100 - 0 7	
2.	Turbidity in mg/l	1	5	15 3025 (Part 11)-1984 Ritin: 2012	7,1
3,	Total Dissolved Solids as TDS in mg/l	500	2000	15 3025 (Part 10)-1984 Rffm: 2012	BDL(DL:1.0)
4.	Aluminium as Al in mg/l	0.03	0.2	15 3025 (Part 16)-1984; Rffm:2012	156.0
5.	Boron as B in mg/l	0.5	1.0	18 3025 (Part 2) 2004 RA 2014	BDL(DL:0.01)
6,	Calcium as Ca in mg/l	75	200	15 3025 (Part 2) 2004 RA 2014	BDL(DL:0.5)
7.	Chloride as Cl in mg/l	250	1000	18 3025 (Part 40)- 1991 Rffin: 2014	24.0
8.	Copper as Cu in mg/I	0.05	1000	15 3025 (Part 32)-1988 Rffin: 2014	15.0
9.	Flouride as F in mg/l	1.0	1,5	15 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
10.	Iron as Fe in mg/I	0.7	1.2	IS 3025 (Part 60)- 2008 Rffm: 2013	0.39
11,	Magnesium as Mg in mg/i	20	No Relaxation	18 3025 (Part 53)-1988 Rffin: 2014	0.44
12.	Manganese as Mn in mg/l	0.1	100	IS 3025 (Part 46)-1994 Rffm: 2014	8.0
13.	Nitrate as NO3 in mo/1	46	0.3	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
14.	Phenolic Compounds as C6H5OH in mg/l	0.001	0.002	IS 3025 (Part 34)-1988 Rffin: 2014 IS 3025 (Part 43)- 1992: Rffin: 2014	0.31 BDI (DL-0.001)
15.	Selenium as Se in mg/l	0.01	No Balanatian	10 2024 20 - 81 2024 2	BDC(DL:0.001)
16.	Sulphate as SO4 in mg/l	200	A00	15 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
17,	Total Hardness as CaCO3 in mg/1	200	400	15 3025 (Part 24)- 1986 Rffm: 2014	14.0
18.	Cadmium as Cd in mg/l	0.001	Notherst	IS 3025 (Part 21)-2013	93.0
19,	Cyanide as CN in mg/l	0.05	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
20.	Lead as Pb in mg/l	0.03	No Relaxation	15 3025 (Part 27)- 1986; Rffm:2003	BDL(DL:0.01)
21.	Mercury as Hg in mg/l	0.001	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
22.	Arsenic as As in mg/l	0.001	No Relaxation	IS 3025(Part 48)-1994	BDL(DL:0.001)
23.	Total Chromium as Cr in me/l	0.01	0.05	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
24.	Sodium as Na in mo/l	0.05	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
25.	Conductivity in us/cm			APHA 23 st Edition, 3500 Na B	12.0
26.	Potassium as K in me/l			APHA 23rd Edition, 2510B	243.0
27.	Zinc as Zn in mg/l			APHA 23rd Edition, 3500 K B 2017	3.5
28.	Total Alkalinity as CaCO3 in mod	3	15	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
	a sacos m myr	200	600	IS 3025 (Part 23)- 1986 Rffin: 2009	86.0

S.Kamp Report Prepared/by

Mitra S. K. Private Limited

Avante com Rath

N-5/100, Ground Floor IRC Village, Nayapalli Bhubaneswar - 751015 [CIN: U51909WB1956PTC023037]

T : (0674) 2362916, 2360917 F : (0674) 2362918

Name & Address of the Customer : HINDALCO INDUSTRIES LTD. (Unit- Aditya Aluminium) At/Po: Lapanga , Beside SH-10 Sambalpur , Odisha-768212

TEST REPORT

Report No. : BBS/903 Date : 07.10.2022 Sample No. : MSKGL/ED/2022-23/09/00553 Sample Description : Ground Water Sampling Location : Pizometric Borewell-2 (Near Proposed Ash Pond) Date of Sampling : 13.09.2022

ANALYSIS RESULT

Organoleptic and Physical Parameters as per IS 10500 : 2012

SI. No.	Test Parameters	Requirement Acceptable Limit	Permissible fimit in the absence of alternate Source	Test Method / Specification	Result
1.	pH at 26°C	6.5-8.5	No Relaxation	18 1025 (Bed 11) 1084 D.M. 4515	
2.	Turbidity in mg/l	1	5	15 3025 (Part 11)-1984 Rffm: 2012	6.95
3,	Total Dissolved Solids as TDS in mg/l	500	2000	15 3025 (Part 10)-1984 Rffm: 2012	BDL(DL:1.0)
4.	Aluminium as Al in mg/l	0.03	0.2	15 3025 (Part 16)-1984; Rfm:2012	102.0
5.	Boron as B in mg/l	0.5	10	15 3025 (Part 2) 2004 RA 2014	BDL(DL:0.01)
б.	Calcium as Ca in mg/l	75	200	15 3025 (Part 2) 2004 RA 2014	BDL(DL:0.5)
7.	Chloride as CI in mg/l	250	1000	15 3025 (Part 40)- 1991 Rffm: 2014	15.0
8.	Copper as Cu in mg/l	0.05	1000	15 3025 (Part 32)-1988 Rffm: 2014	10.0
9.	Flouride as F in mg/I	1.0	1.5	15 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
10.	Iron as Fe in me/l	4,0	1.5	IS 3025 (Part 60)- 2008 Rffm: 2013	0.34
11.	Magnesium as Mg in me/l	0.3	No Relaxation	IS 3025 (Part 53)-1988 Rffin: 2014	BDL(DL:0.005)
12	Manganese as Mn in mg/	30	100	IS 3025 (Part 46)-1994 Rffm: 2014	4.0
13.	Nitrate as NO3 in mg/l	0,1	0.3	1S 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
14.	Phenolic Compounds as C6HSOH in mg/l	45	0.002	IS 3025 (Part 34)-1988 Rffm: 2014 IS 3025 (Part 43)- 1992: Rffm: 2014	1.4 BDI (DL-0.001)
15.	Selenium as Se in mg/l	0.01	Ma Balawari an	10 2025 (2) 21 2020 (2)	Disc(est. 0.001)
16,	Sulphate as SO4 in mg/l	200	NO Relaxation	15 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
17.	Total Hardness as CaCO3 in me/l	200	400	15 3025 (Part 24)- 1986 Rffm: 2014	9.0
18.	Cadmium as Cd in me/l	0.002	000	IS 3025 (Part 21)-2013	54.0
19.	Cyanide as CN in mg/l	0.005	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
20,	Lead as Ph in may	0.03	No Relaxation	IS 3025 (Part 27)- 1986; Rffm:2003	BDL(DL:0.005)
21.	Mercury as Ha in mol	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
22	Atsenic as As in me/l	0.001	No Relaxation	IS 3025(Part 48)-1994	BDL(DL:0.005)
23.	Total Chromium as Cr in mo/l	0.01	0.05	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
24.	Sodium as Na in mol	0.05	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
25.	Conductivity in us/cm			APHA 23rd Edition, 3500 Na B	6.9
26.	Potassium as K in mol	****		APHA 23rd Edition, 2510B	159.0
27.	Zinc as Zn in mod		****	APHA 23rd Edition, 3500 K B 2017	2.8
28.	Total Alkalinite as CoCOT in	5	15	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
	roun rucaning as caccos in mg/l	200	600	IS 3025 (Part 23)- 1986 Rffm: 2009	61.0

Lang Report Prepared by:

Mitra S. K. Private Limited

Authorized Signatory

N-5/100, Ground Floor IRC Village, Nayapalli Bhubaneswar - 751015 [CIN: U51909WB1956PTC023037]

T: (0674) 2362916, 2360917 F: (0674) 2362918 Name & Address of the Customer : HINDALCO INDUSTRIES LTD. (Unit- Aditya Aluminium) At/Po: Lapanga , Beside SH-10 Sambalpur , Odisha-768212

TEST REPORT

Report No. : BBS/904 Date : 07.10.2022 Sample No. : MSKGL/ED/2022-23/09/00554 Sample Description : Ground Water Sampling Location : Pizometric Borewell-3 (Near RR Colony) Date of Sampling : 13.09.2022

ANALYSIS RESULT

Organoleptic and Physical Parameters as per 1S 10500 : 2012

SL No.	Test Parameters	Requirement Acceptable Limit	Permissible limit in the absence of alternate Source	Test Method / Specification	Result
1.	pH at 26°C	6.5-8.5	No Relaxation	IS 1025 (Bod 11) 1084 Bd 2012	-
2.	Turbidity in mg/l	1	5	15 3025 (Part 11)-1984 Ritm: 2012	7.42
3.	Total Dissolved Solids as TDS in mg/l	500	2000	15 3025 (Part 16) 1984 Ritm: 2012	BDL(DL:1.0)
4.	Aluminium as Al in mg/l	0.03	0.2	15 3025 (Part 16)-1984, Klim:2012	333.0
5.	Boron as B in mg/l	0.5	1.0	15 3025 (Part 2) 2004 RA 2014	BDL(DL:0.01)
6.	Calcium as Ca in mg/l	75	200	15 3025 (Part 2) 2004 RA 2014	BDL(DL:0.5)
7.	Chloride as Cl in mg/l	250	1000	15 3025 (Part 40)- 1991 Rffm: 2014	53.0
8.	Copper as Cu in mg/l	0.05	1000	13 3023 (Part 32)-1988 Rffm: 2014	58.0
9.	Flouride as F in mg/l	1.0	1.5	15 3023 (Part 2) 2004 RA 2014	BDL(DL:0.02)
10.	Iron as Fe in mg/l	0.3	No Delevation	15 3025 (Part 60)- 2008 Rffm: 2013	BDL(DL:0.2)
11.	Magnesium as Mg in mg/l	30	No Relaxation	15 3025 (Part 53)-1988 Rffm: 2014	0.39
12.	Manganese as Mn in mg/l	0.1	0.2	18 3025 (Part 46)-1994 Rffm: 2014	8.0
13.	Nitrate as NO3 in mg/l	45	U.3	1S 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
14.	Phenolic Compounds as C6H5OH in mg/l	0.001	0.002	IS 3025 (Part 34)-1988 Rffm: 2014 IS 3025 (Part 43)- 1992; Rffm: 2014	BDL(DL:0.001) BDL(DL:0.001)
15.	Selenium as Se in mg/I	0.01	No Relaxation	IS 3025 (Part 2) 2004 P 4 2014	
16.	Sulphate as SO4 in mg/l	200	400	IS 3025 (Part 24), 1094 BA 2014	BDL(DL:0.005)
17.	Total Hardness as CaCO3 in mg/l	200	600	15 3025 (Part 24)- 1986 Kilm: 2014	33.0
18.	Cadmium as Cd in mg/l	0.003	No Relaxation	15 3025 (Part 21)-2013	166.0
19,	Cyanide as CN in mg/l	0.05	No Relaxation	15 3025 (Part 27) 1086: 848- 2014	BDL(DL:0.001)
20.	Lead as Pb in mg/I	0.01	No Relayation	IS 3025 (Part 2) 2004 DA 2014	BDL(DL:0.005)
21.	Mercury as Hg in mg/l	0.001	No Relavation	15 3025 (Part 2) 2004 KA 2014	BDL(DL:0.001)
22.	Arsenic as As in mg/l	0.01	0.05	15 3023(Part 48)-1994	BDL(DL:0.005)
23,	Total Chromium as Cr in mg/l	0.05	No Relaxation	15 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
24.	Sodium as Na in mg/l	0.00	NO Relaxation	18 5025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
25.	Conductivity in us/cm			APRIA 23" Edition, 3500 Na B	27.0
26,	Potassium as K in mg/l			APHA 23th Edition, 2510B	520.0
27,	Zinc as Zn in mg/l		15	APHA 23rd Edition, 3500 K B 2017	9.2
28.	Total Alkalinity as CaCO3 in mg/l	200	600	IS 3025 (Part 2) 2004 RA 2014 IS 3025 (Part 23)- 1986 Rffm: 2009	BDL(DL:0.02)

Kamga Repor repared by:

Mitra S. K. Private Limited

Avante un Roth

N-5/100, Ground Floor IRC Village, Nayapalli Bhubaneswar - 751015 [CIN: U51909WB1956PTC023037]

T: (0674) 2362916, 2360917 F: (0674) 2362918 Name & Address of the Customer : HINDALCO INDUSTRIES LTD. (Unit- Aditya Aluminium) At/Po: Lapanga, Beside SH-10 Sambalpur, Odisha-768212

TEST REPORT

Report No. : BBS/905 Date : 07.10.2022 Sample No. : MSKGL/ED/2022-23/09/00555 Sample Description : Ground Water Sampling Location : Pizometric Borewell-4 (Bomaloi Village) Date of Sampling : 13.09.2022

ANALYSIS RESULT

Organoleptic and Physical Parameters as per IS 10500 : 2012

SL No.	Test Parameters	Requirement Acceptable Limit	Permissible limit in the absence of alternate Source	Test Method / Specification	Result
1.	pH at 26 ^a C	6.5-8.5	No Relaxation	15 1025 (Pert 11) 1094 P.C., 2012	
2.	Turbidity in mg/l	1	5	IS 3025 (Part 10) 1084 p.m. 2012	7.51
3.	Total Dissolved Solids as TDS in mg/l	500	2000	15 3025 (Part 16) 1984 Killin: 2012	BDL(DL:1.0)
4.	Aluminium as Al in mg/l	0.03	0.2	15 3025 (Part 10) 1984, RHm:2012	136.0
5,	Boron as B în mg/l	0.5	1.0	15 3025 (Part 2) 2004 RA 2014	BDL(DL:0.01)
6.	Calcium as Ca in mg/l	75	200	15 3025 (Part 40) 1001 P.C. 2014	BDL(DL:0.5)
7.	Chloride as Cl in mg/l	250	1000	15 3025 (Part 40)- 1991 Kilm: 2014	17.0
8.	Copper as Cu in mg/l	0.05	15	IS 3025 (Part 2) 2004 P.4. 2014	22.0
9.	Flouride as F in mg/l	1.0	1.5	15 3025 (Part 60) 2004 KA 2014	BDL(DL:0.02)
10.	Iron as Fe in mg/l	0.3	No Relaxation	15 3025 (Part 53), 1099 P.6m. 2014	0.64
11.	Magnesium as Mg in mg/l	30	100	15 3025 (Part 46) 1004 P.C. 2014	0.45
12.	Manganese as Mn in mg/l	0.1	03	18 3025 (Part 2) 2004 DA 2014	9.0
13.	Nitrate as NO3 in mg/l	45	No Relaxation	15 3025 (Part 24) 1099 D/5- 2014	BDL(DL:0.02)
14.	Phenolic Compounds as C6H5OH in mg/l	0.001	0.002	IS 3025 (Part 43)- 1992; Rffm: 2014	BDL(DL:0.04) BDL(DL:0.001)
15.	Selenium as Se in mg/I	0.01	No Relaxation	IS 3025 (Part 2) 2004 PA 2014	DDI (D) A COT
16.	Sulphate as SO4 in mg/l	200	400	IS 3025 (Part 24), 1986 D.0m 2014	BDL(DL:0.005)
17.	Total Hardness as CaCO3 in mg/I	200	600	IS 3025 (Part 21)-2012	21.0
18.	Cadmium as Cd in mg/l	0.003	No Relaxation	IS 3025 (Part 2) 2004 P.A. 2014	80.0
19.	Cyanide as CN in mg/l	0.05	No Relaxation	IS 3025 (Part 27), 1986; B/Em-2002	BDL(DL:0.001)
20.	Lead as Pb in mg/I	0.01	No Relaxation	IS 3025 (Part 2) 2004 P.A. 2014	BDL(DL:0.005)
21.	Mercury as Hg in mg/l	0.001	No Relaxation	IS 3025(Part 48) 1004	BDL(DL:0.001)
22.	Arsenic as As in mg/l	0.01	0.05	IS 3025 (Part 2) 2004 P.A. 2014	BDL(DL:0.005)
23.	Total Chromium as Cr in mg/l	0.05	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
24.	Sodium as Na in mg/l			APHA 234 Edition 1500 No P	BDL(DL:0.005)
25.	Conductivity in us/cm			APHA 234 Edition 2510D	16.0
26,	Potassium as K in mg/l			APHA 23rd Edition 1500 K D 2017	212.0
27.	Zinc as Zn in mg/l	5	15	IS 3025 (Part 2) 2004 PA 2014	7,6
28.	Total Alkalinity as CaCO3 in mg/l	200	600	IS 3025 (Part 23)- 1986 Rffm: 2009	BDL(DL:0.02) 74.0

(Kamp Report Prepared by:

841 BBSR

Mitra S. K. Private Limited

Authorized Signatory

Annexure-07

Compliance Status from April 22 to September 22

COMPLIANCE TO CREP GUIDELINES FOR SMELTER

Sr.	Particulars	Compliance
No.		Constant design is beend on one belood
L	be given by MoEF only with pre-baked technology	technology only.
2	Fluoride emissions should be limited to 0.8 kg/ton of aluminium production and dry scrubbing of fluorides	Fluoride emissions is being controlled by installing GTC & FTC below 0.8 kg/ton of aluminium metal produced. The average total fluoride emission for the period April 22 to September 22 is 0.11
3	Fluoride consumption in the smelter should be limited to 10 kg/ton of aluminium produced	Kg/Ton of metal production. The specific fluoride (as F) consumption for the period April 22 to September 22 is 7.29 kg/ton of metal produced.
4	The fluoride in forage should be limited toAverage of 12 consecutive months- 40 ppmAverage of 2 consecutive months- 60 ppmOne month- 80 ppmBegular monitoring data to be submitted to	Forage fluoride is being monitored on quarterly basis as a part of post project monitoring activities. The monitored data is being regularly submitted to SPCB and CPCB.
	SPCB and CPCB.	
5	The average life of the pots should be 2500 days. The possibility of using the SPL in cement or steel industry after recovery of aluminium fluoride should be explored.	The Carbon part of SPL is being supplied to M/s Green Energy Limited, Sambalpur for reprocessing/detoxification and in this way the carbon part is completely recycled.
6	The SPL should be disposed in secured landfill.	M/s Re Sustainability Ltd has established the facility for detoxification and disposal as per the protocol given by CPCB in its CHW-TSDF at kanchichuhan, Dist- Jajpur site. M/s Ramky has started lifting the refractory part of SPL for the trial run permission given by OSPCB. Around 14500 MT SPL Refractory part and 1626 MT Carbon part is in stock till end of September - 2022 and kept inside the well-ventilated permanent covered sheds for disposal to CHW- TSDF/Actual users. We are awaiting for OSPCB Consent/ Permission to M/s Re Sustainability Ltd For regular lifting of SPL Refractory materials to their CHW-TSDE Besides we are also exploring

Compliance Status from April 22 to September 22

		the option for co-processing of SPL in cement plants. We have applied for issue of Consent to Establish(CTE) for the proposed SPL Crushing & Screening Unit at Aditya Aluminium. The crushed SPL will be supplied to authorized Cement Plants for co-processing in cement kiln.
7	Achieving particulate matter limit of 50 mg/Nm3 in anode baking furnace	It is being Complied with.

