

Letter No: AAP/E&S/EC/2023/ 1009

Date: 22/11/2023

The Director Eastern Regional Office Ministry of Environment & Forests A/3, Chandrashekharpur Bhubaneswar – 750 023 (Odisha)

Sub: Submission of Six Monthly Compliance from April'23 to September'23.

Ref: Environmental Clearance Letter No: J-11011/136/2009-IA. I (I), dated 29/11/2012, J-11011/136/2009-IA. II (I), dated 14/06/2013, J-11011/136/2009-IA. II (I), dated 14/08/2018, J-11011/136/2009-IA. I (I) dated 20/07/2020 & J-11011/136/2009-IA. II (1) dated 12/08/2022.

Dear Sir,

As a part of the compliance to the Environmental Clearance accorded by MoEF&CC to Aditya Aluminium for 0.72 MTPA Smelter and 1650 MW CPP at Lapanga in Sambalpur district, please find enclosed herewith the six monthly compliance reports of aluminium smelter and captive power plant for the speriod April'23 to September'23.

Kindly acknowledge receipt of the reports.

Thanking You

Yours faithfully For Aditya Aluminium

Samer Nayah

(Sameer Nayak) President & Unit Head

Copy for kind information to:

1. The Member Secretary, SPCB, Bhubaneswar

- 2. The Regional Director, Zonal office of CPCB, Kolkata
- 3. The Regional Officer, SPCB, Sambalpur

Hindalco Industries Limited

Aditya Aluminium : At/P.O.: Lapanga, District : Sambalpur, Odisha, India T: +91663 2536 247 | Fax: +91663 2536 499 | E: hindalco@adityabirta.com | W: www.hindalco.com Registered Office: One International Center, Tower 4, 21st Floor, Senapati Bapat Marg, Prabhadevi, Mumbai 400 013 Tel: +9122 6691 7000 | Fax: + 91 222 6691 7001 Corporate ID No.: L27020MH1958PLC011238

Name of the Project		:	M/s. Aditya Aluminium (A Division of Hindalco Industries Ltd.) at village: Lapanga, Tehsil: Rengali, District: Sambalpur (Odisha).	
Environment Clearance Letter No and date :		:	J-11011/136/2009-IA-I(I), dated 29 th November 2012, letter no. J-11011/136/2009-IA II (I), dated 14 th June 2013 and EC amendment letter no. J- 11011/136/2009-IA.II (I), 14 th August 2018, 20 th July 2020 & 12 th August 2022. For 7,20,000 TPA Aluminium Smelter & 1650 MW	
Period	d of Compliance Report	:	April 2023 to September 2023	
Sr. No.	Specific Conditions		Compliance Status	
i)	The streams passing through the project site s not be disturbed w.r.t their quantity and qu of flow.	shall ality	The streams passing through the project site is not being disturbed.	
ii)	Alumina shall be obtained from those refine which have been accorded environme clearance by the Ministry of Environment Forests.	ries, ental and	 Alumina is being obtained from refineries which have been accorded environmental clearance. Present, the Alumina is being obtained fro Utkal Alumina International Limited (UAII Rayagada Distt. and it has been accorded environmental clearance from MoEFCC. We have kept an option of importing Alumina case of any shortage in supply from the above source. 	
iii)	The gaseous emissions (PM, SO ₂ , NOx, PAH, VOCs and Fluoride) from various process us shall confirm to the standards prescribed by concerned authorities from time to time. SPCB may specify more stringent standards the relevant parameters keeping in view nature of the Industry and its size and locat At no time the emissions level should go bey the prescribed standards. In the event of fai of any pollution control system adopted by unit, the respective unit should not be resta until the control measures are rectified achieve the desired efficiency. The particulate emissions from the bake of plant shall not exceed 50 mg/Nm ³ .	HC, units the The for the tion. vond lure the tred to von	OnlineMonitoringequipmentshavebeeninstalled at the outlet of following stacks for monitoring of particulate matter and gaseous emissions. The online data has been connected to the Servers of OSPCB and CPCB.a)Smelter GTC 1 & 2- 2 Nos. b)b)Smelter FTC 1 & 2 - 2 Nos. c)c)CPP Unit 1 to 6- 6 Nos.Particulate matter emission from the bake oven does not exceed the prescribed limit of 50 mg/Nm3. The summarized monitoring report w.r.t. particulate matter emission from April 2023 to September 2023 in Anode baking Furnace stacks is stated below:StackPM Emission (mg/Nm3) attached to (Min) (Max) FTC # 13.45.14.2FTC # 23.64.23.8The monitoring report of Fume treatment Plant	

		stacks is attached as Annexure-1 .			
iv)	Particulate fluoride emissions should not be more than 0.65 mg/Nm3 and fugitive particulate fluoride emissions from pot room should not be more than 1.85 mg/Nm ³ .	 Online monitoring equipment at Gas Treatmer Centre (GTC) and Fume Treatment Centre (FTC installed for monitoring of Hydrogen Fluorid (HF), Particulate Matter (PM). The particulate fluoride emission from the gas treatment system is within the prescribed standard. The summarized report from April 2023 the September 2023 is stated below: 		Gas Treatment nt Centre (FTC) rogen Fluoride The particulate eatment system standard. The pril 2023 to	
		Stack attached to	Particu	llate Fluor (mg/Nr	ide Emission n3)
			(Min)	(Max)	(Avg)
		GTC # 1	0.10	0.12	0.11
		GTC # 2	0.10	0.11	0.11
		The average fugitive particulate fluorid emission from pot rooms during April 2023 t September 2023 is 0.035 kg/ton of meta produced. The monitoring reports of Gas Treatment Centre stacks is attached as Annexure-2 . The poly aromatic hydrocarbons (PAH) from th carbon plant (anode bake oven) are bein monitored on monthly basis and found withi the standard. (Ref: Annexure 1).		ulate fluoride g April 2023 to 'ton of metal	
				eatment Centre	
v)	The poly aromatic hydrocarbons (PAH) from the carbon plant (anode bake oven) should not exceed 2 mg/Nm ³ . The data on PAH should be monitored quarterly and report submitted regularly to the Ministry/Regional Office at Bhubaneswar and SPCB.			(PAH) from the en) are being d found within	
vi)	 In plant, control measures like fume extraction and dust extraction system for controlling fugitive emissions from all the materials handling/transfer points shall be provided to control dust emissions. Fugitive Fluoride emissions from the pot room and in the forage around the smelter complex and the data submitted regularly to the Ministry Regional Office at Bhubaneswar and SPCB. 	Fume Extraction Centre (FTC) in Anode Bakin furnace, Gas Treatment Plant (GTC) in potlin and bag filters in raw material handling, GA Anode Baking, Roding areas, bath recyclin carbon recycling area, butts recycling are cathode sealing shop etc in smelter area ar coal handing, ash handling plant in captiv power plant is installed to control fugitive du emissions. Online Roof Top Monitoring analyzer installed for Fugitive fluoride (HF) monitoring in potroom the concentration of hydrogen fluoride (H varies between 0.100 mg/m3 to 0.243 mg/m and average is 0.161 mg/m3 during April 2023 September 2023. The daily average emission report during these period is attached Annexure-3 .		Anode Baking GTC) in potlines handling, GAP, bath recycling, recycling area, elter area and ant in captive ol fugitive dust	
	Further dry scrubbing system to control the emissions from the pot lines should be provided.			zer installed for g in potrooms, fluoride (HF) o 0.243 mg/m3 ng April 2023 to erage emission s attached as	
		⊦orage fluoride	e analysi	s around	the smelter is

		being carrie concentratio August 2023	ed out on quarterly on of the forage fluor 3) are listed below:	basis and the ide (analysed in
		Location	Species	Fluoride (in ppm)
		Bomaloi	Aegle marmelos, Oryza Sativa,	1.7
		Gurupali	Cynodon dactylon, Azadirachta Indica	1.4
		Plant Site	Dalbergia Sissoo, Cynodon dactylon	2.1
		Thelkolai	Pongame oil tree, Cynodon dactylon	1.5
		Gumukarma	Bambuso ideade, Oryza Sativa	2.9
		Ghichamura	Mimusops elengi, Oryza Sativa	1.4
		Tileimal	Oryza Sativa, Cynodon dactylon	1.2
		Lapanga	Azadirachta Indica Oryza Sativa	1.8
		Jangala	Cynodon dactylon, Oryza Sativa,	1.2
		Bhadrapali	Pongame oil tree , Oryza Sativa,	1.4
		Dry scrubbi treatment c pot room to	ng system is being p entre (GTC) to each o control fugitive emis	provided as gas f the pots in the sion.
vii)	Electrostatic Precipitators (ESP) will be provided to Captive Power Plant (CPP) to control particulate emissions below 50 mg/Nm3. The company shall provide bag filters, dry scrubbing system and dust suppression system to	Electrostation efficiency in (CPP) to res mg/Nm ³ . Two nos.	c Precipitators (ESP s installed in Captiv strict particulate emis of Gas Treatment) of adequate re Power Plant ssions within 50 Centre (GTC)
	control all the emissions including fluoride emissions from all melting and casting units. Tar, Dust and fluoride in the fumes shall be controlled in baking furnace by providing dry scrubber. The emissions shall conform to the standards prescribed by the Ministry CPCB/SPCB whichever is more stringent.	provided a Besides, Ba handling & treatment c Baking Furr gaseous ar during Anoc	nd connected to e g filters installed in a transfer points in centre (FTC) provided naces to treat the ta nd particulate fluor de Baking.	ach 180 pots. all the material Smelter. Fume to each Anode ar fumes, dust, ides generated
		The standar SPCB is bein	ds prescribed by the g adhered.	Ministry/ CPCB/
		The results units from stated below	of the stack emissio April-2023 to Sept w:	n from the CPP tember-2023 is

		CPP Stack	PM E	mission (n	ng/Nm3)
			(Min)	(Max)	(Avg)
		CPP 1	40.4	43.4	42.0
		CPP 2	43.6	46.2	44.6
		CPP 3	39.2	44.2	41.6
		CPP 4	42.1	45.2	43.2
		CPP 5	40.6	44.2	42.3
		CPP 6	40.2	43.6	42.2
viii)	Provision for installation of FGD shall be provided	Provision has	been kept	for Installa	tion of FGD and
	for future use.	Will be utilize	e for the p	roposed F	GDs near to the
		system has h	een comple	tod in CDD	Unit-6
ix)	Three tri-flue and one hi-flue stack of 275 m		imbers of	tri-flue st	tacks of 275 m
	height with flue gas velocity not less than 22 m/s	height is inst	alled in nh	ase-L ano	ther two nos of
	shall be installed and provided with continuous	stacks will be	e installed	during Pha	se-ll
	online monitoring equipment's for SO ₂ , NO ₂ , and				
	PM ₁₀ .	Continuous	emission r	nonitoring	system (CEMS)
		installed for	monitorin	g of SO ₂ , I	NOx, and PM in
		all the stack	s of CPP a	nd the vel	ocity of the exit
		flue gas is be	eing mainta	ined abov	re 22 m/s.
x)	Adequate dust extraction system such as	Dust extrac	tion syste	ems (DE),	Dry fog dust
	cyclones/ bag filters and water spray system in	suppression	(DFDS) &	Rain gun v	water sprinkling
	dusty areas such as in coal handling and ash	systems are	installed in	n coal har	Idling plant and
	nandling points, transfer areas and other	asn nandling	system of	Captive Po	ower Plant.
	vulnerable dusty areas shall be provided.				
XI)	Utilization of 100% fly ash generated shall be	Ash generat	ed from	CPP is be	eing utilized by
	made from 4" year of operation. Status of	heans of su	ipplying to	Pargarh	atech Cements,
	Office of the Ministry from time to time	Baigangpur	for comen	, Daigaili t manufac	allu IVI/S UCL,
		are supplivir	$\sigma \Delta sh to$	the hrick	manufactures
		used in owr	n fly ash h	rick unit a	and utilizing for
		developmen	t of low ly	ving areas	with ash inside
		the plant p	remises w	ith the pr	ior approval of
		SPCB. Odish	a. The lo	w-lving a	reas are being
		filled-up wi	th Ash as	per the	Guideline for
		Reclamation	Low Lyin	g Areas a	and Abandoned
		Quarries wit	h Ash of SF	CB, Odish	a.
			f a a la sussiti		the newled for
		The status of ash utilization for the period fro		ctated balance	
		Particulars	Septemb		Stated DelOW:
		Total ach g	anaratod	`	260111 7
			tilicod		760050 /
		Ash Litilizat	tion (%)		88 48 %
					00.4070
		Details of the ash utilization from April-2023 to			
		September-2	2023 is atta	iched as A	nnexure- 4.
xii)	Fly ash shall be collected in dry form and storage	Fly ash & bo	ottom ash	are collec	ted in dry from

	facility (silos) shall be provided. Unutilized ash shall be disposed-off in the ash pond in the form of slurry. Mercury and other heavy metals (Ag, Hg, Cr, Pb etc) will be monitored in the bottom ash and also in the effluent emanating from the existing ash pond. No ash shall be disposed-off in low lying area.	and 3x2500 MT Fly ash silo and 1x3000 MT bottom ash silo have been installed. We are exploring maximum utilization of Ash and unutilized ash is being discharged to the Ash pond through High Concentration Slurry Disposal (HCSD) system, which is the most environment friendly conveying system at present. Monitoring of Mercury and other heavy metals (Ag, Hg, Cr, Pb etc) is being done for the fly ash and bottom ash. The analysis report is enclosed as Annexure-5 .
		The ash filling in the low lying area inside the plant premises is being carried out in line with the guideline for disposal/utilization of fly ash for reclamation of Low Lying Areas and in stowing of Abandoned mines/Quarries. (Ref: CPCB guideline published in March 2019).
xiii)	Fluoride (as F) consumption shall be less than 10 kg/ton of Aluminium produced as specified by the CREP.	The specific fluoride (as F) consumption for the period April-2023 to September-2023 is 7.95 kg/ton of Aluminium produced.
xiv)	Anode butts generated from the pots shall be cleaned and recycled to the Anode Plant. The spent pot lining generated from the smelter shall be properly treated in spent pot lining	Anode butts generated from the pots is being cleaned and recycled completely for making green anode in green anode plant. The Carbon part of SPL is being supplied to M/s
	treatment plant to remove fluoride and cyanide and disposed-off in secured landfill. The location and design of the land fill site shall be approved by the SPCB as per the Hazardous	Green Energy Resources, Sambalpur & M/s Regrow Transo Pvt. Ltd. Jharsuguda for reprocessing/detoxification and in this way the carbon part is completely recycled.
	Waste (Management, Handling and Trans- boundary Movement) Rules, 2008. Leachate collection facilities shall be provided to the secured land fill facilities (SLF).	M/s ReSustainability Ltd has established the facility for detoxification and disposal of SPL refractory as per the protocol given by CPCB in its CHW-TSDF at kanchichuhan, Dist- Jajpur site. SPL refractory part is being disposed in
	The dross shall be recycled in the cast house.	CHWTSDF. Around 12607.75 MT SPL Refractory part and 1717.9 MT Carbon part is in stock till
	STP sludge shall be utilized as manure for greenbelt development.	end of September- 2023 and kept inside the well-ventilated permanent covered sheds for disposal to CHW-TSDF/Actual users.
	All the used oil and batteries shall be sold to the authorized recyclers/ re-processors.	Permission has been received from SPCB for SPL refractory/fine mix dust supplied to authorized cement plants for co-processing in cement kiln.
		We are exploring for disposal of SPL fine mix dust/refractory to cement plants for coprocessing in cement kiln.

		The location and design of the land fill site has been prepared as per the Hazardous Waste (Management, Handling and Trans-boundary Movement) Rules, 2008 and approved from SPCB.
		The dross recycling is being done in the inhouse dross processing unit /partly selling to authorized recyclers and the residue generated from dross processing unit is being sent to OSPCB authorized recyclers for Alum/synthetic slag making.
		STP is in operation at township & Plant area separately, the sludge generated is being used for gardening/greenbelt development.
		The used oil and batteries are being sold/supplied to authorized recyclers/reprocessors only.
xv)	As proposed, spent pot lining waste shall also be provided to cement and steel industries for further utilization.	The Carbon part of SPL is being supplied to M/s Green Energy Resources , Sambalpur & M/s Regrow Transo Pvt. Ltd. Jharsuguda.
		Permission has been received from SPCB for SPL refractory/fine mix dust supplied to authorized cement plants for co-processing in cement kiln.
		We are exploring for disposal of SPL fine mix dust/refractory to cement plants for coprocessing in cement kiln. SPL refractory/fine mix dust disposal to cement plants will be started soon.
xvi)	Ash pond shall be lined with HDP/LDPE lining or any other suitable impermeable media such that no leachate takes place at any point of time. Adequate safety measures shall also be implemented to protect the ash dyke from getting breached. Ash pond water shall be recirculated and reused.	The ash pond has been lined with HDPE liner and adequate safety measures have been taken to minimize the risk to the ash dyke. The ash be disposal through HCSD system has been implemented. The decanted water from the ash pond is being completely recycled and reused for ash disposal.
		The existing ash pond over an area of 37 acres having fly ash quantity 9.44 lakh MT has been reclaimed. Certificate of closure and reclaimation has been received from SPCB vide letter no. 14036/IND-I-CON-6120 dated 04-09-2023.
		An emergency ash pond has been developed over an area of 30 acres adjacent to existing

		pond as per the design & drawings provided by NIT-Rourkela and is in operation.
xvii)	Cycle of concentration (CoC) of 5.0 shall be adopted.	We are maintaining the average CoC of cooling tower above 5.
xviii)	Regular monitoring of ground water shall be carried out by establishing a network of existing wells and constructing new piezometers.	Regular monitoring of ground water is being carried out through establishing a network of existing wells and constructing two nos new piezometer wells near ash pond areas and the analysis report is enclosed as Annexure-6 .
	Monitoring around the ash pond area shall be carried out particularly for heavy metals (Hg, Cr, As, Pb) and records maintained and submitted to the regional office of this Ministry. The data so obtained should be compared with the baseline data so as to ensure that the ground water quality is not adversely affected due to the project.	Monitoring of heavy metals (Hg, Cr, As, Pb) around the Ash pond area is being carried and record maintained. Please refer Annexure-5 for the analysis report.
xix)	Regular ground water monitoring shall be carried out by installing peizometers all around the secured land fill site in consultation with the SPCB, Central Ground Water Authority and State Ground Water Board and data submitted to the Ministry's Regional Office and SPCB.	Secured landfill (SLF) has not yet been established inside the plant. Therefore, ground water quality monitoring shall be carried out after establishment of the SLF.
xx)	Total water requirement for the expansion from Hirakud Reservoir shall not exceed 5,200 m3/hr and prior permission for the existing and proposed expansion shall be obtained from the concerned department before commissioning of the plant.	No additional fresh water will be sourced from Hirakud Reservoir for the proposed expansion. The water requirement estimated for the expansion is within 52.73 cusec, as approved. The Effluent from the cooling towers and de- mineralization plant is being treated in Double
	All the effluent including from the cooling tower and de-mineralization plant shall be treated in the effluent treatment plant and treated effluent	Stage RO based effluent treatment plant and is being reused/reutilized in the process of CPP.
	shall be recycled/reutilized in the process in smelter and CPP and also for fire protection, dust suppression, greenbelt development etc.	Separate Sewage Treatment Plant (STP) is installed @ capacity 25 m ³ /hr for Smelter & Captive Power Plant, STP of 300 KLD capacity is installed at Township area and the treated water
	Domestic effluent shall be treated in sewage treatment plant (STP) and treated domestic waste water will be used for greenbelt development.	being used for greenbelt development.
xxi)	No effluent shall be discharged outside the premises of smelter during non-monsoon period and shall be discharged during the monsoon period only after treatment and meeting the norms of the OSPCB/CPCB.	We are operating a Double Stage Reverse Osmosis based effluent treatment plant (ETP) of 300 m ³ /hr capacity and therefore no effluent water is being discharged to outside without treatment from Smelter.
xxii)	Greenbelt of adequate width and density around the project site shall be developed in 33% area in	Aditya Aluminium has developed 33% Greenbelt over an area of 1098 acres inside the plant, ash