COMPLIANCE TO CREP GUIDELINES FOR CPP

Sr.	Conditions	Compliance
No.		
1	 Implementation of Environmental Standards (emission & effluent) in non- compliant* Power Plants (31 & 27) Submission of action plan: June 30, 2003 Placement of order for Pollution of control equipment: September, 2003 Installation & commission: December 31, 2005 	Not Applicable
2	For existing thermal power plants, a feasibility study shall be carried out by Central Electricity Authority (CEA) to examine possibility to reduce the particulate matter emissions to 100 mg/Nm3. The studies shall also suggest the road map to meet 100 mg/Nm3. The studies shall also suggest the road map to meet 100 mg/Nm3 wherever found feasible. CEA shall submit the report by March 2004.	Not Applicable
3	New / expansion power projects to be accorded environmental clearance on or after1.4.1.2003 shall meet the limit of 100 mg/Nm3 for particulate matter.	Complied. PM emission is well below stipulated limit of 50 mg/Nm3
4	Development of SO ₂ & NO _x emission standards for coal based plants by December 2003. - New/ expansion power projects shall meet the limit of SO ₂ & NO _x w.e.f. 1.1.2005. - Existing power plants shall meet the limit of SO2 & NOX w.e.f.1.1.2006.	Standard for SO ₂ & NOx has been published by MOEF.
5	Install/activate opacity meters/ continuous monitoring system in all the units by December 31, 2004 with proper calibration system.	Continuous monitoring system installed in the stacks attached to

Compliance Status from April 22 to September 22

		Power Plant for monitoring of PM, SO ₂ & NOx.
6	Development of guidelines/ standards for mercury	Standard for Hg emission for captive
	and other toxic heavy metals emissions by December 2003.	power plant has been published by MOEF&CC.
		Monthly monitoring report is being submitted to SPCB
7	Review of stack height requirement and guidelines	Guideline has been published for stack
	for power plants based on micro meteorological data by June 2003	height by MOEFCC in this regard.
8	Implementation of use of beneficiated coal as per GOI Notification:	Not Applicable
	Power plants will sign fuel supply agreement (FSA) to	
	meet the requirement as per the matrix prepared by	
	cea for compliance of the notification as short term measure.	
	Options/mechanism for setting up of coal washeries	
	as a long term measure	
	* Coal India will up its own washery * Sata Electricity Board to sat up its own washery	
	* Coal India to ask private entrepreneurs to set up	
	washeries for CIL and taking washing charges	
	* SEBs to select a private entrepreneur to set up a	
	washery near pit- head installation of coal	
	beneficiation plant	
9	Power plants will indicate their requirement of	Not Applicable
	abandoned coal mines for ash disposal & Coal India/	
	MOC shall provide the list of abandoned mines by	
10	June 2003 to CEA.	It is being Complied with
10	the premises or uninterrunted access to the users	it is being complied with.
	within six months.	
11	Power Plants should provide dry fly ash free of cost	Dry fly ash is being provided to the ash
	to the users	brick manufacturing units free of cost.
12	State P.W.Ds/ construction & development agencies	Not Applicable
	shall also adhere to the specifications/Schedules of	
	CPWD for ash-based products utilization MoEF will	
13	lake up the matter with State Governments.	Complied
(i)	on or after 1.04.2003 shall adopt dry fly ash	complied
(1)	extraction or dry disposal system or Medium (35-	
	40%) ash concentration slurry disposal system or	
	Lean phase with hundred percent ash waste re-	
	circulation system depending upon site specific	
	environmental situation.	

Compliance Status from April 22 to September 22

13	Existing plants shall adopt any of the systems	Implemented
(ii)	mentioned in 13(i)by December 2004	
14	Fly ash Mission shall prepare guidelines/manuals for	Noted
	fly ash utilization by March 2004.	
15	New plants shall promote adoption of clean coal and	Noted
	clean power generation technologies	
	* Units will submit bank guarantee to respective SPCB	

HINDALCO MANAGEMENT FRAMEWORK excellence by design

ENVIRONMENT POLICY

We, at Hindalco Industries Limited, operating across the process chain from mining to semi-fabricated products in non-ferrous metals, will strive to continually improve our environmental performance for sustainable operations and responsible growth globally, by integrating sound environmental systems & practices and Pollution Prevention approach.

To achieve this, we shall:

- Continue to comply with all applicable legal and other requirements on environment.
- Continually improve environmental performance by strengthening the Environmental Management System conforming to national /international standards, including setting up and reviewing targets and measuring, monitoring and reporting their progress.
- Allocate sufficient resources such as organisational structure, technology and funds for implementation of the policy and for regular monitoring of performance.
- Adopt pollution prevention approach for all our processes; enhance material efficiency and achieve high productivity.
- Conserve key resources like electricity, coal, water, oil, and raw materials, by promoting
 efficient technologies and manufacturing process improvements, water conservation
 programmes, and efficient use of raw materials.
- Adopt energy efficient and cleaner technologies based on techno-economic viability, appropriate to the region in which we operate, and in line with our growth and diversification plans.
- Promote the principles of waste prevention, reduction, reuse, recycling and recovery to minimize waste generation and strengthen the practices for management of wastes.
- Work in partnership with regulatory authorities, relevant suppliers, contractors, distributors and logistics partners and all other stakeholders, as applicable, to understand and initiate improvement actions.
- Engage with internal and external stakeholders including key business partners such as joint venture partners, licensees and outsourcing partners and wider communities, to broaden our understanding of environmental priorities and initiate actions on key environmental challenges.
- Adapt environmental performance over life cycle as an important input to the decision-making processes in the organization.
- Raise environmental awareness at all levels of our operations, through training and effective communication, participation and consultation.
- Communicate this Policy within the Organization. Develop and follow appropriate communication system to inform other stakeholders, as applicable, about our environmental commitment and performance.
- Conduct environmental, health and safety due diligence before undergoing any mergers and acquisitions.

This policy shall be made available to all employees, suppliers, customers, community and other stakeholders, as appropriate.

ATISH PAI

MANAGING DIRECTOR

Date : 30 June 2020

HINDALCO INDUSTRIES LIMITED

POINT-WISE COMPLIANCE TO THE POINTS RAISED DURING PUBLIC HEARING OF ADITYA ALUMINIUM

SI. No.	POINTS RAISED	COMPLIANCE STATUS
1	The Project Proponent should provide employment to the locals on priority basis.	The industry has already provided employment to the locals based on the eligibility in the ongoing projects and they are committed to do so in the proposed expansion project.
2	The Industry should establish an ITI training centre to train the young people in technical field so as to enable them for getting suitable employment in the plant.	The industry has been providing opportunity for ITI studies in Polytechnic Rengali. Students are trained 2 year ITI course. Vocational training like Beautician, Mobile repairing, Micro irrigation Bike repairing, Soft Toy, Organic Farming (Agriculture) and Tailoring has been instituted last months.
3	The Industry should carry out massive plantation in the vacant spaces of the surrounding villages, R.R colony etc. Trees which are not under the purview of the core plant area are to be protected and minimum 25% of the project area to be made green cover.	The industry has already planted 7,01,930 saplings inside the factory premises till Sep 2022. Also, the industry has started plantation in the vacant spaces of the surrounding and have distributed 54103 no's of saplings till now to the villagers in the plant surrounding villages.
4	The Industry should inform the Public about the air pollution control measures to be adopted in the proposed plant for control of air pollution and also proactive measures to be taken by the company for control of rise in ambient temperature. Pollution measurement machines to be installed in every villages and pollution control committees to be formed to regulate the pollution.	The industry has installed ESPs, Bag filters etc to control air pollution. Greenbelt development and selecting the best environment friendly technology & equipment's for Smelter and Power plants are some of the proactive measures taken by the Company. Online ambient air quality monitoring stations are being installed inside the plant area for information on real time information on different pollutants.
5	The Project Proponent should inform the public about the peripheral developmental works to be carried out in future.	Peripheral developmental works are being carried out in consultation with the Gram Panchayat Sarpanch, villagers, opinion makers and well-wishers as per the CSR guideline. Solar Street light of 100 nos installed in 6 villages, Pipalkani Road and Bendojor Nallah construction, 5 nos of Pond Excavation, drinking water supply to 86 nos of hamlets in peak summer, 03 nos of Blood donation camps and 3 nos of health camps have been done
6	The industry should make necessary arrangements for provision of drinking water in the affected area.	The industry has been supplying drinking water through tankers, into the project affected villages in coordination with RWSS, BDO and Block chairman, Rengali of 7nos of Gram Panchayats in peak summer. Drinking water

		supply to 86 nos of hamlets and main villages also got the facility.
7	The industry should make necessary arrangement to provide round the clock doctors for better medical service in the Lapanga area.	The industry has been very actively contributing the greater causes of Health Opened up Eye Healthcare Unit at Rengali, and awareness program at all villages catering benefit to 1434 nos of beneficiaries. Conducted Health camp facilitation in coordination with CHC Kuchinda and Laida where 700 nos of got benefitted. There are 5 nos of children, Adolescent healthcare and Nutrition programs conducted in the villages. First Aid centre has facility to local areas for free treatment by reputed doctors. Provided free treatment facility to more than 1535 of local people with free treatment, medicine, and consultation.
8	The Industry should make alternate arrangement to source water instead of deep bore wells in & around the project area.	The industry is getting water from the Hirakud Reservoir meets all the requirements of the industry.
9	The industry should give financial support to grow small scale industries in the localities.	The industry is supporting farmers to grow the livelihood of the villagers as per their CSR policy. However, many training programs have been conducted for self-employment SHGs such as Spice units, Oil Processing units and paper cup making units, Vegetable farming, Phenol making, Hand wash making, Duckery, Egg Production, Tailoring, avenue Plantation & various social/health awareness programs, monthly saving programs, to the 200 nos of SHGs comprising of 2125 nos of women and 7 Farmers Group adopted by Industry. CSR has mobilised 53.39Lakh for SHG entrepreneurship program.
10	The industry should pay financial support for each local traditional festival to villagers. Cremation ground should be provided in each village. Alternate Football ground to be provided to Bomaloi villagers as the company is occupying the existing football ground.	We are already providing financial support for each local Traditional festivals like Nuakhai, Sital Sasthi, Karama Puja and Sambalpuri Din with the locals. We conduct women sports, school sports football tournaments and Cricket tournaments at different villages every year as a part of promotion of Rural sports. The football grounds are maintained every year by industry.
11	The industry should provide community toilets at the surrounding affected villages. Special care to be taken for physical handicapped persons in the affected areas	We have already provided Toilets to each house in village Pitapali & community toilets in village Bomaloi & Tileimal. Physically challenged people are continuously supported by the company. Gayatri Sahu one blind graduate working with CSR team since two years and all programs are conducted regarding physically challenged persons in Block level every year.

Expense incurred under Enterprise Social Commitment till September- 2022:

SI. Nos.	Description	Amount Spent (In Crores)	Remarks
1	G D Birla Medical Research and Education Foundation for School at Kurki	20.25	
2	Land taken on Lease from IDCO for School at Kurki	9.10	
3	Sponsorship of Kalinga Lancers in Indian Hockey league Fy15, Fy16 & Fy17	4.50	
4	CSR expenses in & around Aditya Aluminium including Hirakud areas in FY17	7.61	
5	Sponsorship for Asian Athletic Championship 2017	0.50	
6	CSR expenses in & around Aditya Aluminium including Hirakud areas during April 18 to March 19	4.65	
7	CSR expenses in & around Aditya Aluminium including Hirakud areas during April 2019 to March 2020	0.62	
8	CSR expenses in & around Aditya Aluminium including Hirakud areas during April 2020 to Mar 2021	5.31	
9	CSR expenses in & around Aditya Aluminium including Hirakud areas during April 2021 to Mar 2022	8.81	
10	CSR expenses in Education (EDU)	0.33	
11	CSR expenses in in & around in Environment and sustainable Livelhood	0.57	
12	CSR expenses in in & around in Healthcare in Hirakud areas also	1.06	
13	CSR expenses in in & around in social causes	0.40	
14	CSR expenses in in & around in Rural & Development projects	0.26	
	Total Expense	63.97	

Aditya Aluminium intends to continue with the following activities under Enterprise Social Commitment like: -

- a) Infrastructure development in villages around the Project area.
- b) Drinking Water supply facilities.
- c) Green cover development in collaboration with State Govt. departments.
- d) Football playground or mini stadium in Bomaloi village, as stated in the minutes of public consultation held before environmental clearance.
- e) Free distribution of schoolbooks & bags to children.
- f) Constructing Toilets for girls in schools/villages.
- g) Scholarship to poor, talented students in the schools.
- h) Subsidy for Ash supply (Rs 150/- per Tonne at present) to local Ash brick manufacturers, as per OSPCB/MOEF&CC Notifications.
- i) Providing Ash brick manufacturing machines to unemployed youth in the villages and one time assistance to establish the Unit.
- j) Contributing to the development of Railway infrastructures in consultation with the railway authorities (e.g., ROB).

- k) Implementation of skill development programmes and providing necessary infrastructure to existing ITI, Polytechnic colleges.
- I) Development of Schools in the State of Odisha.

The remaining 5% amount for Phase-1 capacity (i.e., Smelter of 0.38 MTPA and CPP of 900 MW) is proposed to be spent over a period of 39 years from the year 2017.

Annesure - 11

CORPORATE SOCIAL RESPONSIBILITY

Corporate Social Responsibility Making a Difference

Aditya Aluminium, Lapanga

OVERVIEW OF SOCIAL INVESTMENT

OUR PARTNERS FY 2021-22

NGOS/TRUSTS

- Vision Foundation, Sambalpur
- SBISRET Burla
- Odisha Rural Development & Marketing Society (ORMAS)
- SATTVA Media and Consultancy Pvt Ltd
- Action for Social Advancement (ASA)- Bhopal
- Swadheen Ekta Sangathan

INSTITUTIONS/ CONSULTANTS-

- Government Polytechnic College Rengali
- INGUZ Beauty and Healthcare Sambalpur
- Aditya Birla Skill School

GOVERNMENT ORGANISATIONS-

- Odisha Livelihood Mission (OLM)
- Integrated Child Development Services (ICDS)
- Mission Shakti
- National Health Mission (NHM)
- District and Block Agriculture & Horticulture
- District and Block Animal Husbandry
- District Industries Centre (DIC)
- District Education Office
- Zila Panchayat
- Krishi Vigyan Kendra

CSR BUDGET V/S EXPENDITURE

ADITIA POCOS AREA WISE SPENDS SOMMIARI, EDEC-25 (NS. IN EARIS)
--

FOCUS AREAS	BUDGET in Lakhs	SPEND in Lakhs	
EDUCATION	41.00	18.52	
HEALTH CARE	85,00	44.05	
SUSTAINABLE LIVELIHOOD	80.00	69.79	
INFRASTRUCTURE	100.00	27.73	
SOCIAL ISSUES	44.00	08.99	
TOTAL	350.00	169.08	

Note : Rs 150 lakhs--- Fly ash subsidy estimated for FY 22-23.

BASELINE & NEED ASSESSMENT SURVEY - ADITYA

By Sattva Media & Consultancy Pvt Ltd, Hyderabad

Samples 2500 HHs and 3000 Stakeholders

Coverage 39 Villages

FINDINGS

- 35% children do not go to school
- 20% drop out in higher education.
- lack of good teachers and infrastructure
- 83% do not have easy access to diagnostic services
- 65% aspire to have access to hospital nearby
- healthcare system infrastructure need improvement.
- 72% workforce is un-skilled
- 63% use unsafe water due to lack of awareness
- 40% defecate in open

Demography: ST-49% SC-16% OBC-32% G -3%

RECOMMENDATIONS

- Contribute to improved school infrastructure & teachers
- Support to increase healthcare infrastructure
- Increase Ease of access of CHCs & PHCs & healthcare technologies and create awareness on Government health schemes
- Availability of safe drinking water
- Activate SHGs and FPOs to facilitate Livelihood Opportunities
- Skill Training Centre to enhance employability.
- Improve agriculture by enhancing irrigation
- Better waste management and disposal

VISION CENTRE - Affordable Eye Health Care

State of the Art One Stop Digitalized Solution for Eye Care

Vision Foundation Sambalpur

Project Cost Aditya INR 39 Lakhs

HIGHLIGHTS FY 2021-22

- First Hub & Spoke Model
- Sustainable, Revenue Generation Model
- So far 636 Free Cataract Surgeries, 15 Glaucoma Cases
- 2381 beneficiaries, 356 spectacles provided

Performance for Q1 FY 2022-23

VISION CENTRE - AFFORDABLE EYECARE

PEEDBACK RESISTER

MONTHLY REVIEW

Project Vision Centre – Affordable Eye Health Care

SOME GLIMPSES OF PROJECT VISION CENTRE

Vision Centre

- Eye Screening at Village Level
- More than 200 people screened
- 52 cases of Cataract identified

VATE 2014	PLACE	Evel. Screening	CATARCT
04	BALLISEN	13	5
105	KHADIAFALI	2	7
00	JAMBAHAL	14	5
00	THEIRDID	30	5
120	JHANGARRAU(TA MRARKELA, TABDABAHAL	52	19
20	IAMBAHAL	10	1
21	BAAANSALPUR	17	Ŧ
22	KADALPITA, KAGILI	18	7
251	PITAPIAL	18	
29	SALAD	16	T.

Awareness Camps

SLNO	DATE	PLACE	Participants
1	4/7/22	KHADIAPALI	11
2	6/7/22	JAMBAHAL	30
3	8/7/22	THEEKDILL	340
- 4	13/7/22	LAHAMANI	15
5	14/7/22	R R COLONY	138
6	21/7/22	MANGALPLIR	18
2	22/1/22	KASIPAU	33
8	22/7/22	KADALPITA	11
		TOTAL	226

Vision Centre

- 262 OPD
- Out of 48 advised spectacles 42 bought from VC
- 57 Cataract surgeries done

No .of patients footfall	262
No .of new patients	175
No .of referrals made to TN-Base Hospital	85
No of referred patients visited TN Base Hospital	70
No .of free cataract surgeries done	57
Other surgeries done(DCT, Pterygium)	O
No .of patients advised/prescribed for spectacles	48
No .patients ordered spectacles	41
Specialty case detection(Glaucoma ,DR)	0

Awareness Camps

5L NO	DATE	PLACE	Participants	
1	02/08/22	TURITIKIRA	13	
2	05/08/22	KURLA	11	
Э	12/08/22	RENGAU NICE CENTRE	20	
4	19/08/22	PARDESHI PALI	13	
5	23/08/22	THUNTI KATARBAGA	19	
6	24/08/22	KHINDA GP OFFICE	16	
7	26/08/22	KINALDI GP OFFICE	12	
		TOTAL	104	

PROJECT VISION CENTRE-VISION MONTH CELEBRATION

- 42 Patients from Rengali block sent for free Cataract Surgery at Trilochan Netralaya
- Umbrella given to all beneficiaries as memento
- Attended by Block Chairman, Block Education Officer Rengali and Block Social Security Officer

PROJECT VISION CENTRE- HIGH SCHOOL EYE SCREENING CAMP

- 17 High Schools Covered
- 1400+ students reached
- 57 detected with refraction and provided spectacles
- IEC and Awareness on Eye healthcare in all Schools
- Employee Volunteerism in the event

SUNO	CATE	HIGH SCHOOL	STUDENTS SCREENING
1	22/7/22	LAPANGA	75
- 2	22/7/22	DHARGPANI	65
á	23/7/22	RENGALI NODAL	299
34	25/7/22	THELKOILI	65
5	26/7/22	RENGALI GIRLS	36
- 6	26/7/72	R C NAGAR	114
7 27/7/22		SHICHAMURA	61
8	27/7/22	THANKABPALI	58
9	28/7/22	KATABBAGA	105
10	28/7/22	GOLAMAL	92
- 11	29/7/22	LAIDA GOVT	50
12	29/7/22	LAIDA GIRLS	45
13	30/7/22	TAMPERKELA	57

PROJECT Vision Centre-Spectacle Distribution

- 55 students provided with spectacles in Rengali block
- 13 high schools Covered

PROJECT AAYUSH- MDD Awareness Session

- With onset of Monsoon regular awareness session on MDD conducted in villages
- 10 villagers attended the session in Bomoloi GP

WORLD POPULATION DAY

- Awareness Session was organized in association with CHC Laida and ASHA ANM
- 20 villagers attended the session in Orampada Village

WORLD BREAST FEEDING WEEK CELEBRATION

- 6 Awareness sessions in 6 Gram Panchayat
- 224 women participants
- Attended by Laida CHC coordinator, Aditya Employees, ASHA ANM Anganwadi workers

Project Suposhan- Nutrition Awareness and Nutri Garden Preparation At Talibahal Anganwadi Centre

Project Suposhan National Nutrition Day September 6

- DPM ICDS attended the event
- Nutri Garden promoted in each anganwadi with available space and water availability

Nutri Garden Development at Anganwadi – Project Suposhan

- Talibahal Anganwadi developed as Model Nutri Garden
- 30 children will be benefitted
- 4 severely malnourished children to be monitored to establish impact

Health Camp at Bomoloi

- 527 patients availed services
- Aditya Doctors, Vision Centre Optometrist and Government doctors provided services
- Inaugurated by Head HR Aditya, Block Chairman Rengali, Sarpanch Bomoloi, School HM, ASHA ANM

First Aid Centre-Project Aayush

FIRST AID CENTER					
MONTH OF July-Aug-Sep-2022					
KPI	TOTAL				
Patient Footfall	580				
Village Cover	11				
New Patient Register For Test	0				
Old Patient Register For Test	63				
Total Test Conducted	181				
Medicine Expense	23998				
Medicine Stock	4799				

Name- Naresh Munda Age- 7 Village-Mendakhai DISEASE-RTI

Health Camp at Kuchinda

- 150 patients availed services
- Aditya Doctors, Hirakud Homeopathy Doctor, Vision Centre Optometrist and Government doctors provided services
- Attended by Collector Sambalpur, Kuchinda Chairman, Sarpanch, School HM, ASHA ANM

PROJECT SAMVITA-MOU Signed

- MOU Signed with Medihelp Foundation for Mobile Telemedicine
- Project will cater to primary healthcare need of 20+ villages

Jal Vahini

1201 142.51

Last 5 days of Water supply at doorstep before Monsoon Set in

JAL VAHINI

Project Jal Vahini launched on 15th April. The project cater to drinking water need of the community in 6 Gram Panchyat of Rengali Block.

WATER SUPPLY STATISTICS						
GP	6					
VILLAGE/HAMET	16/86					
TOTAL VENDORS ENGAGED	32					
Total TRIP / DAYS	78/81					
TOTAL HHs approx.	3000					
TOTAL BENEFICIARIES approx.	25000					

PROJECT AAYUSH: HEALTH FOR ALL

Project Aayush - Health for all

Objective

- To make health care accessible, affordable and available for community
- To provide basic tests at no price
- · To reduce incidence of malaria and dengue deaths
- To create awareness on health issues
- To sensitize community to increase sanitation standards in villages
- To create awareness on Government Schemes

Coverage

- 15 villages
- SD00 people

Stakeholders

- · Men, Women & Children
- Government DHD, NRHM, MO, ASHA, ANM
- PRI Sarpanich, Samiti Member

Outcome

- More than 2000 people avail health check up in First Aid per annum
- · More than 1000 tests done on Health-cube per annum
- Health Awareness Sessions organised in schools and villages
- · Increase in awareness on Sanitation and hygiene practices

KPI	Apr 22	May '22	Jun'22
Patient Footfall	154	198	248
Village Cover	23	26	18
New Patient Register For Test	3	11	10
Old Patient Register For Test	34	37	49
Total Test Conducted	78	119	135
Medicine Cost	2573	3019	4582
and the second sec		and the second se	

Sunstroke Awareness Camp

- Bomoloi AWC
- Gumkarma UPS
- 15-25 Beneficiaries / camp

Malaria Awareness Camp

- World Malaria Day
- 35 Women reached
- ASHA and ANM participated
- Laida Medical Coordinator Resource Person

Adolescent Healthcare Awareness Camp

- 5 camps conducted in April & May
- 150 Girls covered
- 5 villages / schools covered

PROJECT SAMADHAAN- ADOLESCENT HEALTHCARE

Goal

Awareness on menstrual hygiene and access to awareness on hygiene and sexual wellbeing among adolescents girls

Objective

- To provide solution for safe disposal of sanitary napkins
- To create awareness about good menstrual hygiene practices
- To break Taboo and superstitions around menstrual hygiene among adolescents
- To increase girl student attendance in schools
- To decrease girl student drop in high school.

Activities

- Installation of Incinerators
- Formation of a Committee
- Conduct regular awareness session
- Discussion in the Committee meeting
- Distribution of Sanitary pad (One Time)

Project Samadhaan marks the Swachhta Pakhwada with installation and inauguration of incinerator at Rengali Primary Health Centre # World Health Day # 7th April 2022

Project Suposhan-Eating Right

Awareness Camp in Talibahal, Pipalkani Preparation of Nutrigarden started

SAMRIDHI : Promising Prosperity Horticulture & Agriculture Activities

Objective: Uveilhood enhancement through cash crop like Oilseeds, fruits and vegetable cultivation under Agriculture and Horticulture

Strategy: - Farmer Institution Building (Producer Compliny, Farmar's Club) Capacity Building of farmers Support Backward and forward. Imkages

Journey So far:
- 525 farmers mached
 12 farmers clubs formed
- 10 arres of vegetable cultivation
 0.75 acres Sweetcorn
- 2 30 acres of Manko Orchard plantation
- Water Positivity 352 acres imigated
178 farmers benefitted

Project Cost and earnings: Aditys spending in PY 2021-22: Rs. 89:55 lacs Income per farmer: Samriddhi: Rs. 11602/-

Details of VDC/ FC & Agriculture input details										
No of VDC/ FC formed	No of village	No of Members	No of VDC Account	No of farmers in concerned villages	No of Farmers in Paddy cultivation	No of Farmers engaged in Vegetable Cultivation	Support of Agriculture Inputs	No of Exposure visit	No of Participant	
12	10	525	7	2355	1965	497	497	3	77	

SAMRIDHI : Promising Prosperity Horticulture & Agriculture Activities

BLACK RICE PROMOTION - PILOT PROJECT

- 65 Farmers
- 30acres
- 3 Gram Panchayat
- Backward forward linkage

SAMRIDHI : Promising Prosperity Horticulture & Agriculture Activities

VEGETABLE CASH CROP PROMOTION

- 600 SHG women provided mini vegetable kit
 6 Gram Panchayat
- 20 villages

All ARENESS ON GOVT. SCHEMES & DNLINE REGISTRATION Project set/Right

DERIFECTORY ADDITION TO DERIFE THE REPORT OF

PROJECT SAMRIDHI-AWARENESS SESSION

 Enrolment of Farmers on Government Portal
 Awareness Session on Government Schemes
 150 farmers enrolled from Ghichamora and Bomoloi

SAMRIDHI : Promising Prosperity

Horticulture & Agriculture Activities

BLACK RICE PROMOTION - PILOT PROJECT

- 55 Farmers
- 5.5 acres
- 4 Gram Panchayat
- Backward forward linkage
- Transplantation
 - Completed
- Capacity building training in small batches completed

No of Benificiary	No of GP Covered	Seeds distributed	Cost of seeds	Training Cost(RP)	Labour Cost	Acres of Land	Fertilizer	Current Status
55	4	125 Kg	16650/-	2000/-	750/- Per farmer	5.5 Acres	Home made manure	Process is in right track

Sweetcorn Promotion – Seed Distribution among Farmers 100 Farmers including women farmers being covered.

SAKSHAM- Empowering Women

To socially & economically empower 80% of SHG women to have sustainable income with dignity.

Vision

- To form and adopt Self Help Group (SHGs)
- To facilitate loan iinkage for income generation activities (IGA)
- To ensure capacity building for book keeping and banking
- To provide training for IGA
- To facilitate backward forward linkage
- To create awareness on Government Schemes
- To develop into a self sustaining institution

Coverage

- 24 villages
- 200 SHGs
- 2000+ women

Stokeholders

- Wainen
- Government CDPO, DPM & BPM OLM, Director DIC, Director BIC, PD DRDA, PD ORMAS, Director Mission Shakti
- PRI Sarpanch, Samiti Member

PROJECT SAKSHAM

To socially & economically empower 80% of SHG women to have sustainable income with dignity.

- One New Paper Plate Unit
- Capacity Building 100 New SHGs
- Exposure Visit Puffed Rice Unit
- SHG Meetings 25 nos.
- Mobilised Rs. 2 Lakhs

PROJECT SAKSHAM- ADITYA Supported SHG Donated 51K

Social Security and Emp. PwD *** Sambalpur Rabindra Satapathy - O Admin - 55 - Ø

Donation of Rs 51000/ by women SHGs to strengthen the objective of beggar free district

କାର୍ଯ୍ୟ ଅବରାଜର ଅଧିକର ଅଧ୍ୟର ଜିଲ୍ଲାପାଳଙ୍କୁ ଶ୍ୱାବଲୟୀ ମହିଳାଙ୍କ ଅର୍ଥଦାନ

compose Process solar spectra gapping the set codes many more exercise solar specie gapping the bits offer the set risks can appear the set of the set of the offer the objective gap benering who colored for the solar gap more state the gap benering who colored for the gap and powers of an object of the set of the gap and the objective operation of the set of the gap and the gap and the colored for the gap and the powers of any rest there are an offer and gap a develop the set of the set of the set of the gap and the objective set of the set of the gap and the gap dame and the set of the set of the gap and the gap offer and the set of the set of the gap and the set of the set of the set of the set of the gap and the objective set of the set of the gap and the gap and offer and the set of the set of the gap and the set of the set of the set of the set of the gap and the other set of the set of the set of the gap and the other set of the set of the set of the gap and the set of the set of the set of the set of the gap and the set of the set of

PROJECT SAKSHAM- Paper Plate Making Unit

- MAA RAM CHANDI SHG
- VILLAGE PHULCHANGER
- GRAM PANCHAYAT BOMOLOI
- INVESTED: 1.5 LAKHS
- > STARTED MAY 4 2022

PROJECT SAKSHAM- PUFFED RICE MAKING UNIT

- EXPOSURE VISIT
- JAI MAHAMAYA SHAKTI SHG
- VILLAGE: BOMOLOI
- INVESTED: 0.50 LAKHS
- CONSTRUCTION OF SHED IN PROGRESS

PROJECT SAKSHAM- TRAINING & CAPACITY BUILDING

CAPACITY BUILDING
 TRAINING
 100 NEW SHGs

Project SAKSHAM-Mushroom Cultivation

> Mushroom Training at Shradhapalli and Gumkarma

Poultry Promotion as IGA under Project SAKSHAM

- 2 Units started with 1000 chicks
- 4 Units under Construction
- 3 new Units sanction @1.5 lakhs
- Backward Forward linkage facilitation by Aditya CSR
- Support to Vetnirary and OLM Department
- Aditya may support with 1000 chicks to all SHGs

PROJECT SAKSHAM-HOT CHIPS EXPOSURE VISIT

- SHG EXPOSURE VISIT TO HOT CHIPS
- JAI JAGANNATH SHG
- 6 MEMBERS OF SHG VISITED
- VILLAGE: DHORROPANI

• WEL COME -SHRUTI DRAGON FRUIT FARM • N.M.K-ISUPER GOLDEN CUSTARD APPLE • VIETNAM SUPER EARLY JACK FRUIT • ANJEER ISCHIA GOLDEN FIG • KASHNIRI RED APPLE BER • FRESH WATER SHRIMP FARM ORGANIC - GROW MARK, ADVANCE MI SPRAY PLUS, BHUASTRA SUPER MOB-9556163424

Exposure Visit to Integrated Farming Baripali Bargarh

Project SWAWLAMBH-Tailoring Training

- Community Women Exposure Visit to SAHI export Skill Training Centre Rengali
- Inauguration of SAHI export and ORMAS Tailoring Training by Colector Sambalpur
- 3 months training: first batch of 50 women. 13 from Dhorropani village
- 2nd Batch started with 30 women

N

Tailoring Training at Sahi Centre Rengali 2nd batch started with 30 beneficiaries

Project SAKSHAM SHGs IGA

Dhorropani SHG Earned 60K by stitching flag for "Har Ghar Tiranga Campaign"

Jai Jagannath SHG Naikpada Earned 60K by providing sweets namkeen for Independence Programme

KIOSK to Create Awareness and mobilize Government Schemes

- 90 women participated
- Bankers and government line department presented
- Rajiv Gandhi Seva kendra Bomoloi

SWAWLAMBH: Educate Empower Engage-Skill Training Initiative

Objective

- To Strengthen the Youths from underprivileged community
- To facilitate skill training
- To ensure placement/ enterprise opportunity
- To facilitate backward forward linkage with skill centres
- To create awareness on Government Schemes
- To develop into a confident employable/enterprising youth

Coverage

Target to reach 1000 youths

Stakeholders

- Youths
- Government CDPO, OLM, DIC, RIC, DRDA, ORMAS
- NGOs SBISRETs
- Academic Institutions, Health Institutions
- Businesses
- Industries
- PRI Sarpanch, Samiti Member

Activities Mobilization of youths - Phase-wise counselling Ensure their admission Monitor their progress Celebrate their Employment/ Engagement ٠ Case Studies/ Coffee table book to ٠ commensurate success stories Trained & Placed Mobilizatio Partners INR 5 Lakhs Courselled 292 SBISRET Beneficiaries 76 trained Inguz Contribution Beauty 54 placed / engaged - INR 60K Parlour Earning INR 5K - 8K Trilochan pm Netralaya Received 3000/- each Aditya Birla for training as Skill Centre stipend, 11 of them Estimated Cost bought own sewing machine INR 20 Lakhs for 3 years

SWAWLAMBH: Educate Empower Engage

Office Assistant & Taily Training started for 15 Youths Taily and Office Assistant . 3 successfully placed	Ophthalmology Nursing Training and Job offered to 6 girls, Joined Trilochan Netralaya	Tailoring Training to 21 Women successfully completed Bought Machines	Beautician Training to 12 girls and women successfully completed	PERFORMANCE FY Nev 2020- Mar 2022
Krishi Udyami Training to 5 Farmers successfully completed SBISRET	LMV Training to 5 Youths successfully completed SBISRET	Micro Irrigation Training to 10 Farmers successfully completed SBISRET	Mobile Repair Training to 2 Youths successfully completed SBISRET	PERFORMANCE Q1 '22

IMPACT

Ensured additional annual income for families

* Ensured additional annual income of Rs. 90,000/- for 2 families in FY 2019-20 and 4 families in FY 2020-21 Poor youths become economically

independent under Othalmology Nursing Training

· Women earned More than 1 Lakh by Stitching Masks during Covid, Became entrepreneurs, Commenced Safety Jacket Business

· 6 Girls earning 5000/- pm in Beauty Parlors. Supporting their families. Aspiring to open own parlor in Lapanga

Positive impact on other aspiring girls in vicinity villages to join the bandwagon

PROJECT SWAWLAMBH

Visit to Aditya Birla Skill Centre with Representative of Head Held High and discuss partnership opportunity

ADTIVA BIRLA

SANS STORY DAL

olalalala

Vibrant Independence Day Celebration @ Community

No INCERTIONERICE DAY CELEBRATION

Amyll LAphots T

 90 students benefitted in Gumkarma school of Ghichamura GP

School Bag Distribution

International Literacy Day 2022

Supported Science Drama Competition

Lapanga High School

SUPPORT TO SCHOOL

Project Sadhana - Nurturing Minds

Objective

- To increase enrolment in schools
- To facilitate conducive learning environment in schools.
- To enhance attendance of students
- To create awareness on career options, personal hygiene, etiquettes and values

Coverage

- 20 schools (P5, ME, H5)
- + 10000 students

Stakeholders

- Students, Teachers, Parents, School Management Committee
- Government DEO, BEO, BRC, ERC
- PRI Sarpanch, Samiti Member

Outcome

- Increase in attendance by 25%
- Entrolment 90%
- · Enhanced amenities in 12 schools
- Improved infrastructure in 5 schools- classroom, boundary wall, toilets etc

SADHANA- Nurturing Minds

- International Yoga Day was observed in Lapanga High School on 21 June 2022.
- The theme for 2022 is 'Yoga for Humanity'.
- More than 50 students from Class 9th and 10th joined the yoga session
- renowned and certified Yoga Teachers from Sambalpur Mr. Raja Ram Nayak and Mrs Mamta Nayak.

Q1 Initiatives

- Block Level
 Science Exhibition
- 60 projects

PROJECT MO SCHOOL ABHIYAN

A Government of Odisha Initiative under School & Mass Education Department

- Objective revamping school education by promoting volunteerism and collaboration through an innovative citizen-government partnership
- Coverage
 3 Districts Sambalpur, Rayagada, Kalahandi Support to 66 High Schools under 5T in Odisha in phase 1 and 67 schools in Phase II Support to 80 High Schools under 5T in Odisha (Sambalpur Cluster)
- Investment INR 300 Lakhs (10.28cr + 0.50cr)
- Fund Leverage 600 Lakhs (Govt contribution 1:2)
- SDGs 4 Quality Education
- Outcome Plugged in infrastructure gaps in 80 High Schools

Schools equipped with smart class, e-library, Computer lab, garden, Washrooms, Drinking water

Increase in Student Attendance and improved performance

Mo School - 5 T School Visit

SL N	Block	Name of the School	Class Starting From	Student stringen t	Nos of Staff	Contact details
1	Jujumura	K.G.M.N Govt. High School "Mahuhtali	1 to 10	400	6	Gindhari Dansetta (H.M) Ph- 9348473918
2	Jujumura	Jujumura High School	6 to 10	331	14	Kulamani Pradhan (H.M) Ph- 9345473915
3	Naktideoli	Bapuji Govt High School	5 to 10	310	14	Akura Kumar Pradhan (H.M) Ph- 9438335868
4	Naktideuli	Govt High school,Sarapal	1 to 10	520	18	Sasmita Majhi (H.M) Ph- 9936420143
5	Maneswer	Lady lewis Girl's High school	6 to 10	1200	12	Ujagara Pradhan (H.M) Ph- 9937095861

- Points Discussed
- Utilization Certificate
- Branding
- Presented to Ex Collector

Bridging the critical gap during monsoon and linking 10 villages in Bomoloi Gram Panchayat to main Road towards Lapanga, State Highway towards Jharsuguda and Sambalpur

Constructed by Aditya Aluminium Lapanga Under Corporate Social Responsibility

Water Positivity

 5 Ponds constructed by Aditya . Painting and Nari Maryada Grih work in progress.

Khariapali, Odisha, India Lapanga, Khariapali, Odisha 768212, India Lat 21.725838* Long 84.016385* 10/10/22 04:17 PM GMT +05:30

Google

Nari Maryada Grih Construction and Branding in all 4 newly constructed/ renovated ponds

60 LED Street Lights installed in 6 wards of Lapanga GP

Pondoloi and Ludhapalli R&R painted with BALA painting

PM SMY

- 2 Awareness Session in Bornoloi and Gyandhara Organized for SHG Women
- PF Commissioner addressed the SHG women on PM SYM Scheme at Gyandhara.
 S9 Women enrolled till date

EXPLORING BAMBOO AS MSME

- Visited Laurnal in Katarbagga GP
- 75 households bamboo artisan village
- Sandeep Kapre presented bamboo products at Maharastra factory
- Villagers to be mobilized for residential training
- Village supported by SIDBI
- Bamboo char machine to cost 12 lakhs.
 Project may cost Rs. 20-25 lakhs

Karma Puja Celebration at Ludhapalli

Get Together with Parekhpada DPs

Shri Padma Shree Haldhar Nag Graced the Occasion Besides who's who of Rengali block

Nuakhai Bhetghat at Rengali

VISIT of IAS OFFICERS

Discussion on employee volunteerism with middle management during corporate CHRO Visit

Project SABUJ URJA- SOLAR LIGHTS

100 Solar Street Lights in 14 Villages in FY 2022-23

Indent of Solar Street Light (CSR) 2021-22						
SUND.	Village	No of Street Light.				
1	Pitapiulli	10				
-2	Nalkpieda	3				
3	Derbii	5				
4	Khadiapali					
5	Nanigada	10				
14	Talibultur	5				
7	Badapada	2				
	Gumkanna	20				
- 9	Ghichamara	20				
10	Beunta	10				
11	Piputkani	10				
17	Elmorshopal (Enanotatra	5				
13	Gopkani	4				
14	Kapilzspada	4				
		105				

Inaugurated Solar Street Light in Pitapali

50 Solar Lights for RR Colony Installed

 100 Solar Lights installed in villages

Water Positivity: Environment Sustainability

- **Constructed 1 New Ponds Badapada** ٠
- Renovated 4 Ponds Budapada, Rengoloi, ٠

Gumkarma, Lapanga

Till date - 50 Ponds : 180576 m3 water conserved ٠

> Aditya Aluminium's efforts to resolve water crisis in Rengali

Plantation : Environment Sustainability

Green Belt Development

- 30000 mango sapling in FY 22
- 4500 in FY 20 and 18000 in FY 21 truit bearing saplings planted
- 13,467 families benefitted in '21
- 5 orchard being developed
- 5000 in FY 20 and 5000 in FY 21 saplings leveraged from forest department

World Environment Day 2022 # Only One Earth

UNNATI : Building Lifestyle

Road - Peepalkani

Box Culvert - Bornoloi

Ladies Changing Room Near Ponds

Temple - Pondoloi

Project Unnati - Building Lifestyle

Objective

- To build linkage infrastructure
- To build Common Property Resources
- · To provide quality of life
- To facilitate 100 man-days engagement
- To create awaneness on Government Schemes

Coverage

- 40 villages
- 10000 people

Stakeholders

- · Community
- Government RD, PWD, M(P, BDD, RWSS
- PRI Sarpanch, Samiti Member

Outcome

- Increase in connectivity
- · Increase in water availability
- Enhanced quality of life- Installation of solar street lights, community centre
ABGLP Visit- June '22

CSR NEWSLETTER

Aditya Aluminium Lapanga

UTKARSH **CSR NEWSLETTER**

SEPTEMBER, 2022

Vol.X /Page 01

NATIONAL NUTRITION WEEK

Project Suportion it Addyon after to partner Notional Pooltan Contolion Rollsing manufacture and amounts #2003

statute statutes beauty per discount of the Harts inclusion of the second to should be available that the and the second statement of th

tion INCA AMERICAN 1000 and it is seening a bississify and it considers a second Real Distances Collins were without it

of the Area Warming and the R. Branning Program summer and And in case of the local division of the loc

man because of a strong to many state and a state on strong through subgroups a many state plantation, and have logging the plants and be the second statement of the one or the Sector of Sector Sector Sector Sector Sector seed, for the property beau they would the prove Assessment by Transmission III Manager Printings - Wang - B

Independence Day

brigs Californian . Arread in lines.

hitse fill area for terranger in seems a shifteness of the power, of contacts Manual of 27 August 202 Anne re has weld have be per utility in thesaw and oppose to pression to walking frame and its life and "management" sinteresting o-besti mentions, labourd arrange offenda Plag. the home many is reprint in a descent In the Surgermont.