	consultation with the DFO as per the CPCB	pond area and township areas. Around 7,38,030
	guidelines having density of 2,000 trees/Ha.	saplings planted till September 2023.
xxiii)	Occupational Health Surveillance of the workers	Occupational Health Surveillance of the workers
	should be done on a regular basis and records	is being done as per the Odisha Factories Act.
. .	maintained as per the Factories Act.	
XXIV)	The company shall develop rain water structures	Rain water recharging arrangement is being
	In the township area for recharge of ground	made in the township buildings, besides a rain
	Water Authority/Reard	been developed incide the township area. A rain
		water harvesting scheme has been submitted to
		CGWA for approval vide our letter no
		AA/F&F/EC/2016/131. dated 09/04/2016.
xxv)	Rehabilitation and Resettlement Action Plan as	Rehabilitation and Resettlement Action Plan is
,	prepared and submitted to the State Govt. shall	being implemented as per the R & R policy, 2006
	be implemented as per the R & R Policy of the	of the State Govt.
	State Government.	
	All the recommendations mentioned in the R&R	All the recommendations mentioned in the R&R
	Plan shall be strictly followed including suitable	plan are being followed/complied.
	employment and other facilities to all the	
	oustees.	
xxvi)	All the recommendations made in the Charter on	All the conditions of CREP guideline for
	Corporate Responsibility for Environment	Aluminium sector is being followed. The point
	Protection (CREP) for the Aluminium Sector shall	wise compliance to the CREP guideline is
	be strictly implemented.	The company has adopted a well laid down
XXVII)	corporate policy and identified and designate	Corporate Environment Policy The Environment
	responsible officers at all levels of its hierarchy	policy has been revised and approved by the
	for ensuring adherence to the policy and	Board on 9^{th} August 2022. The copy of the
	compliance with environmental clearance,	revised environment policy is attached as
	environmental laws and regulations.	Annexure-8.
xxviii)	All the commitments made to the public during	All the commitments made to the public during
	public hearing /public consultation meeting held	public hearing/public consultation meeting held
	on 2 th march 2012 should be satisfactorily	on 2 nd march 2012 is being complied. (Status of
	implementing the same should be allocated and	Implementation is enclosed as Amexile-9).
	information submitted to the Ministry's Regional	
	Office at Bhubaneswar.	
xxix)	At least 5% of the total cost of the project shall	The expenses under Enterprise Social
	be earmarked for towards the Enterprise Social	Commitment (ESC) till September-2023 is Rs
	Commitment and item-wise details along with	68.17 Crores.
	time bound action plan should be prepared and	The details of the expenditure made under
	submitted to the Ministry's office at	Enterprise Social Commitment (FSC) till
	should be obsured accordingly in a time bound	September-2023 is attached as Annexure-10
	manner	
XXX)	The company shall provide housing for	The construction activities are completed after
,	construction labour within the site with all	the plant is installed & commissioned. However,

	necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP, safe drinking water, medical health care, crèche etc. the housing may be in the form of temporary structures to be ensured accordingly in a time bound manner.	in case of any construction & maintenance activities from time to time we are providing all necessary infrastructure and facilities to the workers as per rules & guidelines.
xxxi)	The company shall submit within three months their policy towards Corporate Environment Responsibility which should inter-alia address (i) standard operating process/procedure to being into focus any infringement/deviation/violation of environmental or forests norms/ conditions (ii) Hierarchical system or administrative order of the company to deal with environmental issues and ensuring compliance to the environmental clearance and (iii) system of reporting of non- compliance/violation environmental norms to the Board of Directors of the company and/or stakeholders or shareholders.	The Corporate Environment Policy prepared and approved by the company Board of Directors, Organizational Structure for Hindalco Corporate Environment, Deployment of Corporate Policy in manufacturing Plants & communication of Policy as regards Corporate Environment is already submitted to MoEF&CC.
	GENERAL CONDITIONS	
i)	The project authorities must strictly adhere to the stipulations made by the OSPCB and the State Government.	We have been following the stipulations made by OSPCB and the State Government. The compliance to CTO conditions is being submitted to OSPCB as per requirement.
ii)	No further expansion or modification in the plant shall be carried out without prior approval of the Ministry of Environment and Forests.	We will not carry out any expansion or modification in the plant without prior approval of MoEFCC.
iii)	The gaseous emissions from various process units shall conform to the load/mass based standards notified by this Ministry on 19 th May, 1993 and standards prescribed from time to time. The SPCB may specify more stringent standards for the relevant parameters keeping in view the nature of the industry and its size and location.	We have noted and accepted the stipulated condition.
iv)	At least four number of ambient air quality monitoring stations shall be established in the downward direction as well as where maximum ground level concentration of SPM, SO ₂ and NO _x are anticipated in consultation with the OSPCB. Data on ambient air quality and stack emission should be regularly submitted to this Ministry including its Regional Office at Bhubaneswar and Orissa State Pollution Control Board once in Six months.	Installation of four (04) CAAQM Stations completed and commissioned. Data connectivity established with the servers of OSPCB and CPCB. Installation of the continuous stack emission monitoring system in all the major stacks completed. All the CAAQMS & CEMS synchronized with the webserver of the SPCB & CPCB. Six-monthly compliance along with the monitoring data is being submitted to the concerned authorities regularly.
v)	The overall noise levels in and around the plant area should be kept well within the standards (85 dBA) by providing noise control measures	The overall noise levels in and around the plant area is within the prescribed standards and it is being made possible by providing noise control

-			
		including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels should conform to the standards prescribed under EPA Rules, 1989 viz 75 dBA (daytime) and 70 dBA (nighttime).	measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The overall noise level is within the standard, regular monitoring is being done. All necessary PPEs are provided to the workers and engineers working in the factory.
	vi)	Occupational Health Surveillance of the workers should be done on a regular basis and records maintained as per the Factories Act.	Occupational Health Surveillance of the workers is being done as per the Factories Act.
	vii)	The company shall develop surface water harvesting structures to harvest the rain water for utilization in the lean season besides recharging the ground water table.	The company has developed surface water harvesting structures to the tune of 22 lakhs cum to store water in the lean season and it will harvest the rain water during rainy season in the same reservoirs.
	viii)	The project proponent shall also comply with all the environmental protection measures and safeguards recommended in the EIA report. Further the company must undertake socio- economic development activities in the surrounding villages like community development programmes, drinking water supply and health care etc.	We have noted and accepted all the conditions and will comply in a time bound manner. The economic development activities are going on regularly as a part of our corporate social responsibility. A team of personnel working dedicatedly for peripheral development work like conducting health camps, community developed programmes, formation SHG groups, supply of drinking water and other common infrastructural development works. Details of the CSR, R&R activities undertaken is attached as Annexure-11 .
	ix)	Requisite fund shall be earmarked towards capital cost and recurring cost/annum for environment pollution control measures to implement the conditions stipulated by the Ministry of Environment & Forests as well the State Government. An implementation schedule for implementing all the conditions stipulated herein shall be submitted to Regional Office of the Ministry at Bhubaneswar. The funds so provided shall not be diverted for any other purpose.	Requisite fund was allocated and has been spent towards capital cost and recurring cost/annum is also allotted & spent for environment pollution control measures & environmental management in each year.
	x)	A copy of the clearance letter shall be send by the proponent to concerned Panchayat, Zillaparishad/Municipality corporation, urban local body and the local NGO, if any from whom suggestions/representations, if any, were received while processing the proposal. The clearance letter also be put on the web site of the company by the proponent.	Copy of the clearance letter has already been communicated to all concerned as mentioned in the condition. Scanned copy of the letter is also displayed in our official website.
	xi)	The project proponent shall upload the status of compliance of the stipulated environment	The status of compliance to the EC conditions is being submitted to the Regional office of the

	clearance conditions including results of	MOFE regularly on 1 st June and 1 st Dec
	monitoring data on their website and shall	respectively with a conv to CPCB & OSPCB and
	update the same periodically. It shall	the same is being uploaded into the Company
	simultaneously be sent to the Regional Office of	website.
	the MoEF at Bhubaneswar. The respective zonal	(http://www.hindalco.com/sustainability/regulat
	office of CPCB and SPCB. The criteria pollutant	orv-compliances).
	levels namely' PM10. SO2. NOx (ambient levels	<u></u> ,-
	as well as stack emissions) or critical sectoral	All the stack emission and ambient air
	parameters, indicated for the project shall be	monitoring stations are synchronized with the
	monitored and displayed at a convenient location	webserver of the SPCB & CPCB. The online
	near the main gate of the company in the public	monitoring data w.r.t. stack emission, ambient air
	domain.	quality and effluent water quality is being
		digitally displayed at main entrance gate for
		information to the public.
xii)	The project proponent shall also submit six	We are submitting the six monthly compliance
	monthly reports on the status of the compliance	reports of the stipulated environmental
	of the stipulated environmental conditions	conditions (both in hard & soft copies as well as
	including results of monitoring data (both in hard	by e-mail) to the Regional Office of MOEF, the
	& soft copies as well as by e-mail) to the Regional	respective Zonal Offices of CPCB and the SPCB.
	Office of MUEF, the respective Zonal Offices of	Before 1 st June and 1 st December every year.
	Vinistry at Phylonogyar CPCP (SPCP shall	Further, we are also submitting the EC
	monitor the stipulated conditions	compliance reports through Parivesh Portal
		accordance to MoEFCC office memorandum
		dated-14 th June 2022.
		The monitoring data carried out through NABL
		Accredited Laboratory in respect of AAQ, water,
		soil, noise etc is enclosed as Annexure-12.
xiii)	The environmental statement for each financial	The environmental statement for each financial
	year ending 31 st March in Form-V as is mandated	year ending 31 st March in Form-V is being
	to be submitted by the project proponent to the	submitted to the concerned authorities of SPCB
	concerned State Pollution Control Board as	and MoEF. Last environmental statement report
	prescribed under the Environment (protection)	has been submitted vide our letter no.
	Rules, 1986, as amended subsequently, shall also	AA/E&S/EC/2023/979, dated 12.09.2023.
	be put on the website of the company along with	
	the status of compliance of environmental	
	conditions and shall also be sent to the	
	respective Regional Office at Bhubaneswar by e-	
viv	Mall.	Information to Dublic has been made through
xiv)	that the project has been accorded	advertisement of the environmental clearance in
	environmental clearance by the Ministry and	two widely circulated daily newspapers in "The
	conjes of the clearance letter are available with	New Indian Express ⁷ on 04-12-2012 & "The
	the SPCB and may also be seen at website of the	Samaja" on 05-12-2012, within seven days of
	Ministry of Environment & Forest at	receiving the clearance letter.
	http/www.envfor.nic.in. This shall be advertised	
	within seven days from the date of issue of the	The copy of the advertisement was submitted to
	clearance letter, at least in two local newspapers	the Ministry's Regional Office at Bhubaneswar

	that are widely circulated in the region of which	vide our office letter no. AAP/E	&F/786, dated 07-
	one shall be in the vernacular language of the	12-2012.	
	locality concerned and a copy of the same should		
	be forwarded to the Regional office at		
	Bhubaneswar.		
xv)	The authorities shall inform the regional office as	Financial closure for Phase-1	of the Project is
	well as the Ministry, the date of financial closure	completed on 17 th Septem	ber 2012 and
	and final approval of the project by the	Construction activities for Phase	e-I completed and
	concerned authorities and the date of	operating 360 pots out of 360) pots in Smelter
	commencing the land development work.	and 6 units (6x150 MW) in CPP.	
Sr.N	EC Amendmnet Additional Conditions	Compliance Stat	us
i)	The project proponent shall develop in-house facilities for treatment of Spent Pot Lining (SPL) generated in the Aluminium smelter. Meanwhile,	We have applied for issue establish (CTE) for the proposed screening unit at aditya alumini	of consent to d SPL crushing & um. The crushed
	Refractory part may be sent to CHWTSDF as per	SPL will be supplied to authorize	ed cement plants
	the provisions of Hazardous and Other Waste	for co-processing in cement kiln	
	Amendment Rules, 2016.	However, at present the Carbon supplied to M/s Green En Sambalpur & M/s Regrow T Jharsuguda. for reprocessing a this way the carbon part is comp	on part is being ergy Resources, ranso Pvt. Ltd. nd utilization, in pletely recycled.
		The SPL refractory part is CHWTSDF site of M/s Resust kanchichuhan, Dist-Jajpur for d disposal, as per the protocol give	being sent to ainability Ltd at letoxification and en by CPCB.
ii)	The PP shall ensure 100% utilization of Fly ash generated.	As a generated is being utility as a supplying to M/s Ultry Jharsuguda, M/s ACC, Barga Rajgangpur for cement manura are supplying Ash to the brusing in own fly ash brick unit development of low lying areas premises with the prior a Odisha. The low-lying areas with Ash as per the Guidelin Low Lying Areas and Abando Ash of SPCB, Odisha. Beside exploring other modes/area utilization. Please refer to Anrash utilization from April 20 2023.	
		The status of ash utilization for April 2023 to September 2023 is	the period from s stated below:
		Particulars	Quantity in MT
		Total ash generated	869144.7
		Total Ash Utilised	769059.4
		Utilization (%)	88.48 %

		Utilization (%)	88.48 %
111)	All the measures proposed during the presentation and application shall be implemented.	We have noted and will be imp	emented.
iv)	Sale of baked anodes; sale of bath material; and sale of molten metal is permitted following the provisions of Hazardous and Other Waste Management Rules, 2016, applicable if any.	We have noted and accepted.	
V)	The project proponent shall develop in-house facilities for treatment of SPL in 2 to 3 years.	The Carbon part of SPL is bein Green Energy Resources, S. Regrow Transo Pvt. Ltd. detoxification and reuse as carb We are in process to ex- technologies for treatment utilization (co-processing in cen M/s Re Sustainability Ltd has facility for detoxification and refractory as per the protocol its CHW-TSDF at kanchichuhan SPL refractory part is bei CHWTSDF. Around 12607.75 M part and 1717.9 MT Carbon p end of September- 2023 and well-ventilated permanent co disposal to CHW-TSDF/Actual us Permission has been received f refractory/fine mix dust suppli Cement Plants for co-processin SPL refractory/fine mix dust di plants will be started soon.	g supplied to M/s ambalpur & M/s Jharsuguda for ion fuel. (ploring suitable and area of nent plants). () established the disposal of SPL given by CPCB in Dist- Jajpur site. Ing disposed in IT SPL Refractory art is in stock till kept inside the vered sheds for sers. () SPCB for SPL ed to authorized g in cement kiln. (sposal to cement
vi)	All the conditions prescribed in the environmental clearance letter No.J- 11011/136/2009-IA-II(I) dated 29.11.2012 shall be strictly complied with.	It is being Complied.	
vii)	The Project Proponent shall take fresh environment clearance in case of any change in the scope of the project.	There is no change in the scope	of the project.

Encl: As above

Sameer Nayak (Authorised Signatory)

Point wise compliance of the conditions stipulated in letter no.20489/IND-II-NOC-NIPL/20 dated 20th Dec-2021 regarding Verification on "No Increase in Pollution Load Certificate" by OSPCB.

Project Name: - Proposed Change in Product Mix by installation of FRP capacity of 340 KTPA within existing plant premises of Aditya Aluminium (Project under Implementation)

S.No.	Conditions	Compliance status
<u>р</u>	The proponent shall inform to the MoEF&CC, Govt. of India about verification of "No Increase in Pollution Load Certificate" for installation of Manufacturing Facility of FRP of capacity 340 KTPA (Phase 1: 170 KTPA & Phase 2: 170 KTPA) involving changes in product mix (i.e. addition of sheets and Coils) inside the plant premises of Aditya Aluminium and take additional pollution control measures, if any as advised by the MoEF&CC, Govt. of India.	Complied. Information regarding the NIPL Certificate has been submitted to MoEF&CC, New Delhi vide letter no. AA/E&S/22/761 dated 07.01.2022 submitted on 10.01.2022.
Π.	The proponent shall upload the "No Increase in Pollution Load Certificate" for the proposal on the online portal developed by the MoEF&CC, Govt. of India for No Increase in Pollution Load Certificate and submit the screenshot of the same along with application for Consent to Establish for the proposal	NIPL certificate obtained from NIT, Rourkela has been uploaded on Parivesh portal (Proposal number IA/UP/IND/223122/2021 dated 09.08.2021). Copy of the screenshot submitted along with the NIPL application to OSPCB through online portal on 04.09.2021 and offline on 27.11.2021.
III.	The proponent shall obtain Consent to Establish from the Board for the installation of Manufacturing Facility of FRP of capacity 340 KTPA (Phase 1: 170 KTPA & Phase 2: 170 KTPA) involving changes in product mix (i.e. addition of sheets and Coils) inside the plant premises of Aditya Aluminium before going for construction activity.	CTE has been obtained from OSPCB for the FRP project vide letter no.455/IND-II-CTE-6594 dated 06.01.22.
iv.	The project proponent shall take responsibility to satisfy itself about 'no increase in pollution load' as a result of changes, expansion or modernization, as the case may be, before under taking such changes or increase, and the project proponent shall be liable for action under the provisions of the Environment (Protection) Act, 1986 if on verification of facts or claim it is found that such change or expansion or modernization involves increase in pollution load.	We have noted and accepted it.

S.No.	Conditions	Compliance status
ν.	The proponent shall abide by the guidelines / SOPs if issued by the MoEF&CC, Govt. of India in future as per order passed by the Hon'ble NGT, Principal Bench, New Delhi in OA No. 55/2019 (WZ), dated 12.02.2020.	We have noted and accepted it.

for CAL

MINISTRY OF ENVIRONMENT & FORESTS EASTERN REGIONAL OFFICE, A/3, CHANDRASEKHARPUR, BHUBANESWAR-751023

FORMAT FOR PROVIDING PARTICULARS ON GREENBELT /PLANTATION UNDER F(C) ACT 1980 AND E(P) ACT 1986.