Competition

Inicitation and permanent of the 2 sh and the second \$2.55 and the second statement of the second

and the set of the second s ____ ALC: NO. 11 AND ADDRESS OF tated Print Press Summer and Control

Countri Sahu And the little

111 2 22 SOMERAUMINUM with Joint / Calif. #1 **CSR NEWSLETTER**

UNASIG-URATIOR NOULD BUILD BUILD BUILD BUILD BERT RECOGE

EXPOSULE VISIT

COMPTONIC COMPTON and the statement of the second statement

A MARCHARD CN ROCKAL MEDIANCES CHINE PULTER TO e olimina inizi

Awards & Accolades

- Amity CSR Award 2022 for Project Saksham by Amity Business School Pune
- Golden Bird CSR Award 2022 for Project Vision Centre under Community Development Category by Golden Bird National award 2022

The state of books at the local party of the state of the

NEWSCLIPPINGS Q1 FY '23

Statesman: 9th April 22

Health Camp held at Aditya Aluminium on World Health Day

Malourness the mount of Minist Marith Day a Make Kennikim' Meallet Correy was And the loss by Addition Additional and manual of Table (Bradither and Communitive) in Contarts critical of Orchesters Court Parchases 44 Laparent in Northdow Million, The literate for this plact wat Readout Nation, and Harborn, Address Advantages in Windows for providing sparting fermitations to that inter the ways to Firm Add Dissues. DA principa and print why build the ing managing an Autom in the second se serves for pressure builds at a New Stat 272 permits interacted the same. The camp ways receiption in president of Selected and Accessible and

Their Progent Strength and Margin Sciences Rentance (Distances Area Bollonty MPM Candle, Shotth Samuella Wood, State (Wilcol). May Taxang Classificance (West Class and KAR, Manupusi Silaria New Yorkson Chill States with Chil

Howard Farthy and TLON, Phat and the second data in the second data was a second data was a second data was a second data was a second data w party fining and descent in the proophy in where an adding they prove the Baltin Letha Chef Abilian Other Addres and Delevands and fadility patients are including

15 Dillers For Britan Hauture. Dr. Designation for announce of \$1000-65. Disinitial Manisopper SIRBLE IN Building month Ramp, Million and Roman Concernant Dispite Print Incodes McRub Commission and philuid Generation Plantes annoing the science and provided New NAMES AND ADDRESS OF and umbrightinged limit. Community in

The country give technical A supply of Talancial and Chemicality. Property & second beneat the state of TH same in Respire Hough in parameters with Decomposit. The and the later of t By CAR. Month and include horse and have with the setting problem. Report To Co.

ଅବତ୍ୟ ଅଲମ୍ବରଣ ପ୍ରଥନ ବଡ଼ନ ପୋଳରାଲ

CONTRACTOR OF THE REAL PROPERTY OF THE REAL PROPERT THE R. LEWIS CO., LANSING, MICH. and the second party International Access the subscription into the set status and insult hims pictu 1000 the second formula their

WORLD ENVIRONMENT DAY OB-SERVED AT A DITYA ALUMINIUM

and the second state of a Man State of the second state of the second the second second of the second of the second secon In the second And A Property Street. the Manufal Tell of a station instruction for Indexident Mild in a state of the local state of th والمعادة والمتناك فترواص فترا Read and the local little of Station (Section). Proceedings And a local division of the second se A REAL PROPERTY OF TAXABLE PARTY. pant & four Ramally. Why point the one and of the Wood' behavior blue cost. Social change have parally, the define stream in the parallel of the the straight hand, in the second star spinst work work second the loss frammed \$1.000.000 for \$2.000.000 of \$1.000.000 ter Berleitingereichen Bergereichen Verlichen Bergehalt und Bergehalt. N. Last Nucl. 200. Margin Training at a second second Bid in this same line, where there is in the last monthly described in the and the brand of the last of the second s

and the second second

times in additional in all these which the other store State Survey and Soil's, Married When the property company

ଆବତ୍ୟ ଆଲମନୟମ ପକ୍ଷର ରତ୍ୟାବ ସ୍ଥଳତା

INVERTIGATION DISTORT TON white a state in the second second čes izeo konski i kozseda zbiljet 2011 6 (0000 62/000) 20 20/04 60000 UNICASUIT OCYCLE REALT TOOL WERE PUDHAT CODOVIC GODDLE FIBE and move imposed time-of particip manana (Ag sinit Scena) 6 April Mitsia CONTRACTOR OF THE PARTY OF THE PARTY OF LENGII STERIOOD BITTEL SHE & BIT ODU DEMIL GEODE-SÕG-SE - GERUS Ovio strapio official logi combina strapione HOME BOARD BOARD BOARD BOARD HIS

12500 1000 RIGHT REPORT THE COURT SERVICES.

ାଭୁମିନିୟମ ପକ୍ଷରୁ ଜଳକାହିନୀ ପ୍ରକଳ୍ପ ଶୁଭା ଆଦିତ୍ୟ ଆଲୁମିନିୟମ ପକ୍ଷରୁ ଯୋଗ ଦିବସ

100.00

247 4 9 20 10000 NACES OF CASES C. S. Car THE REPORT OF THE PARTY outers i poor persist of Description of the second second OPHILL USAL PHANCENEET DO 019 972100 00 120762 TROOPING STORE OVER 1

RECHTERED (CONTROL OF CONTROL OF C 10076 99 602 00 5000 THE PROPERTY AND THE REPORT OF THE PROPERTY AND THE PROPE (1994) Salaran (1995) (1995) (1995) (1995) (1995) (1995) who who is not said the second and the second DOMINING INVESTIGATION unitio (con 952 000 662) (control 1 CONTRACTOR CONTRACTOR OF CONTRACTOR

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering Water Resource Management · Environmental & Social Study Surface & Sub-Surface Investigation · Quality Control & Project Management Renewable Energy

1

- Agricultural Development Information Technology Public Health Engineering
- Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Sali Lah Miseral Lab Microbiology Lab

Date: 05.06.2022

Laboratory Services Environment Lab Fired Lab

Material Lab

Ref: VCSPL/22/R-8493

METEOROLOGICAL ANALYSIS REPORT MAY-2022

1. Name of Industry 2. Data Collected By

M/s Hindalco Industries Limited : Unit-Aditya Aluminium, Lapanga, Sambalpur

Automatic Weather Monitoring Station

Dette	Temper	ature(⁰ C)	Relative Hu	midity (%)	Wind Sp	oeed Km/h	Wind	Rain fall
Date	Max	Min	Max	Min	Max	Min	Direction	(mm)
1-May-2022	46	26	84	38	2.8	0.8	SW	0.0
2-May-2022	47	27	81	37	11.2	1.8	S	0.0
3-May-2022	48	25	78	38	9.2	2.7	SSE	0.0
4-May-2022	45	24	83	36	8.6	0.7	NNE	0.0
5-May-2022	46	26	88	35	9.4	1.3	SE	0.0
6-May-2022	46	27	75	34	11.2	0.5	SSE	0.0
7-May-2022	46	25	76	36	8.3	1.3	SE	0.0
8-May-2022	46	25	81	35	7.8	2.3	NNE	0.0
9-May-2022	43	26	80	34	9.3	1.2	NNE	0.0
10-May-2022	45	26	72	33	10.3	1.2	NE	0.0
11-May-2022	46	26	80	34	9.4	1.0	ESE	0.0
12-May-2022	45	27	81	33	8.4	0.9	NE	0.0
13-May-2022	45	27	78	32	12.2	2.2	SW	0.0
14-May-2022	49	28	82	34	9.8	3.3	NW	0.0
15-May-2022	49	29	78	35	6.8	7.2	SSE	0.5
16-May-2022	49	28	80	33	9.6	1.5	NW	0.0
17-May-2022	49	28	78	32	11.2	0.8	NNW	0.0
18-May-2022	48	29	82	36	9.8	1.7	SSW	0.0
19-May-2022	45	29	78	32	8.6	0.4	WNW	0.0
20-May-2022	47	29	82	34	8.3	1.2	SSE	0.0
21-May-2022	48	30	72	36	9.2	0.9	SE	0.0
22-May-2022	47	31	88	37	7.6	1.8	SW	0.0
23-May-2022	46	32	81	36	3.4	0.2	SW	0.0
24-May-2022	45	27	78	33	2.9	0.1	SSW	0.0
25-May-2022	44	27	77	36	9.2	7.4	S	0.0
26-May-2022	47	29	82	32	5.8	0.9	S	0.0
27-May-2022	44	30	72	35	7.6	1.8	SW	0.0
28-May-2022	46	31	81	35	7.4	0.8	SSE	0.0
29-May-2022	43	28	78	34	8.1	1.4	SW	0.0
30-May-2022	45	30	83	33	7.3	1.0	SE	0.0
31-May-2022	47	30	78	34	8.2	0.3	ESE	0.0

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering Water Resource Management · Environmental & Social Study Surface & Sub-Surface Investigation · Quality Control & Project Management

:

- Agricultural Development Information Technology
- Mine Planning & Design Mineral/Sub-Soil Exploration

Eavironment Lab Fred Lab Material Lab Sali Lah Miseral Lab Microbiology Lab

Laboratory Services

Renewable Energy

Public Health Engineering

Waste Management Services

Ref: VCSPL/22/R-8494

Date: 06.09.2022

METEOROLOGICAL ANALYSIS REPORT AUGUST-2022

1. Name of Industry 2. Data Collected By

: M/s Hindalco Industries Limited Unit-Aditya Aluminium, Lapanga, Sambalpur

Automatic Weather Monitoring Station

Dete	Tempera	ature(⁰ C)	Relative F	lumidity (%)	Wind S	peed Km/h	Wind	Rain fall
Date	Max	Min	Max	Min	Max	Min	Direction	(mm)
1-Aug-2022	34	27	71	31	3.8	0.6	WSW	1.4
2- Aug -2022	28	25	75	35	2.9	0.8	SW	2.8
3- Aug -2022	34	26	81	38	3.2	1.1	SE	0.0
4- Aug -2022	35	26	74	34	4.8	0.8	SSW	0.0
5- Aug -2022	34	27	78	39	7.8	1	NNE	0.0
6- Aug -2022	35	26	84	35	5.6	0.9	W	0.0
7- Aug -2022	35	27	75	28	8.6	1.2	SW	0.0
8- Aug -2022	31	26	78	26	9.1	0.3	SSW	0.0
9- Aug -2022	26	24	84	34	7.2	1.2	SW	6.8
10- Aug -2022	24	23	86	38	7.8	1.0	SSE	2.4
11- Aug -2022	27	23	82	37	8.3	0.7	SSE	0.0
12- Aug -2022	30	24	74	31	7.3	1.2	SE	0.0
13- Aug -2022	31	24	79	26	7.3	1.0	SSE	0.0
14- Aug -2022	30	25	84	39	8.2	0.8	NW	0.0
15- Aug -2022	30	24	82	34	6.2	1.2	SW	0.0
16- Aug -2022	30	23	86	38	9.8	0.3	SSW	0.0
17- Aug -2022	31	23	84	34	7.6	3.4	NNE	0.0
18- Aug -2022	31	23	78	38	5.5	1.5	NW	6.8
19- Aug -2022	30	23	75	36	5.6	0.9	SSW	2.7
20- Aug -2022	30	22	79	34	7.2	1.0	SSW	0.0
21- Aug -2022	29	23	74	38	8.2	0.8	ESE	0.0
22- Aug -2022	30	23	78	34	6.3	1.2	SE	0.0
23- Aug -2022	32	23	72	36	7.7	0.9	SSE	0.8
24- Aug -2022	29	25	76	37	8.6	1.2	SSW	3.2
25- Aug -2022	31	24	74	38	6.1	0.8	SSW	0.0
26- Aug -2022	31	25	71	32	5.3	0.0	ŚW	0.0
27- Aug -2022	33	25	78	35	11.2	1.1	WSW	0.0
28- Aug -2022	31	25	75	34	6.3	1.1	w	6.4
29- Aug -2022	33	26	72	38	7.2	0.9	SSW	0.0
30- Aug -2022	33	25	76	34	5.9	1.1	SW	0.0
31- Aug -2022	34	27	71	38	6.8	0.1	SW	0.0

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering Water Resource Management · Environmental & Social Study

2.

4.

 Surface & Sub-Surface Investigation Quality Control & Project Management Reservable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Eavironment Lab Food Lab Material Lab Sell Lab Miseral Lab * **Microhiology** Lab

Date: 06.07.2022

Ref: VCSPL/22/R-8473

AMBIENT AIR QUALITY MONITORING REPORT

- Name of Industry 1.
- Monitoring Station No.- AAQMS-1 :Gumkarma ć

M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

RDS(APM 460 BL). FPS(APM 550) Envirotech. CO Monitor, VOC Sampler

- Sampling Location Monitoring Instruments 3.
 - Sample collected by
- VCSPL representative

				100			PARAME	TERS		-			
Date	PM10 (mg/m ²)	PM2.8 (µg/m ³)	SO2 (µg/m ²)	NO ₁ (ng/m ²)	Oy (µg/m³)	CO (mg/m ⁴)	NH3 (ng/m ³)	Cells (pg/m ²)	BaP (ag/m ³)	Ni (ng/m²)	Pb (og/m²)	As (ng/m ²)	E (µg/m²)
04.04.2022	53.5	30.4	14.2	18.7	~4.0	0.24	<20.0	<4	< 0.5	<2.5	<0.02	<1	< 0.01
07.04.2022	52.4	29.7	14.4	17.2	<4.0	0.2	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
11.04.2022	48.5	27.6	15.9	19.3	<4.0	0.27	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
14.04.2022	49.2	28.2	15.4	18,8	<4.0	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
18.04.2022	47.7	27.1	15.1	18.4	<4.0	0.21	<20.0	<4	< 0.5	<2.5	<0.02	<1	< 0.01
21.04.2022	46.1	26.1	15.6	18.5	<4.0	0.23	<20.0	<4	< 0.5	<2.5	< 0.02	<1	< 0.01
25.04.2022	51.2	28.7	14.9	17.7	<4.0	0.2	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
28.04.2022	48.3	27.3	15.8	18.6	<4.0	0.22	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
02.05.2022	47.8	27.6	15.5	18.7	<4.0	0.23	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
05.05.2022	48.3	27.4	15.2	18.1	<4.0	0.22	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
09.05.2022	51.7	28.8	14,5	18.3	<4.0.	0.21	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
12.05.2022	52.1	29.4	13.9	17.2	<4.0	0.24	<20.0	<4	< 0.5	<2.5	<0.02	<1	< 0.01
16.05.2022	49.3	28.4	15.6	18.5	<4.0	0.26	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
19.05.2022	47.5	26.3	15.3	18.9	<4.0	0.22	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
23.05.2022	49.4	27.5	15.7	19.1	<4.0	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
26.05.2022	48.1	26.9	15.7	18.2	<4.0	0.22	<20.0	<4	< 0.5	<2.5	<0.02	<1	< 0.01
30.05.2022	51.3	24.8	15.2	18.3	<4.0	0.22	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
02.06.2022	48.6	27.1	15.3	19.1	<4.0	0.24	<20.0	<4	< 0.5	<2.5	< 0.02	<1	< 0.01
06.06.2022	49.1	28.2	15.1	18.7	<4.0	0.22	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
09.06.2022	47.8	28.1	15.8	19.4	<4.0	0.26	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
13.06.2022	48.1	27.5	15.4	18.7	<4.0	0.22	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
16.06.2022	45.8	25.6	16.2	19,4	<4.0	0.27	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
20.06.2022	45.2	24.9	16.5	19.7	<4.0	0.28	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
23.06.2022	45.8	25.2	16.8	19,9	<4.0	0.27	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
27.06.2022	47.7	27.1	17.1	20.1	<4.0	0.26	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
30.06.2022	52.1	30.1	16.2	18.6	<4.0	0.22	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
NAAQ Staudard	100	60	80	80	100	4	400	05	01	20	1.0	06	-
Average	48.9	27.5	15.5	18.7	<4.0	0.2	<20.0	<4	<0.5	<2.5	<0.02	⊲	<0.01
Terring method	Cravinetric	Cravinceric	Improved Weat and Gente instand	Modified Jacob & Hochheiter (Na- Artecida)	Cliemical Methed	NDIR Specimscopy	lindo pijanël biov avtind	Absorption & Description fullested by CQ antibuty	Solvent extraction thilewod by Gas Chromotogra	AAS method after weipling	AAS melted silter paspling	AAS mathed after restpling	ZircoAium SPAIINS Mothed

BDL Values SO₂<4 μg/m³, NO₂<9 μg/m³, O₃<4 μg/m³, Ni<0.01 ng/m³, As< 0.001 ng/m³, C₆H₄<0.001 μg/m³, BaP<0.002 ng/m³, Pb<0.001 μg/m³, F<0.01µg/m³CO-<0.1 mg/m³

repared by

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering Water Resource Management · Environmental & Social Study Surface & Sub-Surface Investigation Quality Control & Project Management Reservable Energy

÷

÷

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Eavironment Lab Food Lab Material Lab Sell Lab Miseral Lab * **Microhiology** Lab

Date: 06.07.2022

Ref: VCSPL/22/R-8474

AMBIENT AIR QUALITY MONITORING REPORT

Name of Industry 1.

4.

M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga ÷

RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

- 2. Sampling Location
- Monitoring Station No.- AAQMS-2: Ghichamura
- 3. Monitoring Instruments
 - Sample collected by
- VCSPL representative

				1		ł	ARAMETE	RS					
Date	PM ₁₅ (µg/m ²)	PM2.5 (µg/m ²)	SO2 (ng/m ²)	NO, (µg/m²)	O3 (µg/m²)	CO (mg/nr ³)	NH3 (µg/m ³)	CeHs (pg/m ³)	BaP (ng/m ³)	Ni (ng/m ³)	Pb (µg/m³)	As (ag/m²)	F (µg/m³)
04.04.2022	48.2	27.3	8.4	17.4	<4.0	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
07.04.2022	49.7	28,1	9.8	19.2	<4.0	0.27	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
11.04.2022	50.1	27.8	9.6	18.5	<4.0	0.26	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
14.04.2022	48.7	27.4	8.3	11.6	<4.0	0.28	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
18.04.2022	49.1	27.6	9.8	17.7	<4.0	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
21.04.2022	48.9	27.4	9.7	19.2	<4.0	0.29	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
25.04.2022	49.3	27.6	9.3	18.2	<4.0	0.27	<20.0	-4	< 0.5	<2.5	-0.02	~1	< 0.01
28.04.2022	49.5	28.1	9.8	19.3	<4.0	0.25	<20.0	-4	<0.5	<2.5	<0.02	<1	<0.01
02.05.2022	48.9	27.8	8.2	17.2	<4.0	0.23	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
05.05.2022	48.4	27.1	9.6	18.5	<4.0	0.24	<20.0	<4	<0.5	<2.5	-0.02	-1	< 0.01
09.05.2022	49.2	27.7	10.3	19.4	<4.0	0.25	<20.0	<4	<0.5	<2.5	-0.02	-1	< 0.01
12.05.2022	47.6	26.9	8.6	17.1	<4.0	0.26	<20.0	<4	< 0.5	<2.5	~0.02	~1	< 0.01
16.05.2022	49.2	27.6	9.6	18.5	<4.0	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
19.05.2022	50.3	28.5	8.4	17.2	<4.0	0.23	< 20.0	<4	< 0.5	<2.5	< 0.02	<1	< 0.01
23.05.2022	49.7	28.1	8.3	17.7	<4.0	0.22	<20.0	<4	<0.5	<2.5	-0.02	~1	<0.01
26.05.2022	48.4	27.1	9.6	18.6	<4.0	0.27	<20.0	<4	<0.5	<2.5	-0.02	~1	<0.01
30.05.2022	50.3	29.6	9.2	19.1	<4.0	0.27	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
02.06.2022	49.1	27.5	9.4	18.2	<4.0	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
06.06.2022	45.7	25.7	9.5	18	<4.0	0.23	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
09.06.2022	47.9	27.1	9.2	18.7	<4.0	0.25	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
13.06.2022	48.5	27.6	8.5	17.2	<4.0	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
16.06.2022	46.3	26.2	9.6	17.6	<4.0	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
20.06.2022	46.5	26.4	9.2	18.7	<4.0	0.21	<20.0	<4	<0.5	<2.5	-0.02	<1	<0.01
23.06.2022	47.2	26.7	9.8	18.8	<4.0	0.25	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
27.06.2022	49.4	27.6	93	17.9	<4.0	0.22	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
30.06.2022	48.3	26.9	8.9	16.3	<4.0	0.27	<20.0	<4	<0.5	<2.5	-0.02	-1	< 0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	-
Quarterly Average	48.6	27.4	9.2	17.9	<4.0	0.2	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
Testing method	Gravinstein	Gravinstrie	Improved West and Gaeles Bothod	Modified Jacob & Hochhelerr (Na-Azsenite)	Chemical Method	MDIR Spectroscopy	indo phenol blue method	Aberryption & Description fullowed by GC analysis	Solvent extraction followed by Gas Chromstogra phy apalysis	.AS method sftpr sampling	AAS wethod after sampling	AAS methad sitter sampling	Zironsiani SPADNS Alefhod

BDL Values: SO₂~4 µg/m², NO₃< 9 µg/m³, O₅~4 µg/m³, Ni<0.01 ng/m³, As< 0.001 ng/m³, Calla<0.001 µg/m³, BaP<0.002 ng/m³, Pb<0.001 µg/m³, F<0.01µg/m³CO<<0.1 mg/m^s

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Infrastructure Engineering
 Water Resource Management
 Environmental & Social Study

2.

Surface & Sub-Surface Investigation
 Quality Control & Project Management
 Renewable Energy

Agricultural Development
 Information Technology
 Public Health Engineering

Mine Planning & Design
 Mineral/Sub-Soil Exploration
 Waste Management Services

Laboratory Services Eavironment Lab Food Lab Material Lab Sail Lab Miarral Lab & Microbiology Lab

Ref: VCSPL/22/R-8475

AMBIENT AIR QUALITY MONITORING REPORT

- 1. Name of Industry
 - Sampling Location
- : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga
- : Monitoring Station No.- AAQMS-3 : Tileimal
- 3. Monitoring Instruments
- RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler
 VCSPL representative

Sample collected by

		~		1		P/	RAMETE	RS		-			
Date	PM.((µg/m ³)	PM24 (µg/m ³)	502 (µg/m ⁵)	.NO, (μg/m³)	Oş (µg/m ⁸)	CO (mg/m ³)	NH ₉ (µg/m ³)	C ₆ H ₆ (µg/m ³)	BaP (ng/m ³)	Ni (ng/m ³)	Pb (µg/m²)	As (ng/m ³)	Γ (μg/m ⁸)
04.04.2022	49.9	28.5	10.5	19.7	<4.0	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
07.04.2022	48.7	27.6	9.7	19.2	<4.0	0.21	<20.0	<4	<0.5	<2.5	<0.02	<	<0.01
11.04.2022	47.4	26.8	9.5	18.7	<4.0	0.23	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
14.04.2022	50.9	28.6	11.1	20.1	<4.0	0.25	<20.0	<4	-0.5	<2.5	< 0.02	<1	< 0.01
18.04.2022	51.2	28.7	10.8	20.2	<4.0	0.23	<20.0	<4	-0.5	<2.5	<0.02	<1	< 0.01
21.04.2022	49.7	27.8	9.7	19.4	<4.0	0.26	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
25.04.2022	51,4	29.2	12.4	21,1	<4.0	0.22	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
28.04.2022	51.7	28.9	11.2	20.7	<4.0	0.25	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
02.05.2022	50.5	28.4	12.1	21.2	<4.0	0.28	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
05.05.2022	49.3	27.8	9.9	19.5	<4.0	0.21	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
09.05.2022	47.8	27.2	10.7	20.2	<4.0	0.22	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
12.05.2022	48.1	27.1	11.4	20.7	<4.0	0.24	<20.0	<4	-0.5	<2.5	<0.02	<1	<0.01
16.05.2022	46.8	25.9	12.7	21.8	<4.0	0.28	<20.0	<4	-0.5	<2.5	< 0.02	<1	< 0.01
19.05.2022	51.7	29.3	11.4	20.4	<4.0	0.27	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
23.05.2022	50.4	28.2	10.2	19.5	<4.0	0.26	<20.0	<4	-0.5	<2.5	<0.02	<1	<0.01
26.05.2022	49.7	27.9	10.8	19.2	<4.0	0.29	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
30.05.2022	50.3	28.2	11.1	21.2	<4.0	0.29	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
02.06.2022	49.2	28.4	9.7	19.3	<4.0	0.24	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
06.06.2022	47.2	26.6	11.4	20.5	<4.0	0.29	<20.0	<4	-0.5	<2.5	<0.02	<1	< 0.01
09.06.2022	48.8	27.4	12.1	21,4	<4.0	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
13.06.2022	47.5	26.8	9,8	19.2	<4.0	0.27	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
16.06.2022	46.2	25.9	9.5	18.8	<4.0	0.28	<20.0	<4	< 0.5	<2.5	<0.02	<1	<0.01
20.06.2022	46.4	25.6	10.9	20.1	<4.0	0.27	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
23.06.2022	45.9	26.2	11.2	20.4	<4.0	0.24	<20.0	<4	-0.5	<2.5	< 0.02	<1	< 0.01
27.06.2022	47.8	27.1	11.8	21.6	<4.0	0.26	<20.0	<4	~0.5	<2.5	< 0.02	<1	< 0.01
30.06.2022	49.3	28.7	12.3	22,1	<4.0	0.29	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	-
Average	49.0	27.6	10.9	20.2	<4.0	0.3	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
Testing mythod	Gravimetri ¢	Cravitasistic	Tragroved West and Geake method	Modifies Jocob & Lisethheiser (Na- Arsonita)	Chemical Method	NDIR Spectrascop 3	Indo phezol bize method	Abiorptie n & Descriptie s tollowed by GC analysis	Solvent extraction followed by Gas Chromatog raphy	LLS method after simpling	AAS method ofter sampling	AAS method after stoupling	Zireanium SPA06S Method

BDL Values:SO₂<4 μg/m⁵, NO₂<9 μg/m⁵, O₃<4 μg/m⁵, Ni<0.01 ng/m³, As< 0.001 ng/m⁵, C₆H₆<0.001 μg/m⁴, BaP<0.002 ng/m⁵, Pb<0.001 μg/m⁴, F<0.01μg/m⁵CO-<0.1 mg/m⁵

P. Pati .

Date: 06.07.2022

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering Water Resource Management · Environmental & Social Study Surface & Sub-Surface Investigation Quality Control & Project Management Reservable Energy

 Agricultural Development Information Technology Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Eavironment Lab Food Lab Material Lab Sell Lab Miseral Lab * **Microhiology** Lab

Date: 06.07.2022

Ref: VCSPL/22/R-8476

AMBIENT AIR QUALITY MONITORING REPORT

- Name of Industry 1.
- M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga 2

RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

- 2. Sampling Location
- Monitoring Station No.- AAQMS-4 : Bomaloi
- Monitoring Instruments 3.
- Sample collected by 4
- VCSPL representative

				100			PARAME	TERS					
Date	PM ₁₀ (µg/m ³)	PM _{2.5} (µg/in ³)	SO2 (µg/m ³)	NO _v (μg/m ³)	Ο _λ (μg/m ³)	CO (mg/m ³)	NHa (µg/m ⁵)	C ₆ H ₆ (µg/m ²)	BaP (ng/m ³)	Ni (ng/m ²)	Pb (µg/m ³)	As (ng/m ²)	Γ (μg/m ³)
04.04.2022	51.7	29.4	15.1	24.4	<4	0.24	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
07.04.2022	52.2	29.2	14.8	24.2	<4	0.27	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
11.04.2022	51.4	28.9	16.3	25.4	<4	0.25	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
14.04.2022	49.1	28.1	15.2	24.5	<4	0.27	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
18.04.2022	50.2	28.4	16.6	25.7	4.9	0.28	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
21.04.2022	52.4	29.7	17.3	26.9	5.3	0.24	<20.0	<4	< 0.5	<2.5	<0.02	<1	< 0.01
25.04.2022	51.8	28.9	15.6	24.5	5.4	0.25	<20.0	-4	< 0.5	-2.5	< 0.02	<1	< 0.01
28.04.2022	50.1	28.4	16.2	25.1	5.3	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
02.05.2022	49.7	27.9	17.8	26.8	<4.0	0.26	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
05.05.2022	51.5	28.8	15.7	24.7	5.6	0.27	<20.0	<4	< 0.5	<2.5	<0.02	<1	< 0.01
09.05.2022	52.1	29.1	14.9	24.4	5.2	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
12.05.2022	49.7	28.2	16.2	25.2	<4	0.26	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
16.05.2022	46.1	25.7	18.1	27.5	<4	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
19.05.2022	50.7	28.3	16.5	25.4	-4.0	0.22	<20.0	-4	-0.5	-2.5	< 0.02	<1	< 0.01
23.05.2022	48.7	27.2	15.2	24.2	5.1	0.27	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
26.05.2022	49.1	27.5	17.4	26.5	5.1	0.26	<20.0	<4	< 0.5	<2.5	< 0.02	<1	< 0.01
30.05.2022	48.9	26.9	16.8	25.3	6.1	0.27	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
02.06.2022	48.8	27.4	15.8	25.3	5.3	0.21	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
06.06.2022	45.2	25.3	17.6	26.8	5.4	0.27	<20.0	<4	<0.5	<2.5	<0.02	4	<0.01
09.06.2022	46.8	26.1	16.3	25.6	5.3	0.23	<20.0	-4	< 0.5	-2.5	< 0.02	<1	< 0.01
13.06.2022	47.3	26.5	15.7	25.2	<4	0.25	<20.0	<4	< 0.5	<2.5	< 0.02	<1	< 0.01
16.06.2022	45.7	25.4	15.4	24.6	5.3	0.23	<20.0	-4	<0.5	~2.5	< 0.02	<1	< 0.01
20.06.2022	45.1	25.2	17.5	26.4	5.2	0.27	<20.0	<4	< 0.5	<2.5	< 0.02	<1	< 0.01
23.06.2022	45.9	25.8	17.4	26.5	5.3	0.29	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
27.06.2022	47.1	26.8	16.5	25.8	4.8	0.21	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
30.06.2022	49.2	27.3	16.2	25.3	5.1	28	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	-
Average	49.1	27.6	16.3	25.5	5.2	0.32	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
Testing method	Gravitastrik	Gravitorizia	Improved West and Cacke wethod	Mutified Jacob & Hothicke 7 (No-	Chemical Method	NDIR Spectroscop y	Indo phenol blue methad	Ahaveption & Description followed by GC enalysis	Select estrectine followed by Cat Chromatogra	AAS method after sampling	AAS method stiter sempling	AAS method after sampling	Zironian SPADNS Method

BDL Values. SO₄<4 µg/m³, NO₈<9 µg/m³, O₄<4 µg/m³, Ni<0.01 ng/m³, As< 0.001 ng/m³, C₉H₅<0.001 µg/m³, BaP<0.002 ng/m³, Pb<0.001 µg/m², F<0.01µg/m²CO-<0.1 mg/m³

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Infrastructure Engineering
 Water Resource Management
 Environmental & Social Study

2.

Surface & Sub-Surface Investigation
 Quality Control & Project Management
 Renewable Energy

Agricultural Development
 Information Technology
 Public Health Engineering

Mine Planning & Design
 Mineral/Sub-Soil Exploration
 Waste Management Services

Laboratory Services Extrement Lab Find Lab Material Lab Sali Lab Miseral Lab & Miseral Lab

Date: 06.07.2022

Ref: VCSPL/22/R-8477

AMBIENT AIR QUALITY MONITORING REPORT

- 1. Name of Industry
 - Sampling Location
- : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

- : Monitoring Station No.- AAQMS-5 : Kapulas
- 3. Monitoring Instruments
- 4. Sample collected by
- VCSPL representative

				1		PAI	RAMETER	RS					
Date	PMm (µg/m ³)	PM2.5 (µg/m ³)	SO ₂ (ug/m ³)	NO _v (µg/m ²)	0, (µg/m²)	CO (mg/m ²)	NH ₅ (ug/m ²)	C ₆ H ₆ (µg/m ³)	BaP (ng/m ²)	Ni (ng/m²)	Pb (µg/m³)	As (ng/m²)	F (µg/m ³)
04.04.2022	50.1	28.4	15.6	24.8	< 4.0	0.15	<20.0	<4	<0.5	<2.5	-0.02	<1	-0.01
07.04.2022	52.4	29.4	15.8	25.1	< 4.0	0.12	<20.0	<4	< 0.5	<2.5	~0.02	<1	~0.01
11.04.2022	51.7	28.9	16.6	25.8	<4.0	0.16	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
14.04.2022	50.4	28.6	16.2	25.6	< 4.0	0.14	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
18.04.2022	51.9	29.1	16.4	25.2	<4.0	0.12	<20.0	<4	⊲0.5	<2.5	<0.02	<1	<0.01
21.04.2022	49.6	28.2	16.8	26.3	< 4.0	0.13	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
25.04.2022	51.3	29.1	17.6	27.1	< 4.0	<0.10	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
28.04.2022	50.7	28.7	17.8	26.9	< 4.0	0.11	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
02.05.2022	49.2	27.5	18.4	27.5	< 4.0	0.13	<20.0	<4	<0.5	<2.5	-0.02	<1	-0.01
05.05.2022	50.7	28.6	18.6	28.1	<4.0	0.15	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
09.05.2022	49.8	28.3	19.5	28.6	< 4.0	0.14	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
12.05.2022	52.9	29.5	19.6	293	<40	012	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
16.05.2022	47.8	26.8	18.8	27.9	<4.0	0.13	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
19.05.2022	51.9	29.2	18.4	27.7	< 4.0	0.12	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
23.05.2022	49.1	27.5	18.6	27.6	< 4.0	0.14	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
26.05.2022	48.9	27.6	20.6	29.5	<4.0	0.12	<20.0	<4	<0.5	25	-0.02	<1	-0.01
30.05.2022	53.4	31.8	21.3	28.3	<4.0	0.12	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
02.06.2022	51.9	29.3	20.8	30.2	<4.0	0.15	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
06.06.2022	50.4	28.4	21.6	30.7	< 4.0	0.13	<20.0	<4	<0.5	<2.5	< 0.02	<	< 0.01
09.06.2022	52.8	30.1	21.8	31.5	< 4.0	0.11	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
13.06.2022	53.1	29.7	22.4	31.4	< 4.0	0.12	<20.0	<4	<0.5	<2.5	~0.02	<1	-0.01
16.06.2022	49.5	27.9	22.6	31.7	< 4.0	0.14	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
20.06.2022	48.7	27.6	23.2	32.5	< 4.0	0.11	<20.0	<4	<0.5	<2.5	-0.02	<1	-0.01
23.06.2022	48.4	27.3	23.8	33.4	< 4.0	0.12	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
27.06.2022	51.8	29.2	23.4	32.7	< 4.0	<0.10	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
30.06.2022	55.2	32.7	22.8	30.7	< 4.0	0.12	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	- 22
Average	50.9	28.8	19.6	28.7	<4.0	0.1	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
Testing method	Gravimetris	Gravinetric	Insproved West and Gaster Saster	Modified Jacob & Nachbriser (Nac Aracenite)	Chemical Method	MDIR Speciascopy	Inde pheaol hitse gasebost	Absorption & Description fellowed by GC unalysis	Solvent extraction followed by Gas Chronwlogr aphy analysis	AAS metüpd after sampling	AAS method after compliag	AAS netbed efter somptug	Zircentum Sl'ADNa Metjind

BDL Values: SO₂<4 μg/m³, NO₂<9 μg/m³,O₃<4 μg/m³, Ni<0.01 ng/m³, As< 0.001 ng/m³, C₆H₆<0.001 μg/m³, BaP<0.002 ng/m³, Pb<0.001 μg/m³, F<0.01μg/m³CO<0.1 mg/m³

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Infrastructure Engineering
 Water Resource Management
 Environmental & Social Study

Surface & Sub-Surface Investigation
 Quality Control & Project Management
 Renewable Energy

Agricultural Development
 Information Technology
 Public Health Engineering

Mine Planning & Design
 Mineral/Sub-Soil Exploration
 Waste Management Services

Laboratory Services Exvironment Lab Food Lab Material Lab Sail Lab Miseral Lab & Miseral Lab & Miseral Lab

Date: 06.07.2022

Ref: VCSPL/22/R-8478

AMBIENT AIR QUALITY MONITORING REPORT

- 1. Name of Industry
- 2. Sampling Location
- : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium): Lapanga
- : Monitoring Station No.- AAQMS-6 : Phulchanghal
- 3. Monitoring Instruments
- : RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler
- Sample collected by
- VCSPL representative