1	a) Name of the Project	Aditya Aluminium (A Unit of Hindalco Industries Limited)
	b) Envt. /Forest Clearance Nos.	i. Env Clearance vide letter No: J-11011/136/2009-IA-II(I), Dated 29/11/2012, amendment dated 14 June 2013, 14 Aug 2018, 20 July 2020 & 12 Aug 2022 ii. Forest Clearance vide letter No: 8-27/2009-FC, 10.02.2011
2	Location/ Block/ Sub-Divn./ Dist/ State	Aditya Aluminium (A Div. of Hindalco Industries Limited) At/Po- Lapanga, Dist Sambalpur Pin - 768 212, Odisha
3	Address for communication	Aditya Aluminium (A Div. of Hindalco Industries Limited) At/Po- Lapanga, Dist Sambalpur Pin - 768 212, Odisha
4	Existing vegetation in the area/ region	At present several types of vegetation available in the area, however some of the names mentioned as follows- Aegle marmelo, Albizia lebbeck, Albizia procera, Alstonia scholaris, Annona squamosa, Artocarpus heterophyllus, Azadirachta indica, Bauhinia alba, Butea monosperma, Bauhinia purpurea, Cassia fistula, Dalbergia sissoo, Delonix regia, Ficus benghalensis, Ficus religiosa, Madhuca indica, Mangifera indica, Peltophorum ferrugineum, Pongamia pinnata, Syzygium cumini, Tectona grandis, Terminalia arjuna, Terminalia bellirica, Terminalia bellirica, Termanilia catappa, Thevetia peruviana, Mimusops elangi, Psidium gujava, Samanea saman, Anthocephalus kadamba, Casia seamea, Acasia , Neerium oleander, Anacardium occidentale, etc
5	a) Species: (trees/shrubs/grasses/climbers)	Aegle marmelo, Albizia lebbeck, Albizia procera, Alstonia scholaris, Annona squamosa, Artocarpus heterophyllus, Azadirachta indica, Bauhinia alba, Butea monosperma, Bauhinia purpurea, Cassia fistula, Dalbergia sissoo, Delonix regia, Ficus benghalensis, Ficus religiosa, Madhuca indica, Mangifera indica, Peltophorum ferrugineum, Pongamia pinnata, Syzygium cumini, Tectona grandis, Terminalia arjuna, Terminalia bellirica, Terminalia bellirica, Termanilia catappa, Thevetia peruviana, Mimusops elangi, Psidium gujava, Samanea saman, Anthocephalus kadamba, Casia seamea, Acasia , Neerium oleander, Anticardium occidental , Dalbergia latifolia, Heloptela, Thespesia, Bamboo, Butea monosperma etc species available.
	 b) Major prevalent species of each type: 	Anthocephallus cadambaTerminalia arjuna, Peltoferrumferrugenium, Gmelina arboria, AlberziaLebbeck, Delonix regiaetc are the prevalent species found. Butea monosperma, Madhuca indica etc
6	Land coverage by the project:	1347.35 Ha

	a.Name and number of tree/species felled	f 2002 nos of trees felled through OFDC, Sambalpur (CKL) Division.	
	b.Name and number of plant species still available in the area	Plant species and number will be counted after completion of all the project activities and will be submitted to your good office	
	c. By protecting the area will indigenous stock come up	Nil	
	d.Extent of greenbelt developed	1098 acres covered under greenbelt.	
7	Plantations required to be carried of	out as per	
6	a) Conditions of Environmental Clearance in Ha/Nos.	33% of total project area	
	 b) Conditions of Forest Act (c) Clearance in Ha/Nos. 	25 % of total project area	
	c. Voluntarily in Ha/Nos.	NA	

8. Details of plantation

a) Total area available for plantation in each category

GreenbeltDumpsBack filled areaRoad sidesBlock plantationThe 33% of the project area will be covered under greenbelt/green cover and the plant. The phase- I facilities
completed and Phase-II construction work not started. Till date 1098 acres of land has been covered under
greenbelt.

b) Plantation details (category wise & methodology used)

Year of plantation	Species Planted	Spacing	Height attained(feet)	Total area covered	Area still available
2010-11 & 2011-12	Aegle marmelo, Albizia lebbeck, Albizia procera, Alstonia scholaris,	2*2	32'-36'	14.7 Ha	33% of the project area covered under Green Belt.
2012-13	Annona squamosa, Artocarpus	3*3	25'-27'	38.2 Ha	
2013-14	heterophyllus, Azadirachta indica, Bauhinia alba, Butea monosperma, Bauhinia purpurea, Cassia fistula, Dalbergia sissoo, Delonix regia, Ficus benghalensis, Ficus religiosa,	3*3	22'-25'	11.2 Ha	
2014-15		3*3	20'-22'	16.8 Ha	
2015-16		4*4	18'-20'	24.36 Ha	
2016-17	Dalbergia sissoo, Delonix regia, Ficus	2*2	17'-20'	20.0 Ha	
2017-18	benghalensis, Ficus religiosa,	2*2	14'-18'	46.8 Ha	
2018-19	Madhuca indica, Mangifera indica,	2*2	13'-15'	45.0 Ha	
2019-20	Peltophorum ferrugineum,	2*2	9'- 11'	82.96 Ha	
2020-21	Pongamia pinnata, Syzygium cumini,	2*2	7'-8'	80.94 Ha	
2021-22	Tectona grandis, Terminalia arjuna,	2*2	5'-7'	63.67 Ha	
2022-23 2023-24	Terminalia bellirica, Terminalia bellirica, Termanilia catappa, Thevetia peruviana, Mimusops elangi, Psidium gujava, Samanea saman, Anthocephalus kadamba,	2*2	4′-6′ 2′-3′	Species Enhancement in existing plantation area	
Total	tal Casia seamea, Acasia , Neerium oleander, Anacardium occidentale, Dalbergia latifolia, Sterculia foetida Heloptela, Thespsia populenea Bamboo etc			444.63 Ha	ik (s

c) Survival of Plantation:

Total Plantation (No.)	7,38,030	
Survival (No.)	6,64,227	
Survival rate	Approx. 90%	

9. Agency carrying out plantation and maintenance: NA

10. Financial details (year wise) plantation wise and item wise:

SI. No.	Year	Fund allocated(Rs)	Expenditure made(Rs)	Average cost of each surviving plant in Rs.
1	2010-11	81,62,000	81,62,000.00	245.00
2	2011-12			
3	2012-13	46,21,600	46,21,600.00	121.00
4	2013-14	13,62,500	13,62,500.00	121.00
5	2014-15	18,53,000	18,53,000.00	115.00
6	2015-16	18,65,000	18,65,000	109.00
7	2016-17	49,00,000	49,00,000	100.00
8	2017-18	68,00,000	68,00,000	71.00
9	2018-19	70,00,000	70,00,000	77.00
10	2019-20	70,00,000	72,00,000	84.00
11	2020-21	75,00,000	75,00,000	70.00
12	2021-22	85,00,000	85,00,000	126.00
13	2022-23	85,00,000	85,00,000	188.00
14	2023-24	85,00,000	40,00,000 (till Sep 23)	110.00

11. Inspection of plantation by field experts and their comments and follow up actions:

Forest officials from Divisional Forest Office, Sambalpur and Forest Range Office, Rengali are visiting to our location at periodic intervals and giving their technical guidance from time to time. Joint Director/Director of Regional Office of MoEF &CC, Bhubaneswar also visit our plant site periodically.

12. Remarks/ any other information:

Indigenous species have been planted as per the Guideline of CPCB.

Samer Nayak (Signature)

Report-II

PROFORMA FOR PROVIDING INFORMATION ON REHABILITATION

- 1. No. of villages affected : 11
- 2. Families Affected : 1450

Families affected	SC	ST	OTH	TOTAL
	-	-	-	1450

3. Compensation package offered per family:

State/ Centre norms	Project package
As per the R&R Policy 2006, Govt. of Odisha	As per the R&R Policy 2006 and 2013, Govt. of Odisha. Aditya Aluminium follows the RR Policy and subsequent Compensation Revision also.

4. Budget estimate for rehabilitation:

a)	Total outlay	: 84.59 Crores
b)	Amount paid/used	: 80.81 Crores

- 5. Employment details
 - a) Total employment to be provided : 60
 - b) Employment given so far : 59
- 6. Rehabilitation & Resettlement details: Total Displaced Persons Numbers 430

а	No. of families rehabilitated				
i	Name of the Site	Aditya Alun	ninium		
ii	Families rehabilitated	SC	ST	OTH	Total
		08	378	18	404
b	Families yet to be rehabilitated		3		
i	Name of the Site(s)	Aditya Alum	ninium		
ii	No. of families (Total - 430)	SC	ST	OTH	Total
		00	32	14	46

7. Any other information

: NIL

Sameer Nayak (Authorised Signatory)

3. Sampling Location

4. Name of sampling Instrument

5. Sample Collected by

6. Date of Analysis

: Stack Sampler

:

- : VCSPL Representative in presence of Aditya Aluminium Representative
- : 18.04.2023 TO 20.04.2023

ST-7: Stack attached to FTC-1 (ABF-1)

Stack Description			
Stack Height	70 Meter		
Stack Diameter	2.06 Meter		
Height of Sampling Point	40 Meter		
Capacity	504 Anode/Day		
Pollution Control Device Attached with the Stack	Bag Filter		

Parameters	Unit of Measurement	Methodology	Emission Prescribe Standard	Analysis Results
				ST-7
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	102.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	11.8
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	109207.2
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	741.0
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	4.3
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	372.0
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	76.6
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.11
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.40
Total Fluoride as F	mg/Nm ³	Calculation	-	0.51
Fluoride Emission	Kg/T	Calculation	0.1	0.0013
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatography	-	BDL
Poly Aromatic Hydrocarbon as PAHs	mg/Nm ³	Gas Chromatography	2.0	BDL

Note: BDL: Below Detection Limit.

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511721 E-mail: visiontek@vcspl.org, visiontekin@gmail.com Visit us at: www.vcspl.org

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering · Water Resource Management Environmental & Social Study Surface & Sub-Surface Investigation Quality Control & Project Management Renewable Energy

 Agricultural Development Information Technology Public Health Engineering

: ST-8: Stack attached to FTC-2 (ABF-2)

 Mine Planning & Design Mineral/Sub-Soil Exploration Laboratory Services ironment Lah Food Lab Material Lab Soil Lab Mineral Lab

Waste Management Services

Date: 30.04.2023

& Microbiology Lab

Report No.: Envlab/23-24/TR-01334

STACK EMISSION MONITORING REPORT FOR APRIL-2023

- 1. Name of Industry
- 2. Date of Sampling
- 3. Sampling Location
- 4. Name of sampling Instrument
- 5. Sample Collected by
- 6. Date of Analysis

: Stack Sampler

: 17.04.2023

: VCSPL Representative in presence of Aditya Aluminium Representative

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

: 18.04.2023 TO 20.04.2023

Stack Descri	otion
Stack Height	70 Meter
Stack Diameter	1.6 Meter
Height of Sampling Point	40 Meter
Capacity 336 Anode/Day	
Pollution Control Device Attached with the Stack	Bag Filter

Parameters	Unit of Measuremen	Methodology	Emission Prescribe Standard	Analysis Results
			(OSPCB)	ST-8
Stack Temperature	°C	IS 11255: Part 3 :1985 (Reaff 2008)	+	98.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)		11.1
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	1	62689.3
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	739.3
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	3.6
Sulphur dioxide as SO2	mg/Nm ³	EPA Method 6C	-	350.0
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E		80.0
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	12	0.11
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	1.04	0.39
Total Fluoride as F	mg/Nm ³	Calculation	4	0.50
Fluoride Emission	Kg/T	Calculation	0.1	0.0008
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatogrphy	8 4	BDL
Poly Aromatic Hydrocarbon as PAHs	mg/Nm ³	Gas Chromatography	2.0	BDL

Note: BDL: Below Detection Limit.

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511721 E-mail: visiontek@vcspl.org, visiontekin@gmail.com Visit us at: www.vcspl.org

siontek Consultancy Services Pvt. I

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Surface & Sub-Surface Investigation Agricultural Development
- Quality Control & Project Management Information Technology
 - Public Health Engineering

: ST-7: Stack attached to FTC-1 (ABF-1)

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Report No.: Envlab/23-24/TR-02590

Date: 31.05.2023

Laboratory Services

Environment Lab Food Lab

Material Lab

Self Lab

Mineral Lab

4 disrobiology Lat

STACK EMISSION MONITORING REPORT FOR MAY-2023

- 1. Name of Industry 2. Date of Sampling
- : M/s Hindalco Industries Ltd (Unit-Aditva Aluminium); Lapanga
- : 23.05.2023
- 3. Sampling Location
- 4. Name of sampling Instrument

Renewable Energy

- 5. Sample Collected by
- 6. Date of Analysis
- : Stack Sampler
- : VCSPL Representative in presence of Aditya Aluminium Representative
- : 24.05.2023 TO 26.05.2023

Stack Description			
Stack Height	70 Meter		
Stack Diameter	2.06 Meter		
Height of Sampling Point	40 Meter		
Capacity	504 Anode/Day		
Pollution Control Device Attached with the Stack	Bag Filter		

Parameters	Unit of	Methodology	Emission Prescribe Standard	Analysis Results
	Wieasurement		(OSPCB)	ST-7
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	92.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	11.1
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	105706.4
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	739.0
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	3.78
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	388.0
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	84.0
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.10
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.41
Total Fluoride as F	mg/Nm ³	Calculation	-	0.51
Fluoride Emission	Kg/T	Calculation	0.1	0.0013
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatography	-	BDL
Poly Aromatic	mg/Nm ³	Gas Chromatography	2.0	BDL

Hydrocarbon as PAHs Note: BDL: Below Detection Limit.

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511721 E-mail: visiontek@vcspl.org,visiontekin@gmail.com Visit us at: www.vcspl.org

isiontek Consultancy Services Pvt. I

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Surface & Sub-Surface Investigation Quality Control & Project Management
 - Information Technology Public Health Engineering
- Agricultural Development

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Report No.: Envlab/23-24/TR-02591

Renewable Energy

Date: 31.05.2023

Laboratory Services

Environment Lab Food Lab

Material Lab

Self Lab

Mineral Lab

4 disrobiology Lat

STACK EMISSION MONITORING REPORT FOR MAY-2023

1. Name of Industry 2. Date of Sampling

3. Sampling Location

- : M/s Hindalco Industries Ltd (Unit-Aditva Aluminium); Lapanga
- : 23.05.2023
- : ST-8: Stack attached to FTC-2 (ABF-2)
- : Stack Sampler
- 5. Sample Collected by

4. Name of sampling Instrument

6. Date of Analysis

- : VCSPL Representative in presence of Aditya Aluminium Representative : 24.05.2023 TO 26.05.2023

Stack Description				
Stack Height	70 Meter			
Stack Diameter	1.6 Meter			
Height of Sampling Point	40 Meter			
Capacity	336 Anode/Day			
Pollution Control Device Attached with the Stack	Bag Filter			

Parameters	Unit of Measurement	Methodology	Emission Prescribe Standard	Analysis Results
			(OSPCB)	ST-8
Stack Temperature	0C	IS 11255: Part 3 :1985 (Reaff 2008)	-	93.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	10.0
Quantity of Gas Flow	Nm3/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	57381.3
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	737.4
Concentration of Particulate Matter as PM	mg/Nm3	IS 11255: Part 1 :1985 (Reaff 2003)	50	3.76
Sulphur dioxide as SO2	mg/Nm3	EPA Method 6C	-	365.0
Oxides of Nitrogen as NOx	mg/Nm3	EPA Method 7E	-	81.0
Particulate Fluoride	mg/Nm3	Distillation followed by Ion Electrode method	-	0.12
Gaseous Fluoride	mg/Nm3	Ion Electrode method	-	0.40
Total Fluoride as F	mg/Nm3	Calculation	-	0.52
Fluoride Emission	Kg/T	Calculation	0.1	0.0007
Tar Fumes	mg/Nm3	Extraction followed by Gas Chromatography	-	BDL
Poly Aromatic Hydrocarbon as PAHs	mg/Nm3	Gas Chromatography	2.0	BDL

Note: BDL: Below Detection Limit.

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511721 E-mail: visiontek@vcspl.org,visiontekin@gmail.com Visit us at: www.vcspl.org

(Committed For Better Environment) Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Information Technology

: ST-7: Stack attached to FTC-1 (ABF-1)

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab A Microbiology Lat

Test Report No.: Envlab/23-24/TR-03620

Date: 30.06.2023

STACK EMISSION MONITORING REPORT FOR JUNE-2023

: 19.06.2023

: Stack Sampler

- 1. Name of Industry
- 2. Date of Sampling
- 3. Sampling Location
- 4. Name of sampling Instrument
- 5. Sample Collected by
- 6. Date of Analysis

- : VCSPL Representative in presence of Aditya Aluminium Representative
- : 20.06.2023 TO 22.06.2023

Stack Description				
Stack Height	70 Meter			
Stack Diameter	2.06 Meter			
Height of Sampling Point	40 Meter			
Capacity	504 Anode/Day			
Pollution Control Device Attached with the Stack	Bag Filter			

			Emission	Analysis Results
Parameters	Unit of	Methodology	Prescribe	
T at anicter s	Measurement	Witthouology	Standard	ST-7
			(OSPCB)	
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	94.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	10.7
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	100345.1
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	733.0
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	3.41
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	374.0
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	80.1
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.11
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.42
Total Fluoride as F	mg/Nm ³	Calculation	-	0.53
Fluoride Emission	Kg/T	Calculation	0.1	0.0013
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatography	-	BDL
Poly Aromatic Hydrocarbon as PAHs	mg/Nm ³	Gas Chromatography	2.0	BDL

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

ST-8: Stack attached to FTC-2 (ABF-2)

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

: VCSPL Representative in presence of Aditya Aluminium Representative

 Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab A Microbiology Lat

Test Report No.: Envlab/23-24/TR-03621

Date: 30.06.2023

STACK EMISSION MONITORING REPORT FOR JUNE-2023

: 19.06.2023

: Stack Sampler

:

- 1. Name of Industry
- 2. Date of Sampling
- 3. Sampling Location
- 4. Name of sampling Instrument
- 5. Sample Collected by
- 6. Date of Analysis

: 20.06.2023 TO 22.06.2023

Stack Description			
Stack Height	70 Meter		
Stack Diameter	1.6 Meter		
Height of Sampling Point	40 Meter		
Capacity	336 Anode/Day		
Pollution Control Device Attached with the Stack	Bag Filter		

Parameters	Unit of Measurement	Methodology	Emission Prescribe Standard	Analysis Results
			(OSPCB)	ST-8
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	92.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	9.5
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	53876.4
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	732.8
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	3.6
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	372.0
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	84.0
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.11
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.42
Total Fluoride as F	mg/Nm ³	Calculation	-	0.53
Fluoride Emission	Kg/T	Calculation	0.1	0.0007
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatogrphy	-	BDL
Poly Aromatic Hydrocarbon as PAHs	mg/Nm ³	Gas Chromatography	2.0	BDL

 Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Date: 31.07.2023

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab & Microbiology Lat

Test Report No.:04737

STACK EMISSION MONITORING REPORT FOR JULY-2023

- 1. Name of Industry 2. Date of Sampling
- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- 20.07.2023 :
 - : ST-7: Stack attached to FTC-1 (ABF-1)
- 4. Name of sampling Instrument
- 5. Sample Collected by

3. Sampling Location

6. Date of Analysis

- : Stack Sampler :
 - VCSPL Representative in presence of Aditya Aluminium Representative
- 21.07.2023 TO 24.07.2023 :

Stack Description				
Stack Height	70 Meter			
Stack Diameter	2.06 Meter			
Height of Sampling Point	40 Meter			
Capacity	504 Anode/Day			
Pollution Control Device Attached with the Stack	Bag Filter			

			Emission	Analysis Results
Parameters	Unit of Measurement	Methodology	Prescribe Standard (OSPCB)	ST-7
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	92.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	11.0
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	105480.3
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	740.0
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	4.6
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	376.0
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	78.2
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.10
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.40
Total Fluoride as F	mg/Nm ³	Calculation	-	0.52
Fluoride Emission	Kg/T	Calculation	0.1	0.0013
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatography	-	BDL
Poly Aromatic Hydrocarbon as PAHs	mg/Nm ³	Gas Chromatography	2.0	BDL

Note: BDL: Below Detection Limit.

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511721 E-mail: visiontek@vcspl.org,visiontekin@gmail.com

Material Lab Mine Planning & Design Mineral Lab Mineral/Sub-Soil Exploration & Microbiology Lat Waste Management Services

Date: 31.07.2023

Laboratory Services

Environment Lab Food Lab

Soil Lab

Test Report No.:04738

STACK EMISSION MONITORING REPORT FOR JULY-2023

- 1. Name of Industry
- 2. Date of Sampling
- 3. Sampling Location
- 4. Name of sampling Instrument
- 5. Sample Collected by
- 6. Date of Analysis

- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga : 20.07.2023
- : ST-8: Stack attached to FTC-2 (ABF-2)
- : Stack Sampler
 - VCSPL Representative in presence of Aditya Aluminium Representative :
 - 21.07.2023 TO 24.07.2023 :

Stack Description			
Stack Height	70 Meter		
Stack Diameter	1.6 Meter		
Height of Sampling Point	40 Meter		
Capacity	336 Anode/Day		
Pollution Control Device Attached with the Stack	Bag Filter		

Parameters	Unit of Measurement	Methodology	Emission Prescribe Standard	Analysis Results
			(OSPCB)	ST-8
Stack Temperature	$^{0}\mathrm{C}$	IS 11255: Part 3 :1985 (Reaff 2008)	-	93.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	9.7
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	55568.9
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	742.2
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	4.0
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	352.0
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	79.0
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.10
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.40
Total Fluoride as F	mg/Nm ³	Calculation	-	0.50
Fluoride Emission	Kg/T	Calculation	0.1	0.0007
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatogrphy	-	BDL
Poly Aromatic Hydrocarbon as PAHs	mg/Nm ³	Gas Chromatography	2.0	BDL

Note: BDL: Below Detection Limit.

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511721 E-mail: visiontek@vcspl.org,visiontekin@gmail.com Visit us at: www.vcspl.org

iontek Consultancy Services Pvt. I

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Surface & Sub-Surface Investigation Quality Control & Project Management Renewable Energy

 Agricultural Development Information Technology Public Health Engineering

: ST-7: Stack attached to FTC-1 (ABF-1)

 Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Mineral Lab Microbiology Lab

Laboratory Services Esvironment Lab Food Lab

Material Lab

Soil Lab

k

Date: 31.08.2023

STACK EMISSION MONITORING REPORT FOR AUGUST-2023

- 1. Name of Industry 2. Date of Sampling
- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- : 16.08.2023
- 3. Sampling Location
- 4. Name of sampling Instrument
- 5. Sample Collected by

6. Date of Analysis

- : Stack Sampler
- : VCSPL Representative in presence of Aditya Aluminium Representative
- : 17.08.2023 TO 19.08.2023

Stack Description				
Stack Height	70 Meter			
Stack Diameter	2.06 Meter			
Height of Sampling Point	40 Meter			
Capacity	504 Anode/Day			
Pollution Control Device Attached with the Stack	Bag Filter			

			Emission	Analysis Results
Parameters	Unit of Measurement	Methodology	Prescribe Standard (OSPCB)	ST-7
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	99.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	11.9
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	112169.9
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	743
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	4.1
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	370.2
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	82.4
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.11
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.40
Total Fluoride as F	mg/Nm ³	Calculation	-	0.51
Fluoride Emission	Kg/T	Calculation	0.1	0.0014
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatography	-	BDL
Poly Aromatic Hydrocarbon as PAHs	mg/Nm ³	Gas Chromatography	2.0	BDL

siontek Consultancy Services Pvt. I

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sob-Surface Investigation
 Quality Control & Project Management
 Renewable Energy

Agricultural Development
 Information Technology
 Public Health Engineering

: ST-8: Stack attached to FTC-2 (ABF-2)

Mine Planning & Design
 Mineral/Sub-Soil Exploration
 Waste Management Services

Eavironment Lab Food Lab Material Lab Soill Lab Mineral Lab & Microbiology Lab

Laboratory Services

Test Report No.:06866

Information Technology
 Public Health Engineering

Date: 31.08.2023

STACK EMISSION MONITORING REPORT FOR AUGUST-2023

Name of Industry
 Date of Sampling

- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- : 16.08.2023
- 3. Sampling Location
- 4. Name of sampling Instrument
- 5. Sample Collected by

6. Date of Analysis

- : Stack Sampler
- : VCSPL Representative in presence of Aditya Aluminium Representative
- : 17.08.2023 TO 19.08.2023

Stack Description				
Stack Height	70 Meter			
Stack Diameter	1.6 Meter			
Height of Sampling Point	40 Meter			
Capacity	336 Anode/Day			
Pollution Control Device Attached with the Stack	Bag Filter			

Parameters	Unit of Measurement	Methodology	Emission Prescribe Standard	Analysis Results
			(OSPCB)	ST-8
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	91.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	10.0
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	57802.9
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	741.2
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	3.72
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	354.0
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	82.0
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.10
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.41
Total Fluoride as F	mg/Nm ³	Calculation	-	0.51
Fluoride Emission	Kg/T	Calculation	0.1	0.00071
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatogrphy	-	BDL
Poly Aromatic Hydrocarbon as PAHs	mg/Nm ³	Gas Chromatography	2.0	BDL

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

WILLIAM AND Infrastructure Engineering Water Resource Management · Environmental & Social Study

 Surface & Sub-Surface Investigation Quality Control & Project Management Renewable Energy

- Agricultural Development Information Technology
 - Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Svil Lab Mineral Lab A Microbiology Lal

Test Report No.: VCSPL/23-24/R-07835 Date: 30.09.2023 **STACK EMISSION MONITORING REPORT FOR SEPTEMBER-2023**

- 1. Name of Industry 2. Date of Sampling
- : 15.09.2023
- : ST-7: Stack attached to FTC-1 (ABF-1)
- 4. Name of sampling Instrument : Stack Sampler

:

5. Sample Collected by

3. Sampling Location

6. Date of Analysis

- VCSPL Representative in presence of Aditya Aluminium Representative

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

16.09.2023 TO 18.09.2023 •

Stack Description				
Stack Height	70 Meter			
Stack Diameter	2.06 Meter			
Height of Sampling Point	40 Meter			
Capacity	504 Anode/Day			
Pollution Control Device Attached with the Stack	Bag Filter			

			Emission	Analysis Results
Devemotors	Unit of	Mathadalagy	Prescribe	
I al ametel s	Measurement	Wiethodology	Standard	ST-7
			(OSPCB)	
Stack Temperature	0°C	IS 11255: Part 3 :1985 (Reaff 2008)	-	93.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	10.7
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	101211.5
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	739.0
Concentration of Particulate	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	5.1
		EDA Mathad 6C	50	
Sulphur dioxide as SO ₂	mg/Nm ³	EFA Method oC	-	368.0
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	80.1
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.10
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.41
Total Fluoride as F	mg/Nm ³	Calculation	-	0.51
Fluoride Emission	Kg/T	Calculation	0.1	0.0012
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatography	-	BDL
Poly Aromatic Hydrocarbon as PAHs	mg/Nm ³	Gas Chromatography	2.0	BDL

 Water Resource Management · Environmental & Social Study Quality Control & Project Management Renewable Energy

 Information Technology Public Health Engineering

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

 Mineral/Sub-Soil Exploration Waste Management Services

A Microbiology Lal

Test Report No.: VCSPL/23-24/R-07836 Date: 30.09.2023 **STACK EMISSION MONITORING REPORT FOR SEPTEMBER-2023**

1. Name of Industry 2. Date of Sampling

3. Sampling Location

- : 15.09.2023
- : ST-8: Stack attached to FTC-2 (ABF-2)
- : Stack Sampler

:

5. Sample Collected by

4. Name of sampling Instrument

6. Date of Analysis

- VCSPL Representative in presence of Aditya Aluminium Representative
- 16.09.2023 TO 18.09.2023 •

Stack Description				
Stack Height	70 Meter			
Stack Diameter	1.6 Meter			
Height of Sampling Point	40 Meter			
Capacity	336 Anode/Day			
Pollution Control Device Attached with the Stack	Bag Filter			

Parameters	Unit of Measurement	Methodology	Emission Prescribe Standard	Analysis Results
			(OSPCB)	ST-8
Stack Temperature	0°C	IS 11255: Part 3 :1985 (Reaff 2008)	-	90.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	10.35
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	59730.9
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	738.5
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	4.2
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	358.0
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	78.0
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.10
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.40
Total Fluoride as F	mg/Nm ³	Calculation	-	0.50
Fluoride Emission	Kg/T	Calculation	0.1	0.00072
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatogrphy	-	BDL
Poly Aromatic Hydrocarbon as PAHs	mg/Nm ³	Gas Chromatography	2.0	BDL

- 4. Name of sampling Instrument
- 5. Sample Collected by
- 6. Date of Analysis

- : SI-9: Stack attached to GIC-I (Pot roo
- : Stack Sampler
 - VCSPL Representative in presence of Aditya Aluminium Representative
- : 21.04.2023 TO 24.04.2023

Stack Desc	ription
Stack Height	100 Meter
Stack Diameter	10.4 Meter
Height of Sampling Point	65 Meter
Number of POT in operation	180 No.
Pollution Control Device Attached with the Stack	Bag Filter

Dowowstows	Unit of	Drotocol	Emission Prescribe	Analysis Results
rarameters	Measurement	Frotocol	Standard (OSPCB)	ST-9
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	112.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	8.8
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	2007743.2
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	732.9
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	2.9
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	72.2
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	44.3
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.11
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.43
Total Fluoride	mg/Nm ³	Calculation	-	0.54
Fluoride Emission	Kg/T	Calculation	0.3	0.052

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Infrastructore Engineering
- Water Resource Management
- Environmental & Social Study

• Surface & Sub-Surface Investigation Agricultural Development Quality Control & Project Management

 Information Technology Public Health Engineering • Mine Planning & Design

 Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab Microbiology Lab

Date: 30.04.2023

Report No.: Envlab/23-24/TR-01336

STACK EMISSION MONITORING REPORT FOR APRIL-2023

- 1. Name of Industry 2. Date of Sampling
- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- : 20.04.2023
 - : ST-10: Stack attached to GTC-2 (Pot room)
- 4. Name of sampling Instrument

Renewable Energy

5. Sample Collected by

3. Sampling Location

- 6. Date of Analysis
- : VCSPL Representative in presence of Aditya Aluminium Representative
- : 21.04.2023 TO 24.04.2023

: Stack Sampler

		Stack Descriptio	n		
Stack Height		100 Meter			
Stack Diameter		10.4 Meter			
Height of Sampling Point		65 Meter			
Number of POT in operation		180 No.			
Pollution Control Device Attached with the Stack			Bag Filter		
Parameters	Unit of Measurement	Protocol		Emission Prescribe Standard (OSPCB)	Analysis Results ST-10
Stack Temperature	0C	IS 11255: Part 3 :1985 (Reaff 2008)		-	110.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)		-	8.3
Quantity of Gas Flow	Nm3/Hr	IS 11255: Part 3 :1985 (Reaff 2008)		-	2017126.0
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)		-	732.5
Concentration of Particulate Matter as PM	mg/Nm3	IS 11255: Part 1 :1985 (Reaff 2003)		50	3.2
Sulphur dioxide as SO2	mg/Nm3	EPA Method 6C		-	72.8
Oxides of Nitrogen as NOx	mg/Nm3	EPA Method 7E		-	60.0
Particulate Fluoride	mg/Nm3	Distillation followed by Ion Electrode method		-	0.11
Gaseous Fluoride	mg/Nm3	Ion Electrode method		-	0.41
Total Fluoride	mg/Nm3	Calculation		-	0.52
Fluoride Emission	Kg/T	Calculation		0.3	0.050

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511721 E-mail: visiontek@vcspl.org, visiontekin@gmail.com Visit us at: www.vcspl.org

siontek Consultancy Services Pvt. I

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade • Surface & Sub-Surface Investigation • Agricultural Development • Mine Plannin

- Quality Control & Project Management
 Inform
 - Information Technology
 Public Health Engineering

Mine Planning & Design
 MinerabSub-Soil Exploration
 Waste Management Services

Eardronnost Lab Food Lab Material Lab Soli Lab Microbiology Lab

Laboratory Services

Report No.: Envlab/23-24/TR-02592

4. Name of sampling Instrument

Renewable Energy

Date: 31.05.2023

STACK EMISSION MONITORING REPORT FOR MAY-2023

- Name of Industry
 Date of Sampling
- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- : 22.05.2023
- : ST-9: Stack attached to GTC-1 (Pot room)
- : Stack Sampler
- 5. Sample Collected by

3. Sampling Location

- 6. Date of Analysis
- : VCSPL Representative in presence of Aditya Aluminium Representative : 23.05.2023 TO 25.05.2023

Stack Descri	ption
Stack Height	100 Meter
Stack Diameter	10.4 Meter
Height of Sampling Point	65 Meter
Number of POT in operation	180 No.
Pollution Control Device Attached with the Stack	Bag Filter

Banamatana	Unit of Measurement	Drotocol	Emission Prescribe	Analysis Results
rarameters		Frotocol	Standard (OSPCB)	ST-9
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	101.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	9.1
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	2147460.0
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	736.4
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	2.87
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	75.6
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	48.2
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.12
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.44
Total Fluoride	mg/Nm ³	Calculation	-	0.56
Fluoride Emission	Kg/T	Calculation	0.3	0.058

iontek Consultancy Services Pvt.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Surface & Sub-Surface Investigation Quality Control & Project Management Renewable Energy
- Agricultural Development Information Technology Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Report No.: Envlab/23-24/TR-02593

Date: 31.05.2023

Laboratory Services

Environment Lab Food Lab

Material Lab

Self Lab

Mineral Lab

A Microbiology Lab

STACK EMISSION MONITORING REPORT FOR MAY-2023

: ST-10: Stack attached to GTC-2 (Pot room)

- 1. Name of Industry 2. Date of Sampling
- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

VCSPL Representative in presence of Aditya Aluminium Representative

- : 16.05.2023
- 3. Sampling Location
- Stack Sampler :
- 5. Sample Collected by

4. Name of sampling Instrument

- 6. Date of Analysis
- : 17.05.2023 TO 19.05.2023

Stack	Descr	iption

Stack Height	100 Meter
Stack Diameter	10.4 Meter
Height of Sampling Point	65 Meter
Number of POT in operation	180 No.
Pollution Control Device Attached with the Stack	Bag Filter

Parameters	Unit of Measureme	Protocol	Emission Prescribe	Analysis Results
	nt	11000001	Standard (OSPCB)	ST-10
Stack Temperature	0C	IS 11255: Part 3 :1985 (Reaff 2008)	-	108.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	8.1
Quantity of Gas Flow	Nm3/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	1779579.1
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	734.7
Concentration of Particulate Matter as PM	mg/Nm3	IS 11255: Part 1 :1985 (Reaff 2003)	50	3.8
Sulphur dioxide as SO2	mg/Nm3	EPA Method 6C	-	74.2
Oxides of Nitrogen as NOx	mg/Nm3	EPA Method 7E	-	61.4
Particulate Fluoride	mg/Nm3	Distillation followed by Ion Electrode method	-	0.10
Gaseous Fluoride	mg/Nm3	Ion Electrode method	-	0.43
Total Fluoride	mg/Nm3	Calculation	-	0.53
Fluoride Emission	Kg/T	Calculation	0.3	0.048

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511721 E-mail: visiontek@vcspl.org,visiontekin@gmail.com Visit us at: www.vcspl.org

iontek Consultancy Services Pvt. 1

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Agricultural Development
 - - Information Technology Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Microbiology Lat

Laboratory Services

Environment Lab Food Lab

Material Lab

Soil Lab

Mineral Lab

A

Date: 30.06.2023

Test Report No.: Envlab/23-24/TR-03622 **STACK EMISSION MONITORING REPORT FOR JUNE-2023**

1. Name of Industry

- 2. Date of Sampling
- 3. Sampling Location
- 4. Name of sampling Instrument
- 5. Sample Collected by
- 6. Date of Analysis

- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- : 22.06.2023
 - : ST-9: Stack attached to GTC-1 (Pot room)
- : Stack Sampler
 - : VCSPL Representative in presence of Aditya Aluminium Representative
 - : 23.06.2023 TO 26.06.2023

Stack D	Description
Stack Height	100 Meter
Stack Diameter	10.4 Meter
Height of Sampling Point	65 Meter
Number of POT in operation	180 No.
Pollution Control Device Attached with the Stack	Bag Filter

Parameters	Unit of	Protocol	Emission Prescribe	Analysis Results
	Measurement		Standard (OSPCB)	ST-9
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	113.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	9.1
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	2080134.5
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	736.2
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	3.1
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	73.4
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	46.6
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.11
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.46
Total Fluoride	mg/Nm ³	Calculation	-	0.57
Fluoride Emission	Kg/T	Calculation	0.3	0.057

iontek Consultancy Services Pvt. I

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

- Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade Surface & Sub-Surface Investigation Agricultural Development
- Quality Control & Project Management
 - Information Technology Public Health Engineering

: ST-10: Stack attached to GTC-2 (Pot room)

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Soil Lab Mineral Lab A Microbiology Lat

Date: 30.06.2023

- 1. Name of Industry
- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga : 23.06.2023
- 2. Date of Sampling

Renewable Energy

- 3. Sampling Location
- 4. Name of sampling Instrument
- 5. Sample Collected by
- 6. Date of Analysis
- : Stack Sampler
- : VCSPL Representative in presence of Aditya Aluminium Representative
- : 24.06.2023 TO 26.06.2023

Stack Description				
Stack Height 100 Meter				
Stack Diameter		10.4 Meter		
Height of Sampling Point		65 Meter		
Number of POT in operation		180 No.		
Pollution Control Device Attac	ched with the Stack	Bag Filter		
Parameters	Unit of Measurement	Protocol	Emission Prescribe Standard (OSPCB)	Analysis Results ST-10
Stack Temperature	0C	IS 11255: Part 3 :1985 (Reaff 2008)	-	111.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	8.2
Quantity of Gas Flow	Nm3/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	1877781.7
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	734.6
Concentration of Particulate Matter as PM	mg/Nm3	IS 11255: Part 1 :1985 (Reaff 2003)	50	3.2
Sulphur dioxide as SO2	mg/Nm3	EPA Method 6C	-	73.6
Oxides of Nitrogen as NOx	mg/Nm3	EPA Method 7E	-	63.4
Particulate Fluoride	mg/Nm3	Distillation followed by Ion Electrode method	-	0.11
Gaseous Fluoride	mg/Nm3	Ion Electrode method	-	0.44
Total Fluoride	mg/Nm3	Calculation	-	0.55
Fluoride Emission	Kg/T	Calculation	0.3	0.050

Vis	siontek Consu	iltancy Se	ervices Pv	t.
	(Committed) Certified for : ISO 9001:2015, ISO 1400 Accredited by : NABET-A Gr	For Better Environmen 1:2015, ISO 45001:2018 (OH ade, MOEF & CC/CPCB &	nt) (&S), ISO/IEC 17025:2017 SPCB-A Grade	Lai
Infrastructure Enginering Water Resource Management Environmental & Social Study	Surface & Sub-Surface Investigation Quality Control & Project Management Renewable Energy	Agricultural Development Information Technology Public Health Engineering	Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services	2

Environment Lab Food Lab CB-A Grade Material Lab Soil Lab Mine Planning & Design Mineral Lab Mineral/Sub-Soil Exploration & Microbiology Lat Waste Management Services

Date: 31.07.2023

Laboratory Services

Test Report No.:04739

STACK EMISSION MONITORING REPORT FOR JULY-2023

- 1. Name of Industry
- 2. Date of Sampling
- 3. Sampling Location
- 4. Name of sampling Instrument
- 5. Sample Collected by
- 6. Date of Analysis

- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- : 21.07.2023
 - : ST-9: Stack attached to GTC-1 (Pot room)
- : Stack Sampler
 - : VCSPL Representative in presence of Aditya Aluminium Representative
 - : 22.07.2023 TO 25.07.2023

Stack Desc	ription
Stack Height	100 Meter
Stack Diameter	10.4 Meter
Height of Sampling Point	65 Meter
Number of POT in operation	180 No.
Pollution Control Device Attached with the Stack	Bag Filter

Dovomotovo	Unit of	Drotocol	Emission Prescribe	Analysis Results
r ar ameter s	Measurement	FIGUCOI	Standard (OSPCB)	ST-9
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	107.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	9.6
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	2231801.5
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	737.1
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	3.4
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	74.4
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	45.5
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.10
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.41
Total Fluoride	mg/Nm ³	Calculation	-	0.51
Fluoride Emission	Kg/T	Calculation	0.3	0.055

iontek Consultancy Services P

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Surface & Sub-Surface Investigation
 Agricultural Development
- Quality Control & Project Management
 Information Technology
 - Public Health Engineering

Mine Planning & Design
 Mineral/Sub-Soil Exploration
 Waste Management Services

Test Report No.:04740

chnology • Min

Date: 31.07.2023

Laboratory Services

Environment Lab Food Lab

Material Lab Soil Lab

Mineral Lab

& Microbiology Lat

STACK EMISSION MONITORING REPORT FOR JULY-2023

- 1. Name of Industry
- 2. Date of Sampling

Renewable Energy

- 3. Sampling Location
- 4. Name of sampling Instrument
- 5. Sample Collected by
- 6. Date of Analysis