				1.00		P	ARAMETI	ERS					
Date	PM10 (µg/m3)	PM2.5 (ug/m3)	ອີເວຊ (ແຊ/ຫລື່)	NOx (µg/m3)	03 (µg/m3)	CO (mg/m3)	NH3 (µg/m3)	C6H5 (µg/m3)	BaP (ng/m3)	NI (ng/m3)	Pb (µg/m3)	As (ng/m3)	F (µg/m3)
04.04.2022	52.7	29.6	15.8	25.2	<4.0	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
07.04.2022	53.1	29.8	17.1	26.2	<4.0	0.25	<20.0	<4	< 0.5	<2.5	< 0.02	<1	< 0.01
11.04.2022	51.8	29.1	18.2	27.4	<4.0	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
14.04.2022	52.4	29.4	16.8	26.1	<4.0	0.22	<20.0	<4	< 0.5	<2.5	< 0.02	<1	< 0.01
18.04.2022	50.9	28.5	17.6	26.7	<4.0	0.21	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
21.04.2022	52.6	29.7	15.4	24.6	<4.0	0.25	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
25.04.2022	53.2	30.1	16.3	25.5	<4.0	0.27	<20.0	<4	<0,5	<2.5	<0.02	<1	<0.01
28.04.2022	51.7	29.3	17.4	26.7	<4.0	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
02.05.2022	53.6	30.2	15.7	25.2	<4.0	0.23	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
05.05.2022	52.7	29.8	15.9	25.7	<4.0	0.22	<20.0	<4	< 0.5	<2.5	<0.02	<1	<0.01
09.05.2022	51.7	29.3	16.4	25,4	<4.0	0.27	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
12.05.2022	52.8	29.7	17.5	26.4	<4.0	0.24	<20.0	<4	< 0.5	<2.5	< 0.02	<1	< 0.01
16.05.2022	48.1	27.1	19.3	28.5	<4.0	0.26	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
19.05.2022	50.5	28.4	16.7	26.2	<4.0	0.22	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
23.05.2022	52.4	29.3	17.2	26.5	<4.0	0.23	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
26.05.2022	50.2	28.5	16.3	25.5	<4.0	0.21	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
30.05.2022	53.2	30.2	17.1	24.8	<4.0	0.21	<20.0	<4	< 0.5	<2.5	< 0.02	<1	< 0.01
02.06.2022	51.7	28.9	17.3	25.6	<4.0	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
06.06.2022	49.6	27.8	18.1	27.4	<4.0	0.19	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
09.06.2022	53.1	29.7	16.8	26.3	<4.0	0.23	<20.0	<4	< 0.5	<2.5	< 0.02	<1	< 0.01
13.06.2022	52.9	30.1	15.7	25.2	<4.0	0.26	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
16.06.2022	49.1	27.9	16.4	25.7	<4.0	0.27	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
20.06.2022	46.9	26.4	17.8	27.3	<4.0	0.26	<20.0	<4	< 0.5	<2.5	<0.02	<1	< 0.01
23.06.2022	47.5	26.9	18.2	27.5	<4.0	0.28	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
27.05.2022	49.3	27.8	16.9	26.5	<4.0	0.22	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
30.06.2022	50.8	28.2	17.3	15.8	<4.0	0.21	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	
Average	51.3	28.9	17.0	26.2	<4.0	0.2	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
Te⊲ing method	Gravitucture	Gravimente	improved West and Greke nutfied	Madilled Jacob & Horkhelser (Na-Arsenite)	Chemical Method	NDIR Spectroscopy	Indo phenol blae method	Absorption & Description fellowed by GC analysis	Solvent extraction followed by Gas Chromotograp by applace	AAS method after sampling	AAS method after sampling	AAS method giter gampling	Zircnalum SPADAS Method

BDL Values: SO₂< 4 μg/m², NO_x< 9 μg/m³, O₅<4 μg/m³, Ni<0.01 ng/m³, As< 0.001 ng/m³, C₆H₆<0.001 μg/m³, BaP<0.002 ng/m³, Pb<0.001 μg/m³, F<0.01μg/m³CO<0.1 rag/m³

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering Water Resource Management · Environmental & Social Study

2.

4.

 Surface & Sub-Surface Investigation Quality Control & Project Management Reservable Energy

5

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Sell Lab *

Date: 06.07.2022

Laboratory Services Eavironment Lab Food Lab Material Lab Miseral Lab **Microhiology** Lab

Ref: VCSPL/22/R-8479

AMBIENT AIR QUALITY MONITORING REPORT

- Name of Industry 1.
- M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga 1

RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

- Sampling Location
- Monitoring Station No.- AAQMS-7 : Khadiapali
- 3. Monitoring Instruments Sample collected by
- VCSPL representative

						PA	RAMETER	RS					
Date	Ph110 (ug'm ⁵)	Pb12.5 (ug/m²)	\$02 (Jigʻin [*])	NOs (µg/m ³)	03 (µg/m²)	CO (mg/m²)	NH3 (µp/m [*])	CGHs (Jug/m ²)	BaP (ng/m ³)	Ni (ng/m ³)	Pb (µg/m²)	As (ng/m²)	F (µg'm ³)
04.04.2022	57.5	32.3	12.1	21.4	<4.0	0.18	<20.0	<4	<0,5	<2.5	<0.02	<1	<0.01
07.04.2022	55.7	31.6	11.4	20.6	<4.0	0.21	<20.0	-4	< 0.5	<2.5	< 0.02	<1	< 0.01
11.04.2022	54.8	30.9	12.6	21.5	<4.0	0.22	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
14.04.2022	53.6	30.5	13.1	22.3	<4.0	0.24	<20.0	<4	< 0.5	<2.5	< 0.02	<1	< 0.01
18.04.2022	54.1	30.4	12.5	21.8	<4.0	0.27	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
21.04.2022	53.8	30.2	11.9	21.5	<4.0	0.22	<20.0	~4	< 0.5	<2.5	< 0.02	<1	< 0.01
25.04.2022	51.9	29.5	12.8	22.4	<4.0	0.25	<20.0	-4	< 0.5	<2.5	< 0.02	<1	< 0.01
28.04.2022	54.3	30.7	13.2	22.6	<4.0	0.28	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
02.05.2022	52.8	29.8	12.5	21.8	<4.0	0.26	<20.0	<4	< 0.5	<2.5	< 0.02	<1	< 0.01
05.05.2022	51.3	28.6	13.6	22.5	<4.0	0.25	<20.0	-4	<0.5	<2.5	< 0.02	<1	< 0.01
09.05.2022	53.4	30.2	12.7	22.1	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
12.05.2022	54.1	30.7	13.6	22.7	<4.0	0.21	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
16.05.2022	49.2	27.5	12.8	22.3	<4.0	0.28	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
19.05.2022	52.8	29.6	12.5	21.6	<4.0	0.31	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
23.05.2022	53.2	30.1	13.7	21.7	<4.0	0.24	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
26.05.2022	51.7	28.9	12.4	22.9	<4.0	0.25	<20.0	<4	<0.5	<2.5	<0.02	<[< 0.01
30.05.2022	50.8	27.9	13.1	23.4	<4.0	0.25	<20.0	-4	< 0.5	<2.5	< 0.02	<1	< 0.01
02.06.2022	52.4	29.4	12.7	21.7	<4.0	0.27	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
06.06.2022	49.8	28.2	13.1	22.4	<4.0	0.28	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
09.06.2022	\$1.6	28.7	12.6	21.4	<4.0	0.25	<20.0	-4	< 0.5	<2.5	< 0.02	<1	< 0.01
13.06.2022	52.1	29.3	11.9	21.4	<4.0	0.29	<20.0	<4	< 0.5	<2.5	<0.02	<1	< 0.01
16.06.2022	50.2	28.1	13.2	22.6	<4.0	0.26	<20.0	-4	<0.5	<2.5	<0.02	<1	< 0.01
20.06.2022	49,7	27.9	12.4	21.5	<4.0	0.31	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
23.06.2022	52.5	29.6	12.7	22.3	<4.0	0.29	<20.0	-4	<0.5	<2.5	< 0.02	<1	< 0.01
27.06.2022	55.9	31.5	12.1	21.4	<4.0	0.22	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
30.06.2022	57.3	32.8	12.4	22.3	<4.0	0.25	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	-
Average	52.9	29.8	12.7	22.0	<4.0	0.3	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
Testing mothed	Gravittetria	Gravimetric	Improved West and Geake method	Modified Jacob & Hochiteiser (Na-Arsenits)	Chemical Method	NDIR Spectrateopy	Indo pheact blue ontitled	Absorption & Description followed by CC analysis	Selfrent ethnotien felimeti hy Gas Chromologia phy analytie	AAS mothed after sempting	AAS stelled siler sampling	AAS stechod after ssimpling	Ziresuittin SPADNS Victime

BDL Values:SO₂<4 µg/m³, NO₃<9 µg/m³, O₁<4 µg/m³, Ni<0.01 ng/m³, As< 0.001 ng/m³, C₆H₆<0.001 µg/m³, BaP<0.002 ng/m³, Pb<0.001 µg/m³, F<0.01µg/m³ CO<0.1 mg/m³

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering Water Resource Management · Environmental & Social Study

4.

 Surface & Sub-Surface Investigation Quality Control & Project Management Reservable Energy

:

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Eavironment Lab Food Lab Material Lab Sell Lab Miseral Lab * **Microhiology** Lab

Date: 06.07.2022

Ref: VCSPL/22/R-8480

AMBIENT AIR QUALITY MONITORING REPORT

- Name of Industry 1.
- M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

- Sampling Location 2.
- Monitoring Station No.- AAQMS-8 : Thelkolai
- 3. Monitoring Instruments Sample collected by
- VCSPL representative

				1		P	ARAMETE	RS					
Date	PM10 (µg/m3)	PM12.5 (µg/m3)	5O2 (µg/in3)	NOx (ugʻin3)	()3 (µg/m3)	CO (mg/m3)	NH3 (pg/m3)	C6H8 (µg/m3)	BaP (ng/m3)	Ni (ng/m3)	Pb (µg/m3)	As (ng/m3)	F (µg/m3)
04.04.2022	58.4	33.1	17.3	26.5	7.2	0.31	22.4	<4	<0.5	<2.5	< 0.02	<1	< 0.01
07.04.2022	57.4	32.7	18.2	27.4	7.3	0.32	<20	<4	-0.5	<2.5	<0.02	<1	<0.01
11.04.2022	56.9	32.2	17.5	26.8	8,1	0.34	22.8	<4	<0.5	<2.5	<0.02	<1	<0.01
14.04.2022	56.7	31.9	16.6	26.1	7.3	0.33	21.6	<4	<05	<2.5	<0.02	<1	<0.01
18.04.2022	57.4	32.7	18.8	28.2	7.6	0.32	23.4	<4	<0.5	<2.5	<0.02	<1	< 0.01
21.04.2022	59.5	33.8	19.2	28.4	7.4	0.35	23.8	<4	<0.5	<2.5	<0.02	<1	<0.01
25.04.2022	56.7	32.2	20.5	29.8	8.1	0.37	24.6	<4	<0.5	<2.5	<0.02	<1	< 0.01
28.04.2022	55.8	31.7	21.1	30.1	7.9	0.36	22.8	<4	<0.5	<2.5	<0.02	<1	< 0.01
02.05.2022	56.2	31.4	19.2	28.4	8.1	0.32	23.6	<4	<0.5	<2.5	<0.02	<1	< 0.01
05.05.2022	57.5	32.6	19.7	29.2	7.6	0.31	24.8	<4	<0.5	<2.5	<0.02	<1	<0.01
09.05.2022	59.1	33.2	18.4	27.5	7.2	0.35	<20	<4	<0.5	<2.5	< 0.02	<1	< 0.01
12.05.2022	62.4	35.5	17.9	27.3	8.1	0.36	<20	<4	<0.5	<2.5	<0.02	<1	< 0.01
16.05.2022	57.2	32.4	18.4	27.7	7.6	0.38	24.3	<4	<0.5	<2.5	<0.02	<1	< 0.01
19.05.2022	59.6	33.7	17.6	26.8	8.4	0.34	23.8	<4	<0.5	<2.5	<0.02	<1	< 0.01
23.05.2022	59.5	33.2	18.5	27.7	7.6	0.32	23.8	<4	<0.5	<2.5	<0.02	<1	< 0.01
26.05.2022	56.7	32.1	17.3	26.6	7.2	0.33	22.6	<4	<0.5	<2.5	<0.02	<1	<0.01
30.05.2022	56.3	33.1	18.2	26.3	8.1	0.34	23.8	<4	<0.5	<2.5	<0.02	<1	<0.01
02.06.2022	54.2	30,4	18.2	27.5	8.2	0.32	24.9	<4	<0.5	<2.5	<0.02	<1	< 0.01
06.06.2022	52.7	29.8	18.6	27.9	7.8	0.33	<20	<4	-0.5	<2.5	<0.02	<1	<0.01
09.06.2022	53.5	29.9	19.3	28.5	6.8	0.35	23.8	<4	<0.5	<2.5	<0.02	<1	<0.01
13.06.2022	54.1	30.7	20.4	29.6	7.2	0.36	22.6	<4	<0.5	<2.5	<0.02	<1	<0.01
16.06.2022	50.5	28.8	19.7	29.1	7.1	0.37	24.8	<4	<0.5	<2.5	<0.02	<1	<0.01
20.06.2022	51.6	29.1	18.9	28.2	7.7	0.32	26.3	<4	<0.5	<2.5	<0.02	<1	<0.01
23.06.2022	51.9	29.5	20.7	30.1	6.8	0.34	23.5	<4	<0.5	<2.5	<0.02	<1	<0.01
27.05.2022	56.3	31.9	21.2	30.6	7.5	0.31	22.8	<4	<0.5	<2.5	<0.02	<1	< 0.01
30.06.2022	58.2	32.4	22.1	28.6	8,1	0.33	21.8	<4	<0.5	<2.5	<0.02	<1	<0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	-
Average	56.4	31,9	19.0	28.1	7.6	0.3	23.6	<4	<0.5	<2.5	<0.02	<1	<0.01
Testing mathed	Grasimetria	Crayimatriz	Improved West and Genke method	Mindified Looth & Hectbeiger (Na- Alaceite)	Chemical Method	NDIR Speetroscopy	Todo photol blue method	Absorption & Decetyption followed by GC analysis	Selvoar stitaetion follewed by Gas Chromatograp by soalosis	AAS nothed after compliage	AAS method pflee exampling	AAS method after sampling	Ziresaium ŚPADNS Method

BDL Values: SO₂<4 µg/m³, NO₂<9 µg/m³, O₅<4 µg/m³, Ni<0.01 ng/m³, As<0.001 ng/m³, C₆H₆<0.001 µg/m³, BaP<0.002 ng/m³, Pb<0.001 µg/m³, F<0.01µg/m³, CO<0.1 mg/m³

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering Water Resource Management

· Environmental & Social Study

 Surface & Sub-Surface Investigation Quality Control & Project Management Agricultural Development Information Technology

 Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Fout Lab Material Lab Sel Lab Mineral Lab * Mirrabiology Lab

Renewable Energy

Public Health Engineering

Date: 06.07.2022

SURFACE WATER QUALITY ANALYSIS REPORT MAY-2022

- M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga 1. Name of Industry :
- Sampling location

Ref: VCSPL/22/R-8482

- SW-1: Hirakud Reservoir; SW-2: Lapanga Pond; SW-3: Matwadinadi -U/S, :
- SW-4:Bamloi Pond; SW-5: Bhedan river
- 3. Date of sampling

Prepared by:

- 16.05.2022,17.05.2022 :
- 4. Date of analysis
- 17.05.2022 TO 22.05.2022 ç
- 5. Sample collected by VCSPL Representative .

SL.	2 G 💙			as per			Analysis Re	sults	
No.	Parameter	Testing Methods	Unit	15- 2296:1992 Class - 'C'	SW-1	SW-2	SW-3	SW-4	SW-5
1	pH at 25°C	APHA 4500H ⁺ B		6.0-9.0	7.28	7.15	7.68	7.61	7.68
2	Colour	APHA 2120 B. C	Hazen	300	<1.0	<1.0	<1.0	<1.0	<1.0
3	Taste	APHA 2160 C		-	Agreeabl	Agreeabl	Agreeabl	Agreeable	Agreeable
4	Odour	APHA 2150 B	-		Agreeabl	Agreeabl	Agreeabl	Agreeable	Agreeable
5	Turbidity	APHA 2130 B	NTU		4.7	3.9	5.2	4.7	5.5
6	Total Dissolved Solids	APHA 2540 C	mg/l	1500	148	138	132	122	131
7	Total Hardness (as CaCO ₃)	AFHA 2340 C	mg/l	-	70	68	66	64	64
8	Total Alkalinity	APHA 2320 B	mg/l	-	52	62	56	48	52
9	Calcium (as Ca.)	APHA 3500Ca B	me/l	-	20.8	21.6	19.2	20.8	19.2
10	Magnesium (as Mg)	APHA 3500Mg B	mg/l	122	4.4	3.4	4.4	2.9	3.9
11	Residual, free Chlorine	APHA 4500CL B	me/l	-	BDL	BDL	BDL	BDL	BDL
12	Boron (as B)	APHA 4500B, B	me/l	-	<0.1	<0.01	<0.01	<0.01	<0.01
13	Chloride (as Cl)	APHA 4500Cl B	mg/l	600	27	26	28	29	32
14	Sulphate (as SO4)	APHA 4500 SO42 E	mg/l	400	11.8	34.6	17.3	52.3	21.6
15	Fluoride (as F)	APHA 4500F C	mg/l	1.5	0.31	0.22	0.21	0.34	0.28
16	Nitrate (as NO ₃)	APHA 4500 NO, E	mg/l	50	1.28	1.5	1.2	1.4	1.1
17	Sodium as Na	APHA3500-Na	mø/l		8.8	8.9	9.3	8.8	9.2
18	Potassium as K	APHA 3500-K	mg/l	-	2.3	2.6	2.7	2.36	2.3
19	Phenolic Compounds (as C.H.OH)	АРНА 5530 В,D	mg/l	0.005	<0.05	<0.05	<0.05	<0,05	<0.05
20	Cyanide (as CN)	APHA 4500 CN C.D	mg/l	0.05	BDL	BDL	BDL	BDL	BDL
21	Anionic Detergents (as MBAS)	APHA 5540 C	mg/l	1.0	<0.2	<0.2	<0.2	<0.2	<0.2
22	Cadmium (as Cd)	APHA 3111 B.C	nig/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
23	Arsenic (as As)	APHA 3114 B	mg/l	0.2	<0.004	<0.004	<0.004	<0.004	<0.004
24	Copper (as Cu)	APHA 3111 B.C	mg/l	1.5	<0.02	<0.02	<0.02	<0.02	<0.02
25	Lead (as Pb)	APHA 3111 B.C	mg/l	0.1	<0.02	<0.02	<0.02	<0.02	<0.02
26	Manganese (as Mn)	APHA 3500Mn B	mg/l	-	<0.03	<0.03	<0.03	<0.03	<0.03
27	Iron (as Fe)	APHA 3500Fe, B	mg/]	0.5	0.05	0.12	0.04	0.14	0.05
28	Chromium (as Cr**)	APHA 3500Cr B	mg/l	0.05	<0.02	<0.02	<0.02	<0.02	<0.02
29	Selenium (as Se)	APHA 3114 B	mg/l	0.05	<0.001	<0.001	<0.001	<0.001	<0.001
30	Zinc (as Zn)	APHA 3111 B.C	ma/l	15	<0.01	<0.01	<0.01	<0.01	<0.01
31	Aluminium es(Al)	APHA 3500ALB	mg/l	-	<0.1	<0.1	<0.1	<0.1	<0.1
32	Mercury (as Hg)	APHA 3500 Hg	mg/l	-	<0.004	<0.084	<0.004	<0.004	<0.004
33	Mineral Oil	APHA 5220 B	mg/l		<0.001	<0.001	<0.001	<0.001	<0.001
34	Pesticides	APHA 6630 B.C	mg/l		Absent	Absent	Absent	Absent	Absent
35	E.Coli	АРНА 9221-F	MPN/ 100 ml	1.7	Absent	Absent	Absent	Absent	Absent
36	Total Coliforms	APHA9221-B	MPN/ 100 ml	5000	210	280	280	320	280

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511721 E-mail: visiontek@vcspl.org, visiontekin@gmail.com 20