- M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
 18.07.2023
- : ST-10: Stack attached to GTC-2 (Pot room)
- : Stack Sampler
 - : VCSPL Representative in presence of Aditya Aluminium Representative
 - : 19.07.2023 TO 22.07.2023

Stack Description			
Stack Height	100 Meter		
Stack Diameter	10.4 Meter		
Height of Sampling Point	65 Meter		
Number of POT in operation	180 No.		
Pollution Control Device Attached with the Stack	Bag Filter		

Parameters	Unit of	Protocol	Emission Prescribe	Analysis Results
rarameters	Measurement	Frotocol	Standard (OSPCB)	ST-10
Stack Temperature	0C	IS 11255: Part 3 :1985 (Reaff 2008)	-	110.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	8.6
Quantity of Gas Flow	Nm3/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	1978548.4
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	735.2
Concentration of Particulate Matter as PM	mg/Nm3	IS 11255: Part 1 :1985 (Reaff 2003)	50	3.8
Sulphur dioxide as SO2	mg/Nm3	EPA Method 6C	-	75.1
Oxides of Nitrogen as NOx	mg/Nm3	EPA Method 7E	-	62.6
Particulate Fluoride	mg/Nm3	Distillation followed by Ion Electrode method	-	0.10
Gaseous Fluoride	mg/Nm3	Ion Electrode method	-	0.41
Total Fluoride	mg/Nm3	Calculation	-	0.51
Fluoride Emission	Kg/T	Calculation	0.3	0.048

Plot No.- M-22 & 23, Chandaka Industrial Estate, Patia, Bhubaneswar, Khurda, Odisha-751024, India Tel.: 0674-3511721 E-mail: visiontek@vcspl.org,visiontekin@gmail.com Visit us at: www.vcspl.org

tek Consultancy Services Pvt.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Surface & Sob-Surface Investigation Quality Control & Project Management Renewable Energy

 Agricultural Development Information Technology Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Mineral Lab Microbiology Lab

Laboratory Services Esvironment Lab Food Lab

Material Lab

Soil Lab

k

Test Report No.: 06867

Date: 31.08.2023

STACK EMISSION MONITORING REPORT FOR AUGUST-2023

- 1. Name of Industry
- 2. Date of Sampling
- 3. Sampling Location
- 4. Name of sampling Instrument
- 5. Sample Collected by
- 6. Date of Analysis

- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- : 21.08.2023
 - : ST-9: Stack attached to GTC-1 (Pot room)
- : Stack Sampler
 - : VCSPL Representative in presence of Aditya Aluminium Representative
- 22.08.2023 TO 24.08.2023

Stack Desc	ription
Stack Height	100 Meter
Stack Diameter	10.4 Meter
Height of Sampling Point	65 Meter
Number of POT in operation	180 No.
Pollution Control Device Attached with the Stack	Bag Filter

Bayamataya	Unit of	Protocol	Emission Prescribe	Analysis Results
rarameters	Measurement	Frotocol	Standard (OSPCB)	ST-9
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	103.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	9.1
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	2155761.7
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	739.2
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	3.51
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	71.6
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	46.2
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.11
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.39
Total Fluoride	mg/Nm ³	Calculation	-	0.50
Fluoride Emission	Kg/T	Calculation	0.3	0.051

ontek Consultancy Services Pvt.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

• Surface & Sob-Surface Investigation Quality Control & Project Management Renewable Energy

 Agricultural Development Information Technology

Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Microbiology Lab

Test Report No.: 06868

Date: 31.08.2023

Laboratory Services Esvironment Lab Food Lab

Material Lab

Soil Lab

Mineral Lab

k

STACK EMISSION MONITORING REPORT FOR AUGUST-2023

- 1. Name of Industry 2. Date of Sampling
- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- : 21.08.2023
 - : ST-10: Stack attached to GTC-2 (Pot room)
- 4. Name of sampling Instrument
- 5. Sample Collected by

3. Sampling Location

- 6. Date of Analysis
- VCSPL Representative in presence of Aditya Aluminium Representative
- : 22.08.2023 TO 24.08.2023

: Stack Sampler

		Stack Description	1		
Stack Height			100 Meter		
Stack Diameter			10.4 Meter		
Height of Sampling Point			65 Meter		
Number of POT in operation			180 No.		
Pollution Control Device Atta	ched with the Sta	ck	Bag Filter		
Parameters	Unit of Measurement	Proto	ocol	Emission Prescribe Standard (OSPCB)	Analysis Results ST-10
Stack Temperature	0C	IS 11255: Part 3 :1	985 (Reaff 2008)	_	106.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1	985 (Reaff 2008)	-	8.0
Quantity of Gas Flow	Nm3/Hr	IS 11255: Part 3 :1	985 (Reaff 2008)	-	1864994.7
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1	985 (Reaff 2008)	-	737.2
Concentration of Particulate Matter as PM	mg/Nm3	IS 11255: Part 1 :1	985 (Reaff 2003)	50	4.2
Sulphur dioxide as SO2	mg/Nm3	EPA Met	hod 6C	-	72.6
Oxides of Nitrogen as NOx	mg/Nm3	EPA Met	hod 7E	-	62.4
Particulate Fluoride	mg/Nm3	Distillation followed by Ion Electrode method		-	0.11
Gaseous Fluoride	mg/Nm3	Ion Electroc	le method	-	0.41
Total Fluoride	mg/Nm3	Calcul	ation	-	0.52
Fluoride Emission	Kg/T	Calcul	ation	0.3	0.047

Vis Vis	siontek Consu (Committed	Iltancy So For Better Environme	ervices Pv	t. Lt
	Certified for : ISO 9001:2015, ISO 1400 Accredited by : NABET-A Gr	1:2015, ISO 45001:2018 (OH ade, MOEF & CC/CPCB &	&S), ISO/IEC 17025:2017 SPCB-A Grade	Environment L Ford Lab Material Lab
rastructure Enginering ter Resource Management vironmental & Social Study	Surface & Sub-Surface Investigation Quality Control & Project Management Renewable Energy	Agricultural Development Information Technology Public Health Engineering	Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services	Sell Lab Mineral Lab & Micrabiology L

Test Report No.: VCSPL/23-24/R-07837 Date: 30.09.2023 <u>STACK EMISSION MONITORING REPORT FOR SEPTEMBER-2023</u>

1. Name of Industry

• Wa • En

- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga
- 2. Date of Sampling
 3. Sampling Location
- : ST-9: Stack attached to GTC-1 (Pot room)
- 4. Name of sampling Instrument : Stack Sampler

: 11.09.2023

- 5. Sample Collected by
- 6. Date of Analysis
- : VCSPL Representative in presence of Aditya Aluminium Representative
- : 12.09.2023 TO 14.09.2023

Stack D	escription
Stack Height	100 Meter
Stack Diameter	10.4 Meter
Height of Sampling Point	65 Meter
Number of POT in operation	180 No.
Pollution Control Device Attached with the Stack	Bag Filter

Parameters	Unit of	Protocol	Emission Prescribe	Analysis Results
	Measurement		Standard (OSPCB)	ST-9
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	102.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	8.9
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	2109632.5
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	740.0
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1 :1985 (Reaff 2003)	50	3.86
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	73.2
Oxides of Nitrogen as NO _x	mg/Nm ³	EPA Method 7E	-	45.4
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.11
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.40
Total Fluoride	mg/Nm ³	Calculation	-	0.51
Fluoride Emission	Kg/T	Calculation	0.3	0.052

 Infrastructure Engineering Water Resource Management Environmental & Social Study

 Surface & Sub-Surface Investigation Quality Control & Project Management Renewable Energy

- Agricultural Development Information Technology
 - Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Environment Lab Food Lab Material Lab Suil Lab Mineral Lab A Micrabiology Laf

Date: 30.09.2023 Test Report No.: VCSPL/23-24/R- 07838 **STACK EMISSION MONITORING REPORT FOR SEPTEMBER-2023**

- 1. Name of Industry
- : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga 11.09.2023 :
- 2. Date of Sampling 3. Sampling Location
- ST-10: Stack attached to GTC-2 (Pot room)
- 4. Name of sampling Instrument
- 5. Sample Collected by
- 6. Date of Analysis
- : VCSPL Representative in presence of Aditya Aluminium Representative
- : 12.09.2023 TO 14.09.2023

: Stack Sampler

Stack Description								
Stack Height	100 Meter							
Stack Diameter	10.4 Meter							
Height of Sampling Point	65 Meter							
Number of POT in operation	180 No.							
Pollution Control Device Attached with the Stack	Bag Filter							

Pollution Control Device Attached with the Stack

Parameters	Unit of Measurement	Protocol	Emission Prescribe Standard (OSPCB)	Analysis Results ST-10
Stack Temperature	0C	IS 11255: Part 3 :1985 (Reaff 2008)	-	107.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	8.2
Quantity of Gas Flow	Nm3/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	1919527.9
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	738.6
Concentration of Particulate Matter as PM	mg/Nm3	IS 11255: Part 1 :1985 (Reaff 2003)	50	3.6
Sulphur dioxide as SO2	mg/Nm3	EPA Method 6C	-	74.4
Oxides of Nitrogen as NOx	mg/Nm3	EPA Method 7E	-	61.6
Particulate Fluoride	mg/Nm3	Distillation followed by Ion Electrode method	-	0.10
Gaseous Fluoride	mg/Nm3	Ion Electrode method	-	0.40
Total Fluoride	mg/Nm3	Calculation	-	0.51
Fluoride Emission	Kg/T	Calculation	0.3	0.046

nexure-3

INX 8	Avg. in	ЬРМ	0.092	0.080	0.376	0.112	0.165	0.137	Avg. in	PPM	0.054	0000	010.0	0.108	1010	0 100	Avg. in	Mdd	0.031	0.136	0.345	0.079	0.148	0.123	Avg. in	ЪРМ	0.021	0.176	0.542	0.145	0.221	0.184	Avg. in	МЧЧ	0.006	0 564	0.131	0.218	0.182	Avg. in	PPM	0.161	0.287	0.550	0.168	0.292	0.243
Ann							m)	(W3)	ednesday	1-05-23	0.0120	00100	60T0'0	0.2162		(M3)							Ē	(W3)	Monday	1-07-23	0.0076	0.2456	0.5921	0.0784	Ē	(M3)	hursday	1-08-23	0.0011	0.5361	0.0038	Ē	(M3)							(m	(M3)
	inday	-04-23	(199	032	0.51	.204	Average(pp	verage (mg)	esday W	-05-23 3	0360	0000	7700	2/02 1408	Averagen	versee (me	ridav	-06-23	0087	0678	5092	0444	Average(pp	verage (mg,	I landay I	-07-23 3	0075	4139	5897	0818	Average (pp	verage (mg,	Inesday T	-08-23 E	1550	4164	0101	Average(pp	verage (mg,	turday	-09-23	(330	2685	4437	1016	Average (pp	verage (mg,
	irday Su	04-23 30-	049 0	007 0	371	14	Monthly	Monthly A	nday Tu	05-23 30-	452		10 10	218 0.0	Manahlie	Monthly A	rsdav F	0e-23 30-	612 0.	693 0.	146 0.	0.0	Monthly	Monthly A	irday Su	7-23 30-	126 0.	504 0.	843 0.	843 0.	Monthly	Monthly A	sday Wed	08-23 30-	024 0.	563 0.	045 0.	Monthly	Monthly A	day Sat	9-23 30-	240 0	039 0.	874 0.	939 0.	Monthly	Monthly A
	day Satu	04-23 29-0	1285 0.1	023 0.	773 0.	037 0.			oM Mo	05-23 29-0	150 0.0			10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			uesday Thu	06-23 29-0	013 0.0	396 0.C	751 0.5	187 0.			day Satu	07-23 29-0	171 0.0	016 0.1	556 0.5	417 0.5			nday Tue	98-23 29-0	0.08	687 0.5	1585 0.1			rsday Fri	39-23 29-0	261 0.	215 0.2	884 0.4	325 0.1		
	sday Fri	4-23 28-0	547 0.0	L46 0.0	533 0.3	0.1			rday Sur	5-23 28-0	0.0	00	40 0.0	100 565	~~~		day Medr	6-23 28-0	02 0.0	75 0.	74 0.	82 0.			sday Fri	7-23 28-0	95 0.0	0.2	164 0.1	564 0.0			day Moi	8-23 28-0	03	99 0.4	36 0.0			esday Thui	9-23 28-0	55 0.2	39 0.3	25 0.4	1.0 0.1		
	sday Thurs	-23 27-0-	2 0.06	7 0.01	9 0.26	1 0.20			iy Satur	-23 27-0	20.00		11	0.06			av Tues	-23 27-0	0.0	4 0.4	4 0.6	0.1			sday Thurs	-23 27-0	3 0.00	1 0.20	8 0.44	6 0.06			lay Sun	-23 27-00	1 0.0	7 0.4	1 0.0			lay Wedn	-23 27-09	1 0.1	57 0.20	57 0.62	76 0.21		
	lay Wedne	-23 26-04	4 0.14	6 0.00	2 0.42	5 0.12			day Frid:	-23 26-05	000	1010	TO'O 01	017	1410		av Monr	-23 26-06	1 0.00	6 0.56	8 0.82	0			lay Wedne	-23 26-07	0.00	4 0.3	51 0.43	36 0.01			y Satur	-23 26-08	38 0.00	28 0.55	1 0.02			lay Tueso	-23 26-09	9 0.24	73 0.18	74 0.43	92 0.15		
	lay Tuesc	-23 25-04	8 0.06	35 0.04	⁴⁹ 0.53	57 0.06			sday Thurs	-23 25-05	000		20.0	4 0.020	1		lav Sund	-23 25-06	4 0.01	5 0.58	9 0.54	2 0.00			lay Tuesc	-23 25-07	1 0.010	1 0.15	3 0.43	0.01			day Frida	-23 25-08	0.00	93 0.64	78 0.06			ay Mond	-23 25-09	8 0.16	37 0.23	0.70	53 0.249		
	ay Mond	-23 24-04	54 0.13	34 0.013	9 0.454	27 0.186			ay Wedne:	23 24-05	0.16			73 0.11	1410		v Sature	-23 24-06	53 0.00	35 0.37	0.72	33 0.04			ay Mond	-23 24-07	66 0.01	9 0.11	69 0.53	11 0.15			sday Thurse	-23 24-08	0.016	0.56	90'0 60			lay Sund	-23 24-09	3 0.15	38 0.263	8 0.530	55 0.256		
	lay Sund	23 23-04	1 0.10	14 0.035	1 0.56	2 0.192			ay Tuesd	23 23-05	000		70.0	7 0.07			lav Frida	23 23-06	1 0.096	3 0.358	9 0.620	1 0.158			ay Sund	23 23-07	5 0.00	15 0.090	8 0.346	7 0.152			ay Wedne	23 23-08	2 0.00	1 0.57	90.05(y Saturo	23 23-09	9 0.08	5 0.238	6 0.65	6 0.466		
	y Saturd	23 22-04	r3 0.025	4 0.003	57 0.285	5 0.00			ay Mond	23 22-05	200	1000	000	0.03	-		sdav Thurse	23 22-06-	3 0.066	7 0.317	8 0.467	4 0.045			y Saturd	23 22-07-	14 0.005	6 0.184	7 0.572	15 0.167			ay Tuesd	-23 22-08	00.00	9 0.545	9 0.03Z			lay Frida	23 22-09-	5 0.15	1 0.317	2 0.566	1 0.318		
	ay Frida	23 21-04-	0.017	0.011	0.326	0.081			ay Sunda	23 21-05-	200	000	10.0	6T-0	-		w Wednes	23 21-06-	7 0.057	6 0.07	7 0.382	1 0.032			ay Frida	23 21-07-	0.008	0.077	0.472	860.0			y Mond	23 21-08-	0.004	7 0.548	8 0.079			day Thursd	21-09-	0.16	7 0.319	6 0.65	2 0.209		
	fay Thursd	3 20-04-2	0.085	0.007	0.202	0.044			Saturd	3 20-05-2	0.00	0000	710.0	0.119	2440		v Tuesda	3 20-06-2	0.019	0.076	0.205	0.033			fay Thursd	3 20-07-3	0.008	0.196	0.523	0.096			y Sunda	3 20-08-	00:0	0.538	0.028			y Wednes	3 20-09-3	0.337	0.240	0.482	0.162		
	Wednesd	19-04-2	0.091	0.025	0.202	0.037			Friday	19-05-2	0.000.0	00000	00L1 0	0.1083	200210		Mondar	19-06-2	0.0341	0.0253	0.3501	0.0874			Wednesd	19-07-2	0.0333	0.1214	0.5723	0.1549			Saturda	19-08-2	0.0113	0.6347	0.1533			Tuesdar	19-09-2	0.282	0.2547	0.5955	0.1893		
	Tuesday	18-04-23	0.093	0.012	0.243	0.006			Thursday	18-05-23	200	10.0	CTOD'D	0.0748	P± /010		Sunday	18-06-23	0.0182	0.0358	0.1407	0.0952			Tuesday	18-07-23	0.0239	0.1426	0.5772	0.1969			Friday	18-08-23	0.0061	0.5838	0.099			Monday	18-09-23	0.411	0.2331	0.4699	0.1917		
	Monday	17-04-23	0.108	0.027	0.161	600.0			Wednesday	17-05-23	0.0670	10000	tarc o	10200	10100		Saturday	17-06-23	0.0214	0.02554	0.2042	0.0094			Monday	17-07-23	0.049	0.1832	0.7517	0.2072			Thursday	17-08-23	0.0082	0.666	0.314			Sunday	17-09-23	0.375	0.2066	0.5886	0.1049		
	Sunday	16-04-23	0.149	0.054	0.362	0.036			Tuesday	16-05-23	20000	104000	ZTODO:D	0.0878	0.0000		Friday	16-06-23	0.0012	0.0409	0.1715	0.0676			Sunday	16-07-23	0.0042	0.285	0.7043	0.4189			Wednesday	16-08-23	0.003	0.606	0.084			Saturday	16-09-23	0.296	0.3965	0.6365	0.183		
	Saturday	15-04-23	0.098	0.086	0.231	0.001			Monday	15-05-23	0.0206	00000	CCUU.U	0.0636	00000		Thursday	15-06-23	0.0389	0.0556	0.2331	0.0538			Saturday	15-07-23	0.0126	0.2957	0.7043	0.1435			Tuesday	15-08-23	0.0021	0.5601	0.1454			Friday	15-09-23	0.192	0.483	0.5451	0.1858		
	Friday	14-04-23	0.108	0.062	0.305	0.001			Sunday	14-05-23	0.0051	10000	10000	0.0992	40000		Wednesday	14-06-23	0.0135	0.0349	0.1282	0.1509			Friday	14-07-23	0.0272	0.1228	0.545	0.1099			Monday	14-08-23	0.0032	0.4568	0.1028			Thursday	14-09-23	0.4032	0.4436	0.5353	0.1369		
	Thursday	13-04-23	0.1028	0.1241	0.3319	0.0968			Saturday	13-05-23	0.0427	20000	0.0099	0 000 U	04000		Tuesday	13-06-23	0.0424	0.0251	0.2523	0.1094			Thursday	13-07-23	0.0159	0.1117	0.497	0.1751			Sunday	13-08-23	0.0072	0.612	0.1869			Wednesday	13-09-23	0.1837	0.4061	0.6485	0.1635		
	Wednesday	12-04-23	0.1195	0.1025	0.3273	0.029			Friday	12-05-23	0.062	0000	0000	0.075	1000		Monday	12-06-23	0.0671	0.0669	0.1661	0.1186			Wednesday	12-07-23	0.0169	0.1201	0.5765	0.1624			Saturday	12-08-23	0.002	9670	0.1355			Tuesday	12-09-23	0.199	0.389	0.506	0.028		
tember '23	Tuesday	11-04-23	0.0398	0.1453	0.3608	0.089			Thursday	11-05-23	DOAF	6000	01040	0.114	Land Land		Sundav	11-06-23	0.0174	0.0532	0.2468	0.067			Tuesday	11-07-23	0.0242	0.0666	0.519	0.108			Friday	11-08-23	0.0047	0.5918	0.2072			Monday	11-09-23	0.0017	0.2412	0.5408	0.0899		
il '23 TO Sep	Monday	10-04-23	0.0286	0.0669	0.3983	0.0655			Wednesday	10-05-23	0.156	0000	600.0	0.128	0.44.0		Saturday	10-06-23	0.0137	0.0551	0.0517	0.0599			Monday	10-07-23	0.0057	0.0835	0.4496	0.0298			Thursday	10-08-23	0.0159	0.4711	60000			Sunday	10-09-23	0.002	0.278	0.5653	0.0437		
REPORT Apr	Sunday	09-04-23	0.0995	0.1563	0.4501	0.1687			Tuesday N	09-05-23	0120	0010	o TO'D	0.161	1010		Friday	09-06-23	0.0065	0.1138	0.1677	0.042			Sunday	09-07-23	0.019	0.116	0.635	0.222			Vednesday	62-80-60	0.009	10000	0.036			Saturday	09-09-23	0.0017	0.2033	0.5887	0.1551		
ORING(HF) I	Saturday	08-04-23	0.0503	0.1126	0.4402	0.0897			Monday	08-05-23	0.067	0000	CUU.U	100.0	2000		Thursday	08-06-23	0.0032	0.1063	0.1854	0.0589			Saturday	08-07-23	0.008	0.377	0.697	0.412			Tuesday N	08-08-23	0.0106	0.5672	0.1805			Friday	08-09-23	0.002	0.2384	0.4156	0.0566		
TIVE MONIT	Friday	07-04-23	0.095	0.185	0.367	0.137			Sunday	07-05-23	C 0.07A2	00000	2710.0	2010.0	101110		Vednesda	07-06-23	600'0	0.043	0.332	0.212			Friday	07-07-23	0.0189	0.231	0.5954	0.3681			Monday	07-08-23	0.0014	0.6919	0.524			/ Thursday	07-09-23	0.0026	0.38	0.5722	0.131		
NLINE FUGI	Thursday	06-04-23	0.0977	0.0817	0.3735	0.0936			Saturday	06-05-23	0,000	00000	0 45 70	0.1321	440410		Tuesday	06-06-23	0.0213	0.0098	0.1826	0.0674			Thursday	06-07-23	0.0167	0.4332	0.7285	0.1744			Sunday	06-08-23	0.0219	0.6379	0.1251			Wednesday	06-09-23	0.0032	0.3951	0.4581	0.1622		
OTROOM O	Nednesday	05-04-23	0.112	0.1808	0.3627	0.1608			Friday	05-05-23	0.0511	TTCOOO	0.4570	0.2109	00000		Monday	05-06-23	0.0572	0.0019	0.3406	0.0688			Nednesday	05-07-23	0.0925	0.1084	0.5527	0.0016			Saturday	05-08-23	0.0059	0.6715	0.3219			Tuesday	05-09-23	0.0008	0.4516	0.655	0.3149		
•	Tuesday 1	04-04-23	0.0873	0.0901	0.416	0.2065			Thursday	04-05-23	0.000	10000	000000	0.2430	00000		Sunday	04-06-23	0.0708	0.0026	0.2752	0.0508			Tuesday 1	04-07-23	0.0036	0.0674	0.4342	0.0433			Friday	04-08-23	0.0013	5293	0.2811			Monday	04-09-23	0.0007	0.3444	0.5036	0.186		
	Monday	03-04-23	0.0743	0.2371	0.4757	0.1552			/ednesda	03-05-23	0.0001	10000	TOTU:U	0.062	1000		Saturday	03-06-23	0.0606	0.0257	0.2412	0.1787			Monday	03-07-23	0.0632	0.0596	0.4614	0.003			Thursday	03-08-23	0.0005	0.5468	0.2413			Sunday	03-09-23	0.0004	0.196	0.6011	0.084		
	Sunday	02-04-23	0.191	0.248	0.514	0.241			Tuesday N	02-05-23	0.1726	007710	0/10/0	0.2069	000400		Friday	02-06-23	0.0759	0.0055	0.1899	0.0538			Sunday	02-07-23	0.0763	0.1257	0.1257	0.0269			/ednesday	02-08-23	0.0008	0.4973	0.1042			Saturday	02-09-23	0.0023	0.0962	0.4561	0.0004		
	aturday	1-04-23	0.104	0.212	0.627	0.39			fonday	1-05-23	0.005		/ncn/r	0000			hursday	1-06-23	0.0127	0.0032	0.2574	0.02			aturday	1-07-23	0.0454	0.0725	0.5715	0.0004			uesday M	1-08-23	0.003	0.6785	0.2509			Friday	1-09-23	0.1606	0.2848	0.5504	0.1712		
	Ň	•	PPM	PPM	РРМ	PPM			2	0	DDAA	- LIN	NA4	DPM				0	Mdd	PPM	PPM	PPM			ŝ	0	PPM	PPM	PPM	PPM				•	Mdd	bpM	Mdd				0	PPM 1	PPM	PPM	PPM		
			3H (06	80) HF	80) HF	90) HF					301 HC		POLI LE	00/ HF					90) HF	80) HF	80) HF	90) HF					3H (06.	80) HF	80) HF	90) HF					90) HF	80) HF	90) HF					90) HF	80) HF	80) HF	90) HF		
	Anr.23		#1 (8001-80	#2 (B091-B1,	#3 (A091-A1.	#4 (A001-A0.			Aar. 72	ez-yen	M1 (BOD1-BOG	00-T000 01	TG-T6001 74	TW-T20W/ CH	nu ennul tu			67-UN	909-T009 T#.	#2 (8091-81)	#3 (A091-A1	#4 (A001-A0			1.1.72	67-In/	#1 (B001-B0	#2 (8091-81)	#3 (A091-A1	#4 (A001-A0.			Jue-23		#1 (B001-B0	#3 (A091-A1)	#4 (A001-A05			ian-33		#1 (B001-B0	#2 (8091-81)	#3 (A091-A1	#4 (A001-A0)		
	1		MISSION CH	MISSION CH	MISSION CH	MISSION CH				-	MISSION CH.	PAICON OF C	MISSION CL	MISSION CH.	ID ALCOPPINE				MISSION CH.	MISSION CH	MISSION CH.	MISSION CH.					MISSION CH	MISSION CH.	MISSION CH.	MISSION CH.			~		MISSION CH	MISSION CH.	MISSION CH.					MISSION CH	MISSION CH	MISSION CH.	MISSION CH.		
			FUGITIVE L	FUGITIVE L	FUGITIVE E	FUGITIVE					CLICITIME F	LICOLDU L	CINCTINE E	FIGITIVE					FUGITIVE	FUGITIVE E	FUGITIVE E	FUGITIVE E					FUGITIVE F	FUGITIVE E	FUGITIVE E	FUGITIVE E					FUGITIVE	FIGITIVE	FUGITIVE E					FUGITIVE	FUGITIVE L	FUGITIVE F	FUGITIVE E		

	Remarks							
	%Ash	utilised for the reporting Period	98.48	100.21	87.74	68.14	84.48	89.74
	Ash	utilised for the reporting Period	136717.34	138550.92	117745.7	99632.03	118601.48	117723.62
	Others		0	0	0	0	10815	4450
		Export of ash to other other countris	0	0	0	0	0	0
		Constructi on of shoreline protection structures in coastal districts	0	o	o	o	o	0
		Agricul ture	0	0	0	0	o	0
		Use Overbu dumps	0	o	0	0	o	0
		Filling of mine voids	0	o	0	o	o	0
-2023	(MT)	Filling of Low lying areas	o	o	o	6415	17921.64	15268.00
r-23 to Sept	Utilisation	n of Dams	o	o	o	o	o	0
period Ap	Modes of	Constructi on of roads/road flyover imbarkme nt	25.86	4325	0	0	o	0
SH) for the		Manufactu ring of sintered of cold bonded ash Aggregate s	o	o	o	o	o	0
H (FLY A		Ash and Geo- Bolymer based constuct ion material	0	o	o	o	o	0
COAL ASH		Ready mix concrete	o	o	0	0	o	0
ATION OF		Cement Manufactur ing ing	136691.48	133601.3	114511.2	92200.7	89117.98	97389.98
OF UTILIS		Fly ash based Products (Bricks/bl ocks/tiles fibre cement sheets,pi pes/boar ds/panels etc)	o	624.63	3234.53	1016.36	746.86	615.64
STATUS	Disposal	Method (DryHCS D/LCSD)	HCSD	HCSD	HCSD	HCSD	HCSD	HCSD
		capacity of dry fly ash storage (MT)	3 X 2500 (7500)	3 X 2500 (7500)	3 X 2500 (7500)	3 X 2500 (7500)	3 X 2500 (7500)	3 X 2500 (7500)
		Quantity of fly ash generated (MT)	138823	138257	134193	146206	140390	131187
		Quantity of Coal consumed during the reporting period	350874	352910	338643	377763	3,78,027	3,60,895
		Power Plant Installed Capacity(MW)	006	006	006	006	006	006
		Month	Apr-23	May-23	Jun-23	Jul-23	Aug-23	Sep-23
		Name and address of the TPP			Aditya Aluminium (A Division of M/s Hindalco Industries	Ltd.), PO- Lapanga, Dist.: Sambalpur Odisha-768212		
	-	S. S.	-	N	m	4	ى س	9

	Remarks							
		% Bottom Ash utilised for the reporting Period	100.00	100.00	100.00	100.00	100.00	100.00
		Bottom Ash utilised for the reporting Period	7412	7403	7088	6467	5792	5927
		Others	o	0	0	0	0	0
		Export of ash to other countris	0	0	0	0	0	0
		Constructi on of shoreline protection structures in coastal districts	O	0	0	0	0	0
		Agricul ture	0	0	0	0	0	0
		Use Overbu rden dumps	o	o	0	0	0	0
		Filling of mine voids	0	0	0	0	0	0
3		Filling of Low lying areas	7411.5	7403	7087.8	6467.3	5791.7	5927.0
to Sept-202	tion (MT)	Constructi on of Dams	0	0	0	0	0	0
iod Apr-23	s of Utilisa	Constructi on of roads/road and flyover imbarkme nt	o	o	o	o	o	o
H) for the per	Mode	Manufacturin g of sintered of cold bonded ash Aggregates	0	0	0	0	0	0
OTTAM AS		Ash and Geo- Polymer based constuctio n material	0	0	0	0	0	0
AL ASH (B		Ready mix concrete	0	o	0	0	0	0
ON OF COM		Cement Manufactu ring	0.0	0	0	0	0	0
OF UTILISATIC		Bottom Ash based Products (Bricks/blocks/ tiles/fibre comment sheets, pipes/b oards/panels etc)	0	0	0	0	0	0
STATUS		Disposal Method (Dry/HCS D/LCSD)	20	DZY	δ	ρı	Dry	D
		Capacity of bottom ash storage Silos (MT)	3000	3000	3000	3000	3000	3000
		Quantity of Bottom generated (MT)	7411.5	7403.0	7087.8	6467.3	5791.7	5927.0
		Quantity of Coal consumed during the reporting period	350874	352910	338643	377763	3,78,027	3,60,895.03
	_	Power Plant Installed Capacity(MW)	006	006	006	006	006	006
		Month	Apr-23	May-23	Jun-23	Jul-23	Aug-23	Sep-23
		Name and address of the TPP			Aditya Aluminium (A Division of M/s Hindalco Industries Ltd.),	PO- Lapanga, Dist.: Sambalpur Odisha-768212		
		. S		N	m	4	2	ø

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Agricultural Development Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration Waste Management Services

Laboratory Service Environment Lab Food Lab Material Lab Soil Lab Mineral Lab 柔 Microbiology Lab

Date: 03.07.2023

Apnex

Ref: VCSPL/23-24/TR-05925

ASH ANALYSIS REPORT JUNE-2023

: M/s Hindalco Industries Limited (Unit- Aditya Aluminium), Lapanga.

- Name of Industry **Sampling Location Date of Sampling Date of Analysis**
- : 12.06.2023

: 13.06.2023 TO 19.06.2023

: FA-01: CPP Fly Ash Silo

Sample Collected By : VCSPL Representative in presence of Aditya Aluminium Representative.

SL No	Damamatana	TT*4	Analysis Results	TI	Analysis Results
51. INO.	Parameters	Unit	FA-01	Unit	FA-01
Chemical	Analysis				
1	Na ₂ O	%	0.24	mg/kg	2400
2	MgO	%	0.93	mg/kg	9300
3	Al ₂ O ₃	%	22.2	mg/kg	222000
4	SiO ₂	%	51.1	mg/kg	511000
5	P ₂ O ₅	%	0.022	mg/kg	220
6	SO ₃	%	2.5	mg/kg	25000
7	K ₂ O	%	0.80	mg/kg	8000
8	CaO	%	4.3	mg/kg	43000
9	TiO ₂	%	0	mg/kg	
10	MnO	%	0.24	mg/kg	2400
11	Fe ₂ O ₃	%	9.1	mg/kg	91000
Heavy Me	tals Analysis				
1	Mercury as Hg	%	<0.001	mg/kg	<0.001
2	Arsenic as As	%	<0.001	mg/kg	<0.001
3	Lead as Pb	%	0.0163	mg/kg	163
4	Chromium as Cr	%	< 0.002	mg/kg	< 0.002
5	Vanadium as V	%	<0.001	mg/kg	<0.001
6	Iron as Fe	%	5.2861	mg/kg	52861
7	Cobalt as Co	%	<0.001	mg/kg	<0.001
8	Copper as Cu	%	0.065	mg/kg	650
9	Nickel as Ni	%	0.084	mg/kg	840
10	Zinc as Zn	%	0.0522	mg/kg	522
11	Strontium as Sr	%		mg/kg	
12	Barium as Ba	%	<0.001	mg/kg	<0.001

siontek Consultancy Services Pvt. Lt

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation
 Quality Control & Project Management
 Renewable Energy

Agricultural Development
 Information Technology
 Public Health Engineering

Mine Planning & Design
 Mineral/Sub-Soil Exploration
 Waste Management Services

Laboratory Services Eavironment Lab Freed Lab Minterial Lab Soil Lab Mineral Lab & Microbiology Lab

Ref: VCSPL/23-24/TR-05926

Date: 03.07.2023

ASH ANALYSIS REPORT JUNE-2023

- 1. Name of Industry Sampling Location
 - M/s Hindalco Industries Limited (Unit- Aditya Aluminium), Lapanga.
 BA-01: CPP Bottom Ash Silo
- 2. Date of Sampling : 12.06.2023
- 3. Date of Analysis : 13.06.2023 TO 19.06.2023
- 4. Sample Collected By : VCSPL Representative in presence of Aditya Aluminium Representative.

CL N.	Descent	TI*4	Analysis Results	T	Analysis Results		
SI. NO.	Parameters	Unit	BA-01	Unit	BA-01		
Chemical A	Analysis	•	•	·			
1	Na ₂ O	%	0.27	mg/kg	2700		
2	MgO	%	2.4	mg/kg	24000		
3	Al ₂ O ₃	%	25.9	mg/kg	259000		
4	SiO ₂	%	50.2	mg/kg	502000		
5	P ₂ O ₅	%	0.023	mg/kg	230		
6	SO ₃	%	11.5	mg/kg	115000		
7	K ₂ O	%	0.95	mg/kg	9500		
8	CaO	%	33.2	mg/kg	332000		
9	TiO ₂	%	0	mg/kg			
10	MnO	%	0.37	mg/kg	3700		
11	Fe ₂ O ₃	%	7.4	mg/kg	74000		
Heavy Met	als Analysis	•	·				
1	Mercury as Hg	%	<0.001	mg/kg	<0.001		
2	Arsenic as As	%	<0.001	mg/kg	<0.001		
3	Lead as Pb	%	0.0157	mg/kg	157		
4	Chromium as Cr	%	< 0.002	mg/kg	< 0.002		
5	Vanadium as V	%	<0.001	mg/kg	<0.001		
6	Iron as Fe	%	6.2	mg/kg	62000		
7	Cobalt as Co	%	<0.001	mg/kg	<0.001		
8	Copper as Cu	%	0.028	mg/kg	280		
9	Nickel as Ni	%	0.092	mg/kg	920		
10	Zinc as Zn	%	0.069	mg/kg	690		
11	Strontium as Sr	%		mg/kg			
12	Barium as Ba	%	<0.001	mg/kg	<0.001		

Annexure-6

Mitra S. K. Private Limited

Plot No-687/2428. Ekamra Villa Square. Jaydev Vihar, 1^{et} Floor, IRC Village, Bhubaneswar, Khordha, Odisha-751015 [CIN: U51909WB1956PTC023037]

T :(0674) 2360917, 9777450189 F :(0674) 2362916

Name & Address of the Customer : HINDALCO INDUSTRIES LTD. (Unit- Aditya Aluminium) At/Po: Lapanga, Beside SH-10 Sambalpur, Odisha-768212

TEST REPORT

Report No. : BBS/600 Date : 11.07:2023 Sample No. : MSKGL/ED/2023-24/06/00001 Sample Description : Ground Water Sampling Location : Piezometric Borewell-1 (Near Ash Pond) Date of Sampling : 27,06,2023

ANALYSIS RESULT

Organoleptic and Physical Parameters as per 1S 10500 : 2012

SL No.	Test Parameters	Requirement (Acceptable Limit	Permissible limit in the absence of alternate Source	Test Method / Specification	Result
1.	pF1 at 26 ⁰ C	0.3-8.3	No Relaxation	18 3925 (Part 11)-1984 Rifm: 2012	7.46
2	Turbidity in mg/l	1	5	IS 3025 (Part 10)-1984 Rtfm: 2012	BDL/DL:1.0)
3,	Total Dissolved Solids as TDS in mg/l	500	2000	IS 3025 (Part 16)-1984; Rffits:2012	172
4,	Aluminium as Al in mg/l	0.03	0.2	18 3023 (Part 2) 2004 RA 2014	BDL/DL:0.01)
5.	Boron as B in mg/l	0.5	1.0	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.5)
6.	Calcium as Ca in mg/l	75	200	IS 3025 (Part 40)- 1991 Rffm: 2014	22
7.	Chloride as Cl in mg/l	250	1000	15 3025 (Part 32)-1988 Rffin: 2014	14
8.	Copper as Cu in mg/I	0.05	1.5	IS 3025 (Part 2) 2004 RA 2014	BDL/DL/0.02)
9.	Flouride as F in mg/1	1.0	1.5	IS 3025 (Part 60)- 2008 Rffm: 2013	0.32
10,	Iron as Fe in mg/1	0.3	No Relaxation	IS 3025 (Pari 53)-1988 Rffm: 2014	0.42
11,	Magnesium as Mg in mg/l	30	100	1S 3025 (Part 46)-1994 Rffm: 2014	10
12.	Manganese as Mn in mg/l	0.1	0.3	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
13.	Nitrate as NO3 in mg/l	45	No Relaxation	15 3025 (Part 34)-1988 Rffm: 2014	0.2
14.	Phenolic Compounds as C6H5OH in mg/l	0.001	0.002	IS 3025 (Part 43)- 1992; Riffin: 2014	BDL(DL:0.001)
15.	Selenium as Se in mg/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
16.	Sulphate as SO4 in mg/l	200	400	IS 3025 (Part 24)- 1986 Riffm: 2014	14
17.	Total Hardness as CaCO3 in mg/l	200	600	IS 3025 (Part 21)-2013	80
18.	Cadmium as Cit in reg/l	0.003	No Relaxation	IS 3625 (Port 2) 2004 RA 2014	BDL(DL:0.001)
19.	Cyanide as CN in mg/l	0.05	No Relaxation	IS 3025 (Part 27)- 1986; Rffm:2003	BDL(DL:0.01)
20.	Lead as Pb in mg/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
21	Mereury as Hg in mg/l	0.001	No Relaxation	IS 3025(Part 48)-1994	BDL(DL:0.001)
22,	Arsenic as As in mg/l	0.01	0.05	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
23.	Total Chromium as Cr in mg/l	0.05	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
24.	Sodium as Na in mg/l	1021201		APHA 23rd Edition, 3500 Na B	16
25.	Conductivity in us/em			APHA 23 rd Edition, 2510B	240
26.	Potassium as K in mg/i			APHA 23rd Edition, 3500 K B 2017	3.1
27.	Zine as Za in mg/l	5	15	IS 3025 (Part 2) 2004 RA 2014	BDL(DL.0.02)
28.	Total Alkalinity as CaCO3 in mg/l	200	600	15 3025 (Part 23)- 1986 Rffm: 2009	82