Verified by:

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering Water Resource Management · Environmental & Social Study Surface & Sub-Surface Investigation Quality Control & Project Management Renewable Energy

5

 Agricultural Development Information Technology Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Eastronment Lab Foul Lab Material Lab Sel Lab Mineral Lab * Mirrabiology Lab

Date: 06.07.2022

Ref: VCSPL/22/R-8483

SURFACE WATER QUALITY ANALYSIS REPORT MAY-2022

- 1. Name of Industry
- M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga : :
- Sampling location
- SW-6: Bhedan River Near Katikela; SW-7: Matwadinadi-D/S; SW-8: Hirakud Reservoir Near Gurupali village;
- SW-9: Salepali village Pond; SW-10: Sanamal village Pond 16.05.2022, 17.05.2022
- 3. Date of sampling 4. Date of analysis
- 18.05.2022 TO 24.05.2022 ÷
- 5. Sample collected by
- ÷ VCSPL Representative

SL	Parameter	Testing Methods	Unit	Standards as per IS-2296:1992	92 Anatysis Results			8	
10.			VINS:3.0	Class - 'C'	SW-6	SW-7	SW-8	SW-9	SW-10
1	pH at 25°C	APHA 4500H"B		6.0-9.0	7.29	7.82	7.33	7.28	7.16
2	Colour	APHA 2120 B, C	Hazen	300	<1.0	<1.0	<1.0	<1.0	<1.0
3	Tasto	APHA 2160 C	-	-	Agrecable	Agreeable	Agreeabl e	Agreeabl e	Agreeal
4	Odour	APHA 2150 B	-	-	Agreeable	Agreeable	Agreeabl	Agreeabl c	Agreeal
6	Turbidity	APHA 2130 B	NTU	-	5.8	6.4	6.3	4.8	4.2
7	Total Dissolved Solids	APHA 2540 C	mg/l	1500	139	138	151	108	123
8	Total Hardness (as CaCO ₁)	АРНА 2340 С	mg/l	-	72	70	74	58	64
9	Total Alkalinity	APHA 2320 B	mg/l		54	58	56	68	66
10	Calcium (as Ca.)	APHA 3500Ca B	ing/l		20.0	23.2	22.4	18.4	20.8
11	Magnesium (as Mg)	APHA 3500Mg B	mg/l		5.4	2.9	3.9	2.9	2.9
12	Residual, free Chlorine	APHA 4500CI, B	mg/l	2 	BDL	BDL	BDL	BDL	BDL
13	Boron (as B)	APHA 4500B, B	mg/l		<0.01	<0.01	<0.01	<0.01	<0.01
14	Chloride (ss Cl)	APHA 4500CI B	mg/l	600	38	32	30	61	58
15	Sulphate (as SO4)	APHA 4500 SO42 E	mg/l	400	22.1	18.4	12.4	28.6	25.1
16	Fluoride (as F)	APHA 4500F C	mg/l	1.5	0.32	0.37	0.39	0.38	0.36
17	Nitrate (as NO3)	APHA 4500 NO: E	mg/l	50	2.9	2.4	2.3	3.1	3.4
18	Sodium as Na	APHA 3500-K	mg/l		9.8	9.1	9.2	9.3	8.8
19	Potessium as K	APHA3500-Nn	mg/l	-	2.9	2.7	2.8	3,1	2.8
20	Phenolic Compounds (as CoH5OH)	APHA 5530 B.D	mg/l	0.005	<0.05	<0.05	<0.05	<0.05	<0.05
21	Cyanide (as CN)	APHA 4500 CN C,D	mg/l	0.05	BDL	BDL	BDL	BDL	BDL
22	Anionic Detergents (as MBAS)	APHA 5540 C	mg/l	1.0	<0.2	<0.2	<0.2	<0.2	<0.2
23	Cadmium (as Cd)	APHA 3111 B,C	mg/l	0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01
24	Arsenic (as As)	APHA 3114 B	mg/l	0.2	<0.004	<0.004	< 0.004	<0.004	<0.00
25	Copper (as Cu)	APHA 3111 B,C	mg/l	1.5	<0.02	<0.02	<0.02	<0.02	<0.02
26	Lead (as Pb)	APHA 3111 B,C	mg/l	0.1	<0.02	<0.02	< 0.02	<0.02	<0.02
27	Manganese (as Mn)	APHA 3500Mn B	mg/l	-	<0.03	<0.03	< 0.03	<0.03	<0.03
28	Iron (as Fe)	APHA 3500Fe, B	mg/l	0.5	0.04	0.06	0.06	0.11	0.13
29	Chromium (as Cr ⁻⁴)	APHA 3500Cr B	mg/l	0.05	<0.02	<0.02	<0.02	<0.02	<0.02
30	Selenium (as Se)	APHA 3114 B	mg/l	0.05	<0.001	<0.001	<0.001	<0.001	<0.00
31	Zinc (as Zn)	APHA 3111 B,C	mg/l	15	<0.01	<0.01	<0.01	<0.01	<0.01
32	Aluminium as(Al)	APHA 3500ALB	mg/l	-	<0.1	<0.1	<0.1	<0.1	<0.1
33	Mercury (as Hg)	APHA 3500 Hg	nig/l		<0.004	< 0.004	< 0.004	< 0.004	<0.00
34	Mineral Oil	APHA 5220 B	mg/l	-	<0.001	<0.001	<0.001	<0.001	<0.00
35	Pesticides	APHA 6630 B.C	mg/l	-	Absent	Absent	Absent	Absent	Absen
36	E.Coli	АРНА 9221-F	MPN/ 100 ml	1.00	Absent	Absent	Absent	Absent	Abser
37	Total Coliforms	APHA9221-B	MPN/	5000	280	350	220	330	400

isiontek Consultancy Services Pvt. Ltd (Committed For Better Environment)

Certified for : 15O 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering Water Resource Management Environmental & Social Study Surface & Sub-Surface Investigation Quality Control & Project Management Renewable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Naterial Lab Soil Lab Mineral Lah 4 Microbiology Lab

Ref: VCSPL/22/R-8495

Date: 07.06.2022

GROUND WATER LEVEL MONITORING REPORT MAY-2022

 Name of Industry Sampling Location 	 M/s Hindalco Industries Limited (Unit-Aditya Aluminium), Sambalpur GW-1:Near Ash Pond, GW-2:Near Proposed Pond, GW-3:Near RR Colony, GW-4: Ash Pond Area Bore well 	
3. Date of Sampling	: 23.05.2022	
4. Monitoring By	: VCSPL Representative	

SL No.	Date of sampling	Name of Unit Location		Water Level
01	23.05.2022	GW1	Mbgl	1.2
02	23.05.2022	GW2	Mbgl	7.9
03	23.05.2022	GW3	Mbgl	1.8
04	23.05.2022	GW4	Mbgl	4.9

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Infrastructure Engineering
 Water Resource Management
 Environmental & Social Study

Surface & Sub-Surface Investigation
 Quality Control & Project Management
 Renewable Energy

Agricultural Development
 Information Technology
 Public Health Engineering

Mine Planning & Design
 Mineral/Sub-Soil Exploration
 Waste Management Services

Laboratory Services Eavisement Lab Food Lab Material Lab Sali Lab Miseral Lab Miseral Lab Miseral Jab

Date: 06.07.2022

Ref: VCSPL/22/R-8481

NOISE MONITORING REPORT MAY 2022

1. Name of Industry : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Monitored By : VCSPL representative in presence of Aditya Aluminium representative

Day	time	Noise	monitoring	results (Noise	Level in	dB	(A)	MAY	22
		the second s	and the second of the second se	and the second se		and the second se		_	the local division of the second second	

TIME (6.00AM to 9.00PM)	N1:Gumkarma (09.05.2022)	N2:Ghichamura (10.05.2022)	N3:Bomaloi (12.05.2022)	N4:Tileimal (16.05.2022)	N5:Thelkoli (18.05.2022)	N6:Khadiapali (19.05.2022)	N7:Kapilas (26.05.2022)	N8:Phulchanghal (30.05.2022)
06.00am	45.8	46.3	45.8	46.3	48.3	50.3	45.8	48.3
07.00am	46.3	46.8	46.9	46.5	49.6	51.8	46.2	48.3
08.00am	48.2	47.3	48.3	47.3	50.2	51.6	48.9	49.6
09.00am	50.6	48.2	49.8	49.8	51.8	52.8	48.3	50.8
10.00am	52.8	51.6	52.8	49.2	52.3	53.4	49.6	51.6
11.00am	49.6	52.3	55.6	50.8	53.8	52.8	50.4	52.8
12.00 noon	48.3	51.8	52.8	52.6	54.6	55.6	50.6	55.9
01.00pm	52.3	54.6	54.9	54.7	55.2	56.8	52.8	55.4
02.00pm	50.3	52.8	53.9	55.3	55.8	58.4	53.4	56.3
03.00pm	48.6	53.6	58,9	54.8	56.8	59.6	54.6	54.8
04.00pm	50.8	55.8	56.7	56.7	53.8	58.7	55.8	55.9
05.00pm	49.6	52.6	55.8	57.3	56.7	56.2	56.3	56.3
06.00pm	51.3	53.4	54.3	52.8	55.8	57.2	52.8	52.8
07.00pm	52.8	52.8	56.7	53,4	52.3	55.8	49.3	48.6
08.00pm	49.3	50.8	51.8	51.3	51.6	52.6	48.5	52.4
09.00pm	52.4	49.3	48.3	50.4	50.9	51.8	47.6	49.3
Average	49.9	51.3	52.7	51.8	53.1	54.7	50.7	52.4
Standard as per CPCB				55				tra tatinga

Night time Noise monitoring results (Noise Level in dB (A) MAY 22

TIME (10.00PM to 5.00AM)	N1:Gumkarma (0º.05.2022)	N2:Chichamura (10.05.2022)	N3:Bomaloi (12.05.2022)	N4:Tileimal (16.05.2022)	N5:Thelkoli (18.05.2022)	N6:Khadiapali (19.05.2022)	N7:Kapilas (26.05.2022)	N8:Phulchanghal (30.05.2022)
10.00pm	47.2	48.6	46.8	46.3	46.8	48.6	45.8	47.3
11.00pm	48.3	46.3	45.8	44.5	45.8	46.5	44.6	45.8
12.00 Midnight	46.5	42.8	44.3	42.8	44.3	44.2	44.2	45.3
01.00am	43.5	41.8	42.8	41.3	44.8	43.8	40.2	43.9
02.00am	42.6	41.6	42.6	41.8	44.9	43.2	40.8	42.3
03.00am	42.4	41.3	42.8	41.7	43.5	43.6	40.6	41.8
04.00am	41.8	42.5	43.5	42.3	44.2	44.8	41.8	42.9
05.00am	43.8	43.4	44.6	43.8	44.3	44.3	42.3	44.2
Average	44.5	43.5	44.2	43.1	44.8	44.9	42.5	44.2
Standard as per				. 45	5			

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Infrastructure Engineering
- Water Resource Management Environmental & Social Study
- Surface & Sub-Surface Investigation Quality Control & Project Management

÷

2

Þ

Renewable Energy

- Agricultural Development
 - Information Technology Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Environment Lab Food Lab Material Lab Soil Lab Mineral Lab Microbiology Lab

Laboratory Services

Date: 06.07.2022

Ref: VCSPL/22/R-8484 GROUND WATER QUALITY ANALYSIS REPORT MAY-2022 1.

Name of Industry M/sHindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga.

- 2. Sampling location
- GW-1: Lapanga Village; GW-2: Pandoloi Village; GW-3:Bamloi Village; GW-4: Tilaimal Village
- 3. Date of sampling
- 16.05.2022
- 4. Date of analysis Sample collected by 5.
- 17.05.2022 TO 22.05.2022
- VCSPL Representative :

SI.	Parameter	Testing Methods	Unit	Standar IS -195 Amended on	rd as per 00:2012 2015 & 2018	Analysis Resu		Result	ult	
Tea-	1 SP28089285-1	C.800.00.000.000	1111000	Permissible Limit	Permissible Limit	GW-I	GW-2	GW-3	GW-4	
1	pH Value at 25°C	APHA 4500H'B	- 22	6.5-8.5	No Relexation	7.32	7.24	7.36	7.41	
2	Colour	APHA 2120 B. C	Hazen	5	15	CL	CL	CL	CL	
3	Taste	APHA 2160 C		Agrecuble	Agrecable	Agreeable	Agreeable	Agrecable	Agreeable	
4	Odour	APHA 2150 B	-	Agreeable	Agreeable	Agreeable	Agrecable	Agrecable	Agreeable	
5	Turbidity	APHA 2130 B	NTU	1	5	<1.0	<1.0	<1.0	<1.0	
6	Total Dissolved Solids	APHA 2540 C	ing/l	500	2000	242	281	208	211	
7	Total Hardness (as CaCO ₃)	APHA 2340 C	mg/i	200	600	89	79	80	78	
8	Total Alkalinity	APHA 2320 B	mg/l	200	600	82	78	92	85	
9	Calçium (aş Ca)	APHA 3500Ca B	mg/l	75	200	30.4	31.2	26.4	27.2	
10	Magnesium (as Mg)	APHA 3500Mg B	mg/l	30	100	5.4	5.9	5.4	4.4	
11	Residual, free Chlorine	APHA 4500CI, B	mg/l	0.2	1	ND	ND	ND	ND	
12	Boron (as B)	APHA 4500B, B	mg/l	2.4	No Relaxation	<0.1	<0.1	<0.1	<0.1	
13	Chloride (as CL)	APHA 4500CI B	mg/l	250	1000	25.4	26.3	27.4	25.3	
14	Sulphate (ay SO ₄)	APHA 4500 SQ4 ³ E	mg/l	200	400	4.2	4.9	5.3	5.8	
15	Fluoride (as F)	APHA 4500F C	ing/l	1.0	1.5	0.21	0.28	0.26	0.34	
16	Nitrate (88 NO3)	APHA 4500 NOs E	mg/l	45	No Releastion	2.8	3.2	3.3	2.8	
17	Sodium as Ne	APHA3500-Ne	mg/l	-	-	15.4	14.3	15.3	13.8	
18	Potassium as K.	APHA 3500-K	mg/l			3.6	3.2	3.9	4.2	
19	Phenolic Compounds (as CsH3OH)	APHA 5530 B,D	mg/l	0.001	0.002	-0.001	<0.001	0.001	<0.001	
20	Cyanide (as CN)	APHA 4500 CN C.D	mg/l	0.05	No Releastion	<0.01	<0.01	<0.01	<0.01	
21	Anionic Detergents (as MBAS)	APHA 5540 C	mg/l	0.2	1.0	<0.2	<0,2	<9.2	<0.2	
22	Cadmium (as Cd)	APHA 3111 B.C	mg/l	0.003	No Relaxation	<0.01	<0.01	<0.01	<0.01	
23	Arsenic (as As)	APHA 3114 B	mg/l	0.01	No Relazation	<0.004	< 0.004	<0.004	<0.004	
24	Copper (as Cu)	APHA 3111 B,C	eng/l	0.05	1.5	<0.02	~0.02	<0.02	<0.02	
25	Lead (as Pb)	APHA 3111 B.C	ring/1	0.01	No Relaxation	<0.02	<0.02	<0.02	<0.02	
26	Manganeve (as Mn)	APHA 3500Mn B	nng/l	0.1	0.3	<0.03	<0.03	<0.03	<0.03	
27	Iron (as Fe)	APHA 3500Fe, B	mg/l	1	No Relaxation	0.14	0.13	0.18	0.14	
28	Chromium (as Cr)	APHA 3500Cr B	mg/l	0.05	No Relexation	<0.05	<0.05	<0.85	<0.05	
29	Selenium (as Se)	APHA 3114 B	mg/l	0.01	No Relaxation	<0.001	<0.001	<0.001	<0.001	
30	Zine (as Zn)	APHA 3111 B,C	ang/l	5	15	<0.01	<0.01	<0.61	<0.01	
31	Aluminium as(Al)	APHA 3500ALB	mg/l	0.03	0.2	<0.1	<0.1	<0.1	<0.1	
32	Mercury (as Hg)	APHA 3500 Hg	mg/l	0.001	No Relaxation	<0.004	<0.004	<0.004	<0.004	
33	Mineral Oil	APHA 5220 B	mg/l	0.5	No Relaxation	<0.001	<0.001	<0.001	<0.001	
34	Pesticides	APHA.6630 B,C	mg/l	Absent	1000	Abseat	Absent	Absent	Absent	
35	E.Cali	APHA 9221-F	MPN/ 100 ml	Shall not be detectable in any 100 ml sample	4 <u>82</u> 4	Absent	Absent	Absent	Absent	
36	Totel Coliforns	APHA9221-B	MPN/ 100 ml	Shall not be detectable in any 100	1.773	<1.1	<1.1	⊲.i	<1.1	

Note: CL: Colorless, AL: Agrecuble, ND: Not Dete

an Prepared By DIAN

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Infrastructure Engineering
- Water Resource Management
- Environmental & Social Study
- Surface & Sub-Surface Investigation Quality Control & Project Management Renewable Energy

÷

- Agricultural Development Information Technology
 - Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Environment Lab Food Lab Material Lab Soil Lab Mineral Lab Microbiology Lab

Laboratory Services

Date: 06.07.2022

Ref: VCSPL/22/R-8485

GROUND WATER QUALITY ANALYSIS REPORT MAY-2022

- Name of Industry M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga. 1.
- 2. Sampling location
- GW-5: Thelkoloi Village ,GW-6: Ghichamura Village , GW-7: Gumkarma Village, GW-8: Chalatikra Village
- 3. Date of sampling
 - 2 Date of analysis D
- 4. Sample collected by 5.
- 16.05.2022, 17.05.2022
- 18.05.2022 TO 23.05.2022
- VCSPL Representative 5