Report P Dareu

Mitra S. K. Private Limited

Authorized Signatory

Plot No-687/2428, Ekamra Villa Square. Jaydev Vihar, 1^{er} Floor, IRC Village, Bhubaneswar, Khordha, Odisha-751015 [CIN: U51909WB1956PTC023037]

T :(0674) 2360917, 9777450189

F : (0674) 2362918 Name & Address of the Castomer : HINDALCO INDUSTRIES LTD. (Unit- Aditya Aluminium) At/Po: Lapanga, Beside SH-10 Sambalpur, Odisha-768212

TEST REPORT

Report No. : BBS/601 Date : 11.07.2023 Sample No. : MSKGL/ED/2023-24/06/00002 Sample Description : Ground Water Sampling Location : Pizometric Borewell-2 (Near Proposed Ash Pond) Date of Sampling : 27.06.2023

ANALYSIS RESULT Organoleptic and Physical Parameters as per IS 10500 : 2012

SL No.	Test Parameters	Requirement Acceptable Limit	Permissible limit in the absence of alternate Source	Test Method / Specification	Result
1.	pH at 26°C	6.5-8.5	No Relaxation	IS 3025 (Part 11)-1984 Rffm: 2012	7.37
2	Turbidity in mg/l	1	5	1S 3025 (Part 10)-1984 Rffm: 2012	BDL(DL:1.0)
3.	Total Disselved Solids as TDS in mg/l	500	2000	IS 3025 (Part 16)-1984; R(fm:2012	102
4.	Aluminium as Al in mg/l	0.03	0.2	IS 3025 (Part 2) 2004 RA 2014	BD1/DE-0.015
5.	Bocon as B in mg/l	0.5	1.0	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.5)
6.	Calcium as Ca in mg/l	75	200	IS 3025 (Part 40)- 1991 Rffin: 2014	16
7.	Chloride as Cl in mg/l	250	1000	1S 3025 (Part 32)-1988 Rffm: 2014	12
8.	Copper as Cu in mg/l	0.05	1.5	IS 3025 (Part 2) 2004 RA 2014	BDE(DL:0.02)
.9.	Flouride as F in mg/1	1.0	1.5	IS 3025 (Part 60)- 2008 Rffm; 2013	BDL(DL:0.2)
10,	Iron as Fe in mg/1	0.3	No Relaxation	IS 3025 (Part 53)-1988 Rifin: 2014	BDL(DL:0.005)
11.	Magnesium as Mg in mg/l	30	100	IS 3025 (Part 46)-1994 Riffin: 2014	42
12.	Manganese as Mn in mg/l	0.1	0.3	15 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
13,	Nitrate as NO3 in mg/l	45	No Relaxation	IS 3025 (Part 34)-1988 Rffin: 2014	1
14.	Phenolic Compounds as C6H5OH in mg/l	0.001	0.002	IS 3025 (Part 43)- 1992; Rffm: 2014	BDL(DL:0.001)
15.	Selenium as Se in mg/I	0.01	No Relaxation	IS 3625 (Part 2) 2004 RA 2014	BDL(01-0.005)
16.	Sulphate as SO4 in mg/l	200	400	IS 3025 (Part 24)- 1986 Rtfim: 2014	6
17.	Total Hardness as CaCO3 in mg/l	200	600	IS 3025 (Part 21)-2013	30
18.	Cadmium as Cd in mg/l	0.003	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL/DL:0.001)
19.	Cyanide as CN in mg/l	0.05	No Relaxation	1S 3025 (Part 27)- 1986; Rffin:2003	BDL(DL:0.005)
20.	Lead as Pb in mg/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
21.	Mercury as Hg in mg/l	0.001	No Relaxation	15 3625(Part 48)-1994	BDL/DL:0.005)
22.	Arsenic as As in mg/l	0.01	0.05	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
23.	Total Chroasium as Cr in mg/l	0.05	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
24.	Sodium as Na in mg1			APHA 23rd Edition, 3509 Na B	7.2
25.	Conductivity in us/em			APHA 23rd Edition, 2510B	121
26	Potassium as K in mg/l			APHA 23rd Edition, 3500 K B 2017	4.2
27.	Zine as Zn in mg/1	5	15	1S 3025 (Part 2) 2004 RA 2014	BEX.(DL:0.02)
28.	Total Alkalinity as CaCO3 in mg/l	200	600	IS 3025 (Part 23)- 1985 Rffm: 2009	60

ang Report Plenared

Mitra S. K. Private Limited

-A-K. Rak Authorized Signatory

Ptot No-687/2428, Ekamra Villa Square, Jaydev Vihar, 1^e Floor, IRC Village, Bhubaneswar, Khordha, Odisha-751015 [CIN: U51909WB1956PTC023037]

T :(0674) 2360917, 9777450189 F :(0674) 2362918

Name & Address of the Customer : HINDALCO INDUSTRIES LTD. (Unit- Aditya Aluminium) At/Po: Lapanga, Beside SH-10 Sambalpur, Odisha-768212

TEST REPORT

Report No. : BBS/602 Date : 11.07.2023 Sample No. : MSKGL/ED/2023-24/06/00003 Sample Description : Ground Water Sampling Location : Pizometric Borewell-3 (Near RR Colony) Date of Sampling : 27,06.2023

ANALYSIS RESULT

Organoleptic and Physical Parameters as per 1S 10500 : 2012

Sl. No.	Test Parameters	Requirement Acceptable Limit	Permissible limit in the absence of alternate Source	Test Method / Specification	Result
1.	pH at 26°C	6.5-8.5	No Relaxation	IS 3925 (Puri 11)-1984 R.ffm: 2012	7.29
2.	Turbicity in mg/l	1	5	IS 3025 (Part 10)-1984 Rffm: 2012	BDL(DL:1.0)
3	Total Dissolved Solids as TDS in mg/l	500	2000	1S 3025 (Part 16)-1984; Rffm:2012	262
4,	Aluminium as Al in mg/l	0.03	0.2	IS 3025 (Part 2) 2004 RA 2014	BDL(DL;0.01)
5.	Boron as B in mg/l	0.5	1.0	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.5)
6.	Calcium as Ca in mg/i	75	200	IS 3025 (Part 40)- 1991 Rffm: 2014	34
7,	Chloride as Cl in mg/i	250	1000	15 3025 (Part 32)-1988 Rffm: 2014	24
8.	Copper as Cu in mg/I	0.05	1.5	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
9	Floaride as F in mg/l	1.0	1.5	IS 3025 (Part 60)- 2008 Rffm: 2013	0.32
10.	Iron as Fe in mg/l	0.3	No Relaxation	15 3025 (Part 53)-1988 R.ffm: 2014	0.3
11.	Magnesium as Mg in mg/l	30	100	IS 3025 (Part 45)-1994 Rffm: 2014	7.2
12.	Manganese as Mn in mg/l	0.1	0.3	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
13.	Nitrate as NO3 in mg/l	45	No Relaxation	IS 3025 (Part 34) 1988 Riffm: 2014	BDL(DL-9.4)
14.	Phenolic Compounds as C6H5OH in mg/l	0.001	0.002	IS 3025 (Part 43)- 1992; Rifin; 2014	BDL(DL:9.001)
15.	Sclenium as Se in mg/l	0.01	No Relaxation	1S 3025 (Part 2) 2004 RA 2014	(809.0.10).01H
16.	Suiphate as SO4 in mg/l	200	400	IS 3025 (Part 24)- 1986 Rffin: 2014	24
17.	Total Hardness as CaCO3 in mg/l	200	600	IS 3025 (Part 21)-2013	146
18.	Cadmium as Cd in mg/l	0,003	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL-0.001)
19.	Cyanide as CN in mg/l	0.05	No Relaxation	1S 3025 (Part 27)- 1986; Rffm:2003	BDL(DL.0.005)
20.	Lend as Pb in mg4	0.01	No Relaxation	1S 3025 (Part 2) 2004 RA 2014	BDL(DL.0.001)
21.	Mercury as Hg in engl	0.001	No Relaxation	IS 3025(Part 48)-1994	BDL(DL.0.005)
22.	Arsenic as As in mg/l	0.01	0.05	1S 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
23.	Total Chromium as Cr in mg/l	0.05	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
24.	Sodium as Na in mg/l	1000		APHA 23rd Edition, 3500 Na B	18
25.	Conductivity in us/cm	14.010		APHA 23 st Edition, 2510B	360
26.	Potassium as K in mg/l	****		APHA 23rd Edition, 3500 K B 2017	5.2
27.	Zine as Zn in mg/l	5	15	1S 3025 (Part 2) 2004 RA 2014	BDI (DI -0.02)
28	Total Alkalinity as CaCOB in mail	200	600	15 3025 (Part 23 > 1986 Rffm) 2009	96

amas Report Prepared by:

Mitra S. K. Private Limited A.K. Path

Authorized Signatory

Plot No-687/2428, Ekamra Villa Square, Jaydev Vihar, 1st Floor, IRC Village, Bhubaneswar, Khordha, Odisha-751015 [CIN: U51909WB1956PTC023037]

T :(0674) 2360917, 9777450189 F :(0674) 2362918

Name & Address of the Customer : HINDALCO INDUSTRIES LTD. (Unit- Aditya Aluminium) At/Po: Lapanga, Beside SH-10 Sambalpur, Odisha-768212

TEST REPORT

Report No. : BBS/603 Date : 11.07.2023 Sample No. : MSKGL/ED/2023-24/06/00004 Sample Description : Ground Water Sampling Location : Pizometric Borewell-4 (Bomaloi Village) Date of Sampling : 27.06.2023

ANALYSIS RESULT

Organoleptic and Physical Parameters as per 1S 10500 : 2012

SL No.	Test Parameters	Requirement Acceptable Limit	Permissible limit in the absence of alternate Source	Test Method / Specification	Result
1.	pit at 26 ⁰ C	6.5-8.5	No Relaxation	15 3025 (Part 11)-1984 Rffm: 2012	7.22
2.	Turbidity in mg/l	1	3	(\$ 3025 (Part 10)-1984 Rffm: 2012	BDL(D1:1.0)
3.	Total Dissolved Solids as TDS in mg/l	500	2000	1S 3025 (Part 16)-1984; Rffm:2012	165
4,	Aluminium as Al in mg1	0.03	0.2	IS 3023 (Part 2) 2004 RA 2014	BDL(DL:0.01)
5.	Boron as B in mg/l	0.5	1.0	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.5)
6.	Calcium as Ca in mg/l	75	200	1S 3025 (Part 40)- 1991 Rffm: 2014	28
7.	Chloride as CI in mg/l	250	1000	15 3025 (Part 32)-1988 Riffin, 2014	20
8.	Copper as Cu in mg/l	0.05	1.5	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
9,	Flouride as F in mg/l	1.0	15	1S 3025 (Part 60)- 2008 Rifin: 2013	0.37
10.	Iron as Fe in mg/l	0.3	No Relaxation	IS 3025 (Part 53)-1988 Rffm: 2014	0.27
11.	Magnesium as Mg in mg/l	30	100	IS 3025 (Part 46)-1994 Rffm: 2014	8
12.	Manganese as Mn in mg/l	0,1	0.3	IS 3025 (Part 2) 2004 RA 2014	BDL(DL-0.02)
13.	Nitrate as NO3 in mg/l	45	No Relaxation	15 3025 (Part 34)-1988 Rffin; 2014	BDL(DL:0.04)
14,	Phenolic Compounds as C6H5OH in mg/l	0.001	0.002	18 3025 (Part 43)- 1992; Rffm: 2014	BDL(D1.:0.001)
15.	Selenium as Se in mg/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.005)
16.	Sulphate as SO4 in mg/l	200	400	IS 3025 (Part 24)- 1986 Rifin: 2014	14
17.	Total Hardness as CaCO3 in mg/l	200	600	IS 3025 (Part 21)-2013	110
18.	Cadmium as Ed in mg/l	0.003	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
19.	Cyanide as CN in mg/1	0.05	No Relaxation	IS 3025 (Part 27)- 1986; Rffm:2003	BDL(DL:0.005)
20.	Lead as Pb in mg/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
21	Mercury as Hg in mg/l	0.001	No Relaxation	IS 3025(Part 48)-1994	BDL(DL:0,005)
22.	Arsenic as As in mg/l	0.01	0.05	15 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
23.	Total Chromium as Cr in mg/I	0.05	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0,005)
24.	Sodium as Na in mg/1	1020207	2111 State of State o	APHA 23 rd Edition, 3500 Na B	18
25.	Conductivity in us/em			APHA 23 rd Edition, 2510B	240
26.	Potassium as K in mg/l			APHA 23rd Edition, 3500 K B 2017	5.1
27.	Zine as Zn in mg/l	5	15	(S 3625 (Part 2) 2064 RA 2014	BDL(DL:0.02)
28.	Total Alkalinity as CrCO3 in mg/1	200	600	15 3025 (Part 23)- 1986 R ffm: 2009	78

unga Report Prepared by:

Mitra S. K. Private Limited

A.K. Lach Authorized Signatory

Plot No-687/2428, Ekamra Villa Square, Jaydev Vihar, 1^{er} Floor, IRC Village, Bhubaneswar, Khordha, Odisha-751015 [CIN: U51909WB1956PTC023037]

T :(0674) 2360917, 9777450189 F :(0674) 2362918

Name & Address of the Customer : HINDALCO INDUSTRIES LTD, (Unit- Aditya Aluminium) At/Po: Lapanga, Beside SH-10 Sambalpur, Odisha-768212

TEST REPORT

Report No. : BBS/502 Date : 12.10.2023 Sample No. : MSKGL/ED/2023-24/09/00001 Sample Description : Ground Water Sampling Location : Piezometric Borewell-1 (Near Ash Pond) Date of Sampling : 28.09.2023

ANALYSIS RESULT

Organoleptic and Physical Parameters as per IS 10500 : 2012

SL No.	Test Parameters	Requirement (Acceptable Limit	Permissible limit in the absence of alternate Source	Test Method / Specification	Result
1,	pH at 26°C	0.3-8.5	No Relaxation	IS 3075 (Part 11)-1084 Prilin: 2012	7.10
2.	Turbidity in mg/l	1	5	IS 1025 (Part 10, 1084 Press 2012	7.40
З,	Total Dissolved Solids as TDS in mg/l	500	2000	15 3025 (Part 16), 1084- D ffree 2012	BOL(DL:1.0)
4	Aluminium as Al in mg/l	0.03	0.2	15 3025 (Part 2) 2004 P.A 2014	154.0
5.	Boron as B in mg/l	0.5	1.0	18 3025 (Part 2) 2004 PA 2014	BDL(DL:0.01)
6.	Calcium as Ca in mg/l	74	200	15 3635 (Best 40) 1001 D.6. 2014	BDL(DC:0.5)
7.	Chloride as CI in 1997	250	1000	15 3025 (Part 40)- 1991 Klim, 2014	20,0
8.	Copper as Cu in mg/l	0.05	15	IS 1075 (Page 2) 2004 P.A. 2014	10.0
9.	Flouride as F in mg/l	1.0	15	15 2025 (Part 40), 2008 D.C., 2014	BDL(DL:0.02)
10.	Iron as Fe in mg/l	0.3	No Relayation	15 3025 (Part 53), 1099 Differ, 2013	0.39
11,	Magnesium as Mg in mg/l	30	100	15 3025 (Part 46), 1004 Differ: 2014	0.40
12.	Manganese as Mn in mg/l	0.1	0.3	15 3025 (Part 2) 2004 DA 2014	9,6
13.	Nitrate as NO3 in mg/l	45	No Relavation	15 3075 (Part 14), 1988 (Pittor 2014	BDL(DL:0.02)
14.	Phenolic Compounds as C6H5OH in mg/l	0.001	0.002	IS 3025 (Part 43)- 1992; Rffin: 2014	0.3 BDL(DL:0.001)
15.	Selenium as Se in mg/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	RDL (DL 0.005)
16,	Sulphote as SO4 in mg/I	200	408	1S 3025 (Part 24)- 1986 Rffm: 2014	31.0
17,	Total Hardness as CaCO3 in mg/I	200	600	IS 3025 (Part 21) 2013	21.9
18.	Cadmium as Cd in mg/l	9.003	No Relaxation	15 3025 (Part 2) 2004 BA 2014	99.9 BUN (IN -0.001)
19.	Cynnide as CN in mg/l	0.05	No Relaxation	IS 3025 (Part 27)- 1986: Riffin 2003	BDL(DL:0.0(1)
29.	Lead as Pb in mg/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0AN)
21.	Mercury as Hg in mg/t	0.001	No Relaxation	1S 3025(Part 48)-1994	BLACDLOUGS)
22.	Arsenic as As in mg/i	0.01	0.05	1S 3025 (Part 7) 7064 RA 2014	BDLIDLIDA(0)
23.	Total Chromium as Cr in mg/l	0.05	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL-0.003)
24.	Sodium as Na in mg/l	1000		APHA 23rd Edition, 3500 Na B	19.6
25.	Conductivity in us/em	****		APHA 23 rd Edition, 2510B	220.0
26,	Potassiam as K in mg/i			APHA 23rd Edition 3500 K B 2017	4.1
27.	Zine as Zn in mg/l	5	15	1S 3025 (Part 2) 2004 RA 2014	BDL/DL-0/02
28.	Total Alkalinity as CaCO3 in mg/1	200	600	IS 3025 (Part 23), 1986 R (fm- 3000	BLA

Report wred by:

Mitra S. K. Private Limited

J) K. Laty Authorized Signatory

Plot No-687/2428, Ekamra Villa Square, Jaydev Vihar, 1^e Floor, IRC Village, Bhubaneswar, Khordha, Odisha-751015 [CIN: U51909WB1956PTC023037]

T :(0674) 2360917, 9777450189 F :(0674) 2362918

Name & Address of the Customer : HINDALCO INDUSTRIES LTD. (Unit- Aditya Aluminium) AUPo: Lapanga , Beside SH-10 Sambalpur , Odisha-768212

TEST REPORT

Report No. : BBS/503 Date : 12.10.2023 Sample No. : MSKGL/ED/2023-24/09/00002 Sample Description : Ground Water Sampling Location : Pizometric Borewell-2 (Near Proposed Ash Pond) Date of Sampling : 28.09.2023