SL Na.	Parameter	Testing Methods	Unit	Standart IS -1050 Amended on 2	1 as per 0:2012 2015 & 2018		Analysis	Result	
		6650		Permissible Limit	Permissible Limit	GW-5	GW-6	GW-7	GW-8
1	pH Value at 25°C	APHA 4500HTB	-	6.5-8.5	No Relaxation	7.28	7.33	7.42	7.29
2	Colour	APHA 2120 B. C	Hazen	5	15	CL	CL	CL	CL
3	Taste	APHA 2160 C	-	Agreeable	Agreesble	Agreesble	Agreeable	Agreeable	Agreeable
4	Odour	APHA2510-B	us/cm	Agreeable	Agreeable	Agreesble	Agroeable	Agreeable	Agreeablo
5	Turbidity	APHA 2130 B	NTU	1	5	<1.0	<1.0	<1.0	<1.0
6	Total Dissolved Solids	APHA 2540 C	mg/l	500	2000	234	203	214	218
7	Total Hardness (as CaCO ₃)	APHA 2340 C	ung/I	200	600	80	81	79	82
8	Total Alkalinity	APHA 2320 B	ing/l	200	600	86	94	97	89
9	Calcium (as Ca)	APHA 3500Ca B	mg/l	75	200	29.6	26.4	28.8	29.6
10	Magnesium (es Mg)	APHA 3500Mg B	ing/l	30	100	3.9	4,4	5.9	6.3
11	Residual, free Chlorine	APHA 4500C1, B	ing/l	0.2	1	ND	ND	ND	ND
12	Boron (as B)	APHA 4500B, B	me/l	2.4	No Relaxation	<0.1	<0.1	<0.1	<0.1
13	Chloride (as Cl.)	APHA 4500CT B	mg/l	250	1000	25.9	26.4	26.9	24.8
14	Sulphate (as SO ₄)	APHA 4500 SO," E	mg/l	200	400	4.9	5.8	4.7	6.2
15	Fluoride (as F)	APHA 4500F C	mg/l	1.0	1.5	0.28	0.32	0.29	0.37
16	Nitrate (as NO ₃)	APHA 4500 NO: E	mg/l	45	No Relaxation	2.9	3.2	2.8	3.1
17	Sodium as Na	APHA3500-Ne	mg/l	_	=	14.3	11.3	13.2	13.8
18	Potessium as K	APHA 3500-K	mg/l	-		3.8	6.4	6.2	4.9
19	Phenolic Compounds (as C.H.OH)	АРНА 5530 B.D	mg/l	0.001	0.002	<0.001	<0.001	<0.001	<0.001
20	Cyanide (as CN)	APHA 4500 CN C.D	ma/l	0.05	No Relaxation	<0.01	<0.01	<0.01	<0.01
21	Anionic Detergents (as MBAS)	APILA 5540 C	mg/l	0.2	1.0	<0.2	<0.2	<0.2	<0.2
22	Cadmium (as Cd)	APHA 3111 B,C	mg/l	0.003	No Relaxation	<0.01	<0.01	<0.01	<0.01
23	Arsenic (as As)	APHA 3114 B	mg/l	0.01	No Relaxation	<0.004	<0.004	<0.004	<0.004
24	Copper (as Cu)	APHA 3111 B,C	ma/i	0.05	1.5	<0.02	<0.02	<0.02	<0.02
25	Lead (as Pb)	APHA 3111 B.C	mg/l	0.01	No Relaxation	<0.02	<0.02	<0.02	<0.02
26	Manganese (as Mn)	APHA 3500Min B	mg/l	0.1	0.3	<0.03	< 0.03	<0.03	<0.03
27	Iron (as Fe)	APHA 3500Fe, B	mg/l	1	No Relaxation	0.12	0.19	0.15	0.17
28	Chromium (us Cr)	APRIA 3500Cr B	mg/l	0.05	No Relaxation	<0.05	<0.05	<0.05	<0.05
29	Selections (as Se)	APRA 3114 B	mg/l	0-01	No Relaxation	<0.001	<0.001	<0.001	<0.001
30	Zinc (as Zn)	APHA 3111 B,C	ing/l	5	15	<0.01	<0.01	<0.01	<0.01
31	Aluminium as(Al)	APHA 3500AI B	mg/l	0.03	0,2	<0.1	<0.1	<0,1	<0.1
32	Mercury (as Hg)	APHA 3500 Hg	mg/l	0.001	No Relaxation	<0.004	<0.004	<0.004	<0.004
33	Mineral Oil	APHA 5220 B	mg/l	0.5	No Relaxation	<0.001	<0.001	<0.001	<0.001
34	Pesticides	APHA 6630 B.C	mg/l	Absent	-	Absent	Absent	Absent	Absent
35	E.Çoli	APHA 9221-F	/MPM/ Im 001	Shall not be detectable in any 100 nel sample	(c 	Absent	Absent	Absent	Absent
36	Total Coliforms	АРНА9221-В	MPN/ 100 ml	Shall out be detectable in any 100 wil savanie	(<u>a</u>)	<1.1	<1.1	<1.1	<1.1

Note: CL: Colorleys, AL: Agreeable, ND: Not Detected.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering Water Resource Management

Environmental & Social Study

 Surface & Sub-Surface Investigation • Quality Control & Project Management Renewable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lub Mineral Lab & Microbiology Lab

Ref: VCSPL/22/R-8490

Date: 06.06.2022

SOIL QUALITY ANALYSIS REPORT MAY 2022

1. Name of Industry 2. Date of Sampling

M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga 2

- 2 25.05.2022
- 3. Sampling Location
- S-1: Project Site; S-2: Thelkoloi; S-3: Ghichamura; 2
- S-4: Lapanga; S-5: Bamloi 26.05.2022 T0 02.06.2022 1
- 4. Date of Analysis 5.
 - Sample Collected By 2 VCSPL representative

SI.	Parameters	Unit	S-1	S-2	S-3	S-4	S-5
1	P ^H at 25 ^u C		7.08	6.92	7.28	7.14	7.33
2	Conductivity		131	124	125	152	131
3	Soil Texture	-	Sandy Loamy	Clay Loamy	Clay Loamy	Sandy Loamy	Sandy Loamy
4	Sand	%	52.3	21.3	22.8	51.2	48.3
5	Silt	9/6	15.9	25.6	27.1	20,5	22.4
6	Clay	%	31.8	53.1	50.1	28.3	29.3
7	Bulk Density	gm/cc	1.82	1.37	1.61	1.48	1.64
8	Exchangeable Calcium as Ca	%	34.8	32.6	38.6	32.8	41.6
9	Exchangeable Magnesium as Mg	%	51.8	55.3	52.8	56.3	57.3
10	Available Sodium as Na	%	0.022	0.034	0.028	0.041	0.034
11	Available Potassium as K	%	0.058	0.061	0.058	0.051	0.054
12	Available phosphorous as P	%	0.028	0.027	0.025	0.022	0.038
13	Available Nitrogen as N	%	0.34	0.31	0.25	0.36	0.31
14	Organic Matter	%	3.8	6.4	4.2	3.3	4.8
15	Organic Carbon as OC	%	1.81	1.42	1.56	1.68	1.72
16	Water soluble Chlorides as Cl	%	0.28	0.38	0.26	0.22	0.32
17	Water soluble Sulphates as SO4	%	0.18	0.16	0.28	0.24	0.19
18	Sodium Absorption Ratio	%	0.00012	0.00014	0.00016	0.00013	0.00018
19	Aluminium as Al	%	0.078	0.051	0.49	0.075	0.068
20	Total Iron as Fe	%	0.0028	0.0022	0.0028	0.0033	0.0021
21	Manganese as Mn	%	0.0002	0.00021	0.00029	0.00028	0.00022
22	Boron as B	%	0.00036	0.00028	0.00029	0.00031	0.00028
23	Zinc as Zn	%	6.2	5.8	7.8	6.9	7.7
24	Silica as SiOs	%	0.051	0.058	0.051	0.048	0.044
25	Ferric Oxide as Fe ₂ O ₃	%	30.6	31.4	31.8	32.6	31.6
26	Calcium Oxide as CaO	%	25.8	26.3	23.8	24.6	22.8
27	Magnesium Oxide as MgO	%	0.00005	0.0001	0.00021	0.00025	0.00023
28	Aluminium Oxide as Al ₂ O ₃	%	0.041	0.028	0.061	0.034	0.033
29	Iron Oxide as FeO	%	0.0051	0.0023	0.0016	0.0025	0.0044
30	Manganese Oxide as MnO	%	0.0512	0.0441	0.0428	0.0512	0.052
31	Potassium Oxide as K ₂ O	%	0.0086	0.0084	0.0081	0.0079	0.0098
32	Phosphorus Oxide as P2O5	%	0.00062	0.00041	0.00032	0.00043	0.00058
22	Fluoride as F	0/4	7.08	69501	7 19	7.14	7.22

P. Propared by: JIAN

Environmental & Social Study

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Accredited by : NABET-A Grade, MOEF & C
 Infrastructure Enginering
 Water Resource Management
 Ouality Control & Project Management
 Information T

Agricultural Development
 Information Technology
 Public Health Engineering

Mine Planning & Design
 Mineral/Sub-Soil Exploration
 Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab & Microal Lab & Microbiology Lab

Ref: VCSPL/22/R-8491

Date: 06.06.2022

SOIL QUALITY ANALYSIS REPORT MAY 2022

Name of Industry
 Date of Sampling

: M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

Date of Sampling : 25.05.2022

23

Renewable Energy

- 3. Sampling Location
- : S-6: Tileimal; S-7: Jangala; S-8: Gurupali; S-9: Gumkarama; S-10: Bhadarpali.
- 4. Date of Analysis
- 26.05.2022 TO 02.06.2022
- 5. Sample Collected By
- : VCSPL representative

SL. No.	Parameters	Unit	S-6	S-7	S-8	S-9	S-10
1	P ^H at 25 ^u C		7.38	7.24	6.796	7.38	7.34
2	Conductivity		135	122	138	124	115
3	Soil Texture		Clay Loamy	Sandy Loamy	Sandy Loamy	Sandy Loamy	Clay Loamy
4	Sand	%	22.3	45.2	43.6	48.2	25.6
5	Silt	%	15.3	17	18.2	17.2	19.1
6	Clay	%	62.4	37.8	38.2	34.6	55.3
7	Bulk Density	gm/cc	1.68	1.74	1.34	1.56	1.82
8	Exchangeable Calcium as Ca	%	42.6	43.8	42.8	48.3	41.8
9	Exchangeable Magnesium as Mg	%	52.4	51.8	57.3	62.4	58.9
10	Available Sodium as Na	%	0.028	0.029	0.031	0.036	0.028
11	Available Potassium as K	%	0.048	0.049	0.052	0.048	0.054
12	Available phosphorous as P	%	0.026	0.021	0.023	0.024	0.032
13	Available Nitrogen as N	%	0.34	0.36	0.38	0.25	0.22
14	Organic Matter	%	4.2	3.8	4.1	3.9	3.8
15	Organic Carbon as OC	%	1.54	1.76	1.78	1.77	1.28
16	Water soluble Chlorides as Cl	%	0.38	0.34	0.33	0.41	0.39
17	Water soluble Sulphates as SO4	%	0.23	0.28	0.19	0.21	0.19
18	Sodium Absorption Ratio	%	0.00014	0.00013	0.00022	0.00021	0.00014
19	Aluminium as Al	%	0.061	0.058	0.066	0.051	0.051
20	Total Iron as Fe	%	0.0024	0.003	0.0028	0.0021	0.0032
21	Manganese as Mn	%	0.00022	0.00022	0.00029	0.00035	0.00022
22	Boron as B	%	0.00027	0.00029	0.00026	0.00018	0.00032
23	Zinc as Zn	%	6.9	7.6	6.8	7.1	6.9
24	Silica as SiO ₂	%	0.031	0.038	0.036	0.047	0.042
25	Ferric Oxide as Fe2O3	%	29.6	31.4	30.8	31.6	32.3
26	Calcium Oxide as CaO	%	22.9	29.6	29.6	20.8	25.6
27	Magnesium Oxide as MgO	%	0.00041	0.00037	0.00024	0.00023	0.00027
28	Aluminium Oxide as Al ₂ O ₃	%	0.0186	0.0181	0.0185	0.021	0.0212
29	Iron Oxide as FeO	%	0.0025	0.0022	0.0022	0.0011	0.0022
30	Manganese Oxide as MnO	%	0.0411	0.0426	0.051	0.0381	0.0483
31	Potassium Oxide as K ₂ O	%	0.0082	0.0091	0.095	0.0094	0.0081
32	Phosphorus Oxide as P2O5	%	0.00046	0.00038	0.00025	0.00031	0.00024
33	Fluoride as F	%	7.38	7.24	6.79.00	11.7.38	7.34

P. Prepared by:

Visiontek Consultancy Services Pvt. Ltd. (Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering Water Resource Management Environmental & Social Study

 Surface & Sub-Surface Investigation • Quality Control & Project Management Renewable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Date: 06.07.2022

Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Laboratory Services

Ref: VCSPL/22/R-8486

FORAGE FLUORIDE ANALYSIS REPORT MAY 2022

1	Name of Industry	*	M/s Hindalco Industries Ltd, (Unit-Aditya Aluminium); Lapanga	
2	Date of Sampling		25.05.2022 & 26.05.2022	
3	Date of Analysis	1	27.05.2022 TO 29.05.2022	
4	Name of the Sample	:	Vegetation Sample	
5	Sample Collected By	4	VCSPL Representative	

Date of Sampling	Name of the Location	Type of Species	Scientific Name	Method of Analysis	Result (PPM)
25.05.2022	Bomaloi	Bela Tree, Rice Plant	Aegle marmelo. Oryza Sativa	AOAC 975.04	1.8
25.05.2022	Gurupali	Duba Ghasa, Neem Tree	Cynodon dactylo, Azadirachta Indica	AOAC 975.04	1.4
26.05.2022	Plant Site	Sisu Tree, Duba Ghasa	Dalbergia sissoo, Cynodon dactylon	AOAC 975.04	2.8
25.05.2022 Thelkolai		Bamboo Tree, Rice Plant	Pongame oil tree, Cynodon dactylon	AOAC 975.04	1.7
26.05.2022	Gumukarma	Bamboo Tree, Rice Plant	Bambusoideae, Oryza Sativa	AOAC 975.04	2.1
26.05.2022	Ghichamura	Baulakoli Tree, Rice Plant	Mimusops elengi, Oryza Sativa	AOAC 975.04	1.2
26.05.2022	Tileimal	Rice Plant, Duba Ghasa	Oryza Sativa, Cynodon dactylon	AOAC 975.04	1.3
26.05.2022	Lapanga	Neem tree, Rice Plant	Azadirachta indica, Oryza Sativa	AOAC 975.04	2.1
25.05.2022	Jangala	Duba Ghasa, Rice Plant	Cynodon dactylon, Oryza Sativa	AOAC 975.04	1.1
25.05.2022	Bhadrapali	Karanj Tree, Duba Grass, Rice Plant	Pongame oil tree, Cynodon dactylon, Oryza Sativa	AOAC 975.04	1.2

Visiontek Consultancy Services Pvt. Ltd. (Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering Water Resource Management Environmental & Social Study

 Surface & Sub-Surface Investigation • Quality Control & Project Management Renewable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Date: 07.09.2022

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lab

Ref: VCSPL/22/R-8492

FORAGE FLUORIDE ANALYSIS REPORT AUGUST 2022

1	Name of Industry		M/s Hindalco Industries Ltd, (Unit-Aditya Aluminium); Lapanga	
2	Date of Sampling		24.08.2022 & 25.08.2022	
3	Date of Analysis	1	26.08.2022 TO 30.08.2022	
4	Name of the Sample	:	Vegetation Sample	
5	Sample Collected By	4	VCSPL Representative	

Date of Sampling	Name of the Location	Type of Species	Scientific Name	Method of Analysis	Result (PPM)
24.08.2022	Bomaloi	Bela Tree, Rice Plant	Aegle marmelo. Oryza Sativa	AOAC 975.04	1.6
24.08.2022	Gurupali	Duba Ghasa, Neem Tree	Cynodon dactylo, Azadirachta Indica	AOAC 975.04	1.8
25.08.2022	Plant Site	Sisu Tree, Duba Ghasa	Dalbergia sissoo, Cynodon dactylon	AOAC 975.04	2.3
25.08.2022	Thelkolai	Bamboo Tree, Rice Plant	Pongame oil tree, Cynodon dactylon	AOAC 975.04	1.6
24.08.2022	Gumukarma	Bamboo Tree, Rice Plant	Bambusoideae, Oryza Sativa	AOAC 975.04	2.4
24.08.2022	Ghichamura	Baulakoli Tree, Rice Plant	Mimusops elengi, Oryza Sativa	AOAC 975.04	1.5
25.08.2022	Tileimal	Rice Plant, Duba Ghasa	Oryza Sativa, Cynodon dactylon	AOAC 975.04	1.2
25.08.2022	Lapanga	Neem tree, Rice Plant	Azadirachta indica, Oryza Sativa	AOAC 975.04	2.4
25.08.2022	Jangala	Duba Ghasa, Rice Plant	Cynodon dactylon, Oryza Sativa	AOAC 975.04	1.2
24.08.2022	Bhadrapali	Karanj Tree, Rice Plant	Pongame oil tree, Oryza Sativa	AOAC 975.04	1.4

Visiontek Consultancy Services Pvt. Ltd. (Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Infrastructure Engineering

Water Resource Management

Environmental & Social Study

 Surface & Sub-Surface Investigation • Quality Control & Project Management Renewable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab 80 **Microbiology** Lab

Ref: VCSPL/22/R-8488

Date: 06.06.2022

ASH ANALYSIS REPORT-MAY 2022

: 23.05.2022

- 1. Name of Industry
- : M/s Hindalco Industries Limited

(Unit- Aditya Aluminium), Lapanga. : FA-01: CPP Fly Ash Silo

- 2. Sampling Location
- Date of Sampling 3. 4.
 - Date of Analysis
- Sample Collected By 5.
- : 24.05.2022 TO 02.06.2022 : VCSPL Representative in presence of Aditya Aluminium Representative.

SI. No.		11-14	Analysis Results FA-01	Unit	Analysis Results FA-01
	Parameters	Unit			
Chemical	l Analysis			10. 1	
1	Na ₂ O	%	0.21	mg/kg	2100
2	MgO	%	0.92	mg/kg	9200
3	Al ₂ O ₃	%	21.8	mg/kg	218000
4	SiO ₂	%	51.3	mg/kg	513000
5	P ₂ O ₅	%	0.023	mg/kg	230
6	SO3	%	2.3	mg/kg	23000
7	K ₂ O	%	0.81	mg/kg	8100
8	CaO	%	4.3	mg/kg	43000
9	TiO ₂	%		mg/kg	<i></i>
10	MnQ	%	0.21	mg/kg	2100
11	Fe ₂ O ₁	%	9.3	mg/kg	93000
Heavy M	etals Analysis				
1	Mercury as Hg	%	<0.001	mg/kg	< 0.001
2	Arsenic as As	%	< 0.001	mg/kg	< 0.001
3	Lead as Pb	%	0.0162	mg/kg	162
4	Chromium as Cr	%	< 0.002	mg/kg	< 0.002
5	Vanadium as V	%	<0.001	mg/kg	<0.001
6	Iron as Fe	%	5.384	mg/kg	53840
7	Cobalt as Co	%	<0.001	mg/kg	< 0.001
8	Copper as Cu	%	0.068	mg/kg	680
9	Nickel as Ni	%	0.088	mg/kg	880
10	Zinc as Zn	%	0.0534	mg/kg	534
11	Strontium as Sr	%	-	mg/kg	-
12	Barium as Ba	%	< 0.001	mg/kg	< 0.001

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering Water Resource Management

Environmental & Social Study

 Surface & Sub-Surface Investigation • Quality Control & Project Management Renewable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Laboratory Services Environment Lab Food Lab

Material Lab Soil Lab

Mineral Lab

80 **Microbiology** Lab

Ref: VCSPL/22/R-8489

3.

Date: 06.06.2022

ASH ANALYSIS REPORT-MAY 2022

1. Name of Industry

: M/s Hindalco Industries Limited

2. Sampling Location

- (Unit- Aditya Aluminium), Lapanga. : BA-01: CPP Bottom Ash Silo
- Date of Sampling
- Date of Analysis 4. Sample Collected By 5.
- : 23.05.2022
- : 24.05.2021 TO 02.06.2022
- : VCSPL Representative in presence of Aditya Aluminium Representative.

CL Mr.	Bassantan	L'att	Analysis Results	Unit	Analysis Results BA-01
SI. No.	Parameters	Unit	BA-01		
Chemical	Analysis				
1	Na ₂ O	%	0.24	mg/kg	2400
2	MgO	%	2.7	mg/kg	27000
3	Al ₂ O ₃	%	26.4	mg/kg	264000
4	\$iO ₂	%	48.2	mg/kg	482000
5	P ₂ O ₅	%	0.025	mg/kg	250
6	SO3	%	11.2	mg/kg	112000
7	K ₂ O	%	0.94	mg/kg	9400
8	CaO	%	31.8	mg/kg	318000
9	TiO ₂	%	0	mg/kg	
10	MnO	%	0.34	mg/kg	3400
11	Fc ₂ O ₃	%	7.5	mg/kg	75000
leavy Me	etals Analysis				
1	Mercury as Hg	%	<0.001	mg/kg	<0.001
2	Arsenic as As	%	<0.001	mg/kg	<0.001
3	Lead as Pb	%	0.0155	mg/kg	155
4	Chromium as Cr	%	< 0.002	mg/kg	< 0.002
5	Vanadium as V	%	<0.001	mg/kg	<0.001
6	Iron as Fe	%	6.2	mg/kg	62000
7	Cobalt as Co	%	<0.001	mg/kg	<0.001
8	Copper as Cu	%	0.028	mg/kg	280
9	Nickel as Ni	%	0.091	mg/kg	910
10	Zinc as Zn	%	0.0672	mg/kg	672
11	Strontium as Sr	%		mg/kg	-
12	Barium as Ba	%	<0.001	mg/kg	<0.001