ANALYSIS RESULT Organoleptic and Physical Parameters as per 1S 10500 : 2012

Requirement Permissible limit Acceptable in the absence of SI, No. **Test Parameters** Test Method / Specification Limit alternate Source Result Ŧ. pH at 26°C 6.5-8.5 No Relaxation IS 3025 (Part 11)-1984 Rffin: 2012 7.23 2 Turbicity in mg/l 1 5 IS 3925 (Part 10)-1984 Rffm: 2012 BDL(DL:1.0) 3. Total Dissolved Solids as TDS in mg-1 500 2000 IS 3025 (Part 16)-1984; Rffin:2012 142.0 4. Aluminium as Al in mg/l 0.03IS 3025 (Part 2) 2004 RA 2014 0.2 BDL(DL:0.01) 5. Boron as B in mg/l 0.5 1S 3025 (Part 2) 2004 RA 2014 1.0 BDL(DL:0.5) 6, Calcium as Ca in mg/l 75 200 IS 3025 (Part 40)- 1991 Rffin: 2014 20.0 -Chloride as CI in mg/l 1S 3025 (Part 32)-1988 Rffin: 2014 2.50 1000 14.0 8 Copper as Cu in mg/I 1S 3025 (Part 2) 2004 RA 2014 0.05 1.5 BDL(DL:0.02) Ŭ, Flouride as F in mg/I 1.0 1.5 IS 3025 (Part 60)- 2008 Riflin: 2013 BDI(DL:0.2) fron as Fe in mg/I 10. 0.3 No Relaxation IS 3025 (Part 53)-1988 Rffm: 2014 BDL(DL:0.005) 11. Magnesium as Mg in mg/I 36 160 IS 3025 (Part 46)-1994 Rffin: 2014 6.6 12 Manganese as Mn in mg/l 0.1 0.3 IS 3025 (Part 2) 2004 RA 2014 BDL(DL:0.02) Nitrate as NO3 in mg/l 13. 45 No Relaxation IS 3025 (Part 34)-1988 Rifim: 2014 3.1 Phenolic Compounds as C6H5OH in 14 0.001 0.002 IS 3025 (Part 43)- 1992: Riffin: 2014 mg/l BDL(DL:0.001) 15 Selenium as Se in mg/l 0.01 No Relaxation IS 3025 (Pirt 7) 2004 RA 2014 BDL(DL:0.005) Sulphate as SO4 in mg/l 16. 200 400 IS 3025 (Part 24)- 1986 Rffm: 2014 8.0 Total Hardness as CaCO3 in mg/l 17 200 IS 3025 (Part 21)-2013 600 34.0 18 Cadmium as Cd in mg/I 0.003 No Relaxation IS 3025 (Part 2) 2004 RA 2014 RDL(DL:0.001) Cyanide as CN in mg/l 149 0.05 IS 3025 (Part 27)- 1986; Rffm: 2003 No Relaxation BDL(DL:0.005) Lead as Ph in mg/l 20.0.01 No Relaxation 1S 3025 (Part 2) 2004 RA 2014 BDL(DL:0.001) 21 Mercury as Hg in mg/l 0.001 No Relaxation IS 3025(Part 48)-1994 BDL(DL:0.005) 22 Arsenic as As in mg/l 0.01 0.05 IS 3025 (Part 2) 2004 RA 2014 BDL(DL:0.001) 23 Total Chromium as Cr in mg/l 0.05 No Relaxation IS 3025 (Part 2) 2004 RA 2014 BDL(DL:0.005) 24 Sodium as Na in mg/l APHA 23rd Edition, 3500 Na B --------30 Conductivity in us/cm 25 APHA 23rd Edition, 2510B 210.0 26.Potassium as K in mg/l APHA 23rd Edition, 3500 K B 2017 -----3.6 27 Zine as Zn in mg? 5 IS 3025 (Part 2) 2004 RA 2014 15 BDL(DL:0.02) 28. Total Alkalinity as CaCO3 in mg/l 200 600 IS 3025 (Part 23)- 1986 Rffm: 2009 68.0

Report Prepared by:

Mitra S. K. Private Limited

A K. lath Authorized Signatory

Plot No-687/2428, Ekamra Villa Square, Jaydev Vihar, 1^e Floor, IRC Village, Bhubaneswar, Khordha, Odisha-751015 [CIN: U51909WB1956PTC023037]

T :(0674) 2360917, 9777450189 F :(0674) 2362918

Name & Address of the Customer : HINDALCO INDUSTRIES LTD. (Unit- Aditya Aluminium) AU/Po: Lapanga, Beside SH-10 Sambalpur, Odisha-768212

TEST REPORT

Report No. : BBS/504 Date : 12.10.2023 Sample No. : MSKGL/ED/2023-24/09/00003 Sample Description : Ground Water Sampling Location : Pizometric Borewell-3 (Near RR Colony) Date of Sampling : 28.09.2023

ANALYSIS RESULT

Organoleptic and Physical Parameters as per IS 10500 : 2012

SL No.	Test Parameters	Requirement Acceptable Limit	Permissible limit in the absence of alternate Source	Test Method / Specification	Result
1.	pH at 26°C	0.3-8.3	No Relayation	IS 3025 (Part 11) 1084 Bitting 2012	
2.	Turbidity in mg/l	1	S.	13 3025 (Part 10) 1084 RIM: 2012	7.13
3.	Total Dissolved Solids as TDS in mg/l	500	2000	IS 3025 (Part 16) 1084 RIIM: 2012	BDL(DL:1.0)
4.	Aluminium as Al in mg/l	0.03	0.2	15 3025 (Part 16)-1964; Killin 2012	306.0
5.	Boron as B in mg/1	0.5	1.0	15 1025 (Part 2) 2004 RA 2014	BOL(DE:0.01)
. Ő.	Calcium as Ca in mg/l	75	200	15 3025 (Part 2) 2004 KA 2014	BDL(DL:0.5)
7.	Chloride as Cl in mg/l	250	1000	18 3025 (Part 40)- 1991 Rftm: 2014	40.0
8.	Copper as Cu in mg/j	0.05	1.5	IS 2015 (Part 32)-1988 R110; 2014	62.0
9,	Flouride as F in mg/l	10	1.0	15 3023 (Pan 2) 2004 RA 2014	BDL(DL:0.02)
10.	from as Fe in mg/l	0.3	No Belmention	15 3025 (Part 60)- 2008 RHm: 2013	0.31
11.	Magnesiam as Mg in mgd	30	NO Kelacation	15 3025 (Part 53)-1988 Rffm: 2014	0.42
12.	Manganese as Mn in me/l	0.1	0.7	15 3025 (Part 46)-1994 Rifm: 2014	7.7
13.	Nitrate as NO3 in mail	45	0.3	15.3025 (Part 2) 2004 RA 2014	BDL(DL:0.02)
14.	Phenolic Compounds as C6H5OH in mg/l	0.001	0.002	15 3025 (Part 43)- 1992; Rffin: 2014	BDL(DL:0.4) BDL(DL:0.001)
15.	Selection as Se in mg/l	0.01	No Relaxation	15 3025 (Part 2) 2004 R.A. 2014	HIM (DL 0 000)
16.	Sulphate as SO4 in mg/1	200	400	IS 3025 (Part 24), 1986 P.ffm, 2014	801(01:0.005)
17.	Total Hardness as CaCO3 in mg/I	290	600	IS 3025 (Part 21)-2011	22,0
18.	Cadmium as Cd in mg/l	0.003	No Relaxation	15 3025 (Part 2) 2004 B & 2014	122.0
19,	Cyanide as CN in mg/l	0.05	No Relaxation	15 3025 (Part 27), 1086: D.Em. 3002	BEIL(DE.0.001)
20.	Lead as Pb in mg/l	0.01	Na Relayation	IS 3025 (Page 2) 2004 BA 2014	BDL(DL,0.005)
21.	Mercury as Elg in mg/l	0.001	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL:0.001)
22.	Arsenic as As in mg/l	0.01	0.05	15 3025 (Pag 2) 1004 DA 2014	BDL(DL:0.005)
23.	Total Chromium as Cr in mg/l	0.05	No Relavation	IS 2075 (Part 2) 2004 RA 2014	BDL(DL:0.001)
24.	Sodium as Na in mg/l	1110	The resideducin	APUA 23 ⁴¹ Editors 2500 No. P	HDL(DL:0.005)
25.	Conductivity in us/cm			APILA 225 Edition 25100	16.0
26.	Potassium as K in mg/l			APEIA 23rd Edition 2500 C D 2517	290.0
27.	Zinc as Zn in mg/l	5	15	IS 3025 (Bee 2) 2004 B 4 2017	3,8
28.	Total Alkalinity as CaCO3 in mg/l	200	690	18 3025 (Part 23)= 1986 Rffin: 2009	BDL(DL30,02) 136.0

Report I eparted by:

Mitra S. K. Private Limited

A.K. Lag Authorized Signatory

Plot No-667/2428, Ekamra Villa Square, Jaydev Vihar, 1^e Floor, IRC Village, Bhubaneswar, Khordha, Ddisha-751015 [CIN: U51909WB1956PTC023037]

T :(0674) 2360917, 9777450189 F :(0674) 2362918

Name & Address of the Customer : HINDALCO INDUSTRIES LTD. (Unit- Aditya Aluminium) At/Po: Lapanga, Beside SH-10 Sambalpur, Odisha-768212

TEST REPORT

Report No. : BBS/505 Date : 12.10.2023 Sample No. : MSKGL/ED/2023-24/09/00004 Sample Description : Ground Water Sampling Location : Pizometric Borewell-4 (Bomaloi Village) Date of Sampling : 28.09.2023

ANALYSIS RESULT

Organoleptic and Physical Parameters as per IS 10500 : 2012

SI. No.	Test Parameters	Requirement Acceptable Limit	Permissible limit in the absence of alternate Source	Test Method / Specification	Result
1.	pH at 26°C	6.5-8.5	No Relaxation	15 3025 (Part 11), 1984 8456- 2012	2.36
2.	Turbidity in mg/i	1	5	15 3025 (Part 10)-1984 Rillin: 2012	7.20 DDI //24 -1.05
3.	Total Dissolved Solids as TDS in mg/l	500	2000	15 3025 (Part 16)-1984 Rither 2012	1500(18.1.8)
4.	Aluminium as Al in mg/l	0.03	0.2	18 3025 (Part 2) 2004 RA 2014	140.0 DDI (DL (0.01)
5.	Boron as B in mg/l	0.5	1.0	IS 3025 (Part 2) 2004 P.A. 2014	BDL(DL:001)
б.	Calcium as Ca in mg/l	75	200	15 3075 (Part 40), 1991 P/Fm; 2014	BLA.(DI.30.5)
7.	Chloride as Cl in mg/l	250	1900	15 3023 (Part 32)-1988 Rtfm: 2014	18.0
8.	Copper as Cu in mg/i	0.05	1.5	IS 3025 (Part 2) 2004 RA 2014	9DL(DL-8.03)
9.	Flouride as F in mg/1	1.0	1.5	15 3025 (Part 60% 2008 RHim: 2013	0.24
10.	Iron as Fe in mg/l	0.3	No Relaxation	15 3025 (Part 53)-1988 R(fm: 2014	0.35
11,	Magnesium as Mg in mg/l	30	100	IS 3025 (Part 46)-1994 Rffm: 2014	7.7
12.	Manganese as Mn in mg/l	0.1	0.3	1S 3025 (Part 7) 2004 RA 2014	001/01-0/03
13.	Nitrate as NO3 in mg/l	45	No Relaxation	15 3025 (Part 34)-1988 Rffm: 2014	BOR (DE-0.04)
14.	Phenolic Compounds as C6H5OH in mg/l	0.001	0.002	IS 3025 (Part 43)- 1992; Riffin: 2014	BDL(DL:0.001)
15.	Selenium as Se in mg/l	0.01	No Relaxation	15 3025 (Part 2) 2004 RA 2014	BEILIDE-0.0055
16.	Sulphate as SO4 in mg/l	200	400	1S 3025 (Part 24)- 1986 Rffm: 2014	19.0
17.	Total Hardness as CaCO3 in mg/1	200	600	IS 3025 (Part 21)-2013	02.6
18.	Cadmium as Cd in mg/l	0.003	Ne Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL/DL/0.0013
19.	Cyanide as CN in mg/l	0.05	No Relaxation	1S 3025 (Part 27)- 1986; Rffm:2003	BDL/DL 0.005)
20.	Lead as Pb in mg/l	0.01	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL/DL-0.001)
21.	Mercury as Hg in mg/l	0.001	No Relaxation	IS 3025(Part 48)-1994	BDL(DL-0.005)
22.	Arsenie as As in mg/l	0.01	0.05	1S 3025 (Part 2) 2004 RA 2014	BEX (DE-0.001)
23.	Total Chroméum as Cr in mg/l	0.05	No Relaxation	IS 3025 (Part 2) 2004 RA 2014	BDL(DL-0.005)
24.	Sodium as Na in mg/l		-	APILA 23 ^{ill} Edition, 3500 Na B	16.0
25.	Conductivity in us/em	****		APHA 23 rd Edition, 2510B	210.0
26,	Potassium as K in mg/l			APHA 23rd Edition, 3500 K B 2017	46
27,	Zinc as Zn in mg/l	5	15	IS 3025 (Part 2) 2004 RA 2014	BDL/DL-0.025
28.	Total Alkalinity as CaCO3 in mg/l	200	600	15 3025 (Part 23), 1986 R/fm; 2009	76.6

Report Prepared by:

Mitra S. K. Private Limited

A) K. Lak Authorized Signatory

Annexure-7

Compliance Status from April- 23 to September- 23

COMPLIANCE TO CREP GUIDELINES FOR SMELTER

Sr. No.	Particulars	Compliance
1	Environmental clearance for new smelters to be given by MoEF only with pre-baked technology	Smelter design is based on pre-baked technology only.
2	Fluoride emissions should be limited to 0.8 kg/ton of aluminium production and dry scrubbing of fluorides	Fluoride emissions is being controlled by installing GTC & FTC below 0.8 kg/ton of aluminium metal produced. The average total fluoride emission for the period April'23 to September'23 is 0.087 Kg/Ton of metal production.
3	Fluoride consumption in the smelter should be limited to 10 kg/ton of aluminium produced	The specific fluoride (as F) consumption for the period April'23 to September'23 is 7.95 Kg/ton of metal produced.
4	The fluoride in forage should be limited toAverage of 12 consecutive months- 40 ppmAverage of 2 consecutive months- 60 ppmOne month- 80 ppmRegular monitoring data to be submitted toSPCB and CPCB.	Forage fluoride is being monitored on quarterly basis as a part of post project monitoring activities. The monitored data is being regularly submitted to SPCB and CPCB.
5	The average life of the pots should be 2500 days. The possibility of using the SPL in cement or steel industry after recovery of aluminum fluoride should be explored.	The Carbon part of SPL is being supplied to M/s Green Energy Resources, Sambalpur & M/s Regrow Transo Pvt. Ltd. Jharsuguda for reprocessing/detoxification, in this way the carbon part is completely recycled. M/s Resustainability Ltd has established the facility for detoxification and disposal of SPL
6	The SPL should be disposed in secured landfill.	refractory as per the protocol given by CPCB in its CHW-TSDF at kanchichuhan, Dist- Jajpur site. SPL refractory part is being disposed in CHWTSDF. Around 12607.75 MT SPL Refractory part and 1717.9 MT Carbon part is in stock till end of September- 2023 and kept inside the well-ventilated permanent covered sheds for disposal to CHW-TSDF/Actual users. We have got the OSPCB Consent/ Permission for disposal of SPL refractory materials through the Actual users authorized by OSPCB, for co- processing in Cement kiln/disposal in CHWTSDF. Besides, we are also exploring the

Compliance Status from April- 23 to September- 23

		option for co-processing of SPL in cement plants. We have applied for issue of consent to establish (CTE) for the proposed SPL crushing & screening unit at aditya aluminium. The crushed SPL will be supplied to authorized Cement Plants for co-processing in cement kiln.
7	Achieving particulate matter limit of 50	It is being Complied with.
	mg/Nm3 in anode baking furnace	

COMPLIANCE TO CREP GUIDELINES FOR CPP

Sr.	Conditions	Compliance
No.		
1	ImplementationofEnvironmentalStandards(emission & effluent)in non- compliant*PowerPlants (31 & 27)-Submission of action plan: June 30, 2003	Not Applicable
	-Placement of order for Pollution of control equipment: September, 2003 - Installation & commission: December 31, 2005	
2	For existing thermal power plants, a feasibility study shall be carried out by Central Electricity Authority (CEA) to examine possibility to reduce the particulate matter emissions to 100 mg/Nm3. The studies shall also suggest the road map to meet 100 mg/Nm3. The studies shall also suggest the road map to meet 100 mg/Nm3 wherever found feasible. CEA shall submit the report by March 2004.	Not Applicable
3	New / expansion power projects to be accorded environmental clearance on or after1.4.1.2003 shall meet the limit of 100 mg/Nm3 for particulate matter.	Complied. PM emission is well below stipulated limit of 50 mg/Nm3
4	Development of SO ₂ & NO _x emission standards for coal based plants by December 2003. - New/ expansion power projects shall meet the limit of SO ₂ & NO _x w.e.f. 1.1.2005. - Existing power plants shall meet the limit of SO2 & NOX w.e.f.1.1.2006.	Standard for SO ₂ & NOx has been published by MOEF.
5	Install/activate opacity meters/ continuous monitoring system in all the units by December 31, 2004 with proper calibration system.	Continuous monitoring system installed in the stacks attached to

Compliance Status from April- 23 to September- 23

		Power Plant for monitoring of PM, SO ₂ & NOx.
6	Development of guidelines/ standards for mercury	Standard for Hg emission for captive
	and other toxic heavy metals emissions by December	power plant has been published by
	2003.	MOEF&CC.
		Monthly monitoring report is being
_		submitted to SPCB.
/	Review of stack height requirement and guidelines	Guideline has been published for stack
	for power plants based on micro meteorological data	height by MOEFCC in this regard.
	by June 2003	
8	Implementation of use of beneficiated coal as per	Not Applicable
	GOI Notification:	
	Power plants will sign fuel supply agreement (FSA) to	
	meet the requirement as per the matrix prepared by	
	CEA for compliance of the notification as short term	
	measure.	
	Options/mechanism for setting up of coal washeries	
	as a long term measure	
	* Coal India will up its own washery	
	* Sate Electricity Board to set up its own washery	
	* Coal India to ask private entrepreneurs to set up	
	washeries for CIL and taking washing charges	
	* SEBs to select a private entrepreneur to set up a	
	washery near pit- head installation of coal	
	beneficiation plant	
9	Power plants will indicate their requirement of	Not Applicable
	abandoned coal mines for ash disposal & Coal India/	
	MOC shall provide the list of abandoned mines by	
	June 2003 to CEA.	
10	Power plants will provide dry ash to the users outside	It is being Complied with.
	the premises or uninterrupted access to the users	
	within six months	
11	Power Plants should provide dry fly ash free of cost	Dry fly ash is being provided to the ash
	to the users	brick manufacturing units in free of
		cost
12	State P.W. Ds/ construction & development agencies	Not Applicable
12	shall also adhere to the specifications/Schedules of	
	Shall also adhere to the specifications/schedules of	
	cPWD for ash-based products utilization where will	
12	Take up the matter with State Governments.	Consultad
13	ivew plants to be accorded environmental clearance	Complied
(1)	on or after 1.04.2003 shall adopt dry fly ash	
	extraction or dry disposal system or Medium (35-	
	40%) ash concentration slurry disposal system or	
	Lean phase with hundred percent ash waste re-	

Compliance Status from April- 23 to September- 23

	circulation system depending upon site specific environmental situation.	
13 (ii)	Existing plants shall adopt any of the systems mentioned in 13(i)by December 2004	Implemented
14	Fly ash Mission shall prepare guidelines/manuals for fly ash utilization by March 2004.	Noted
15	New plants shall promote adoption of clean coal and clean power generation technologies * Units will submit bank guarantee to respective SPCB	Noted

ENVIRONMENT POLICY

We, at Hindalco Industries Limited, operating across the process chain from mining to semi-fabricated products in non-ferrous metals, will strive to continually improve our environmental performance for sustainable operations and responsible growth globally, by integrating sound environmental systems & practices and Pollution Prevention approach.

To achieve this, we shall:

- Continue to comply with all applicable legal and other requirements on environment.
- Continually improve environmental performance by strengthening the Environmental Management System conforming to national /international standards, including setting up and reviewing targets and measuring, monitoring and reporting their progress.
- Allocate sufficient resources such as organisational structure, technology and funds for implementation of the policy and for regular monitoring of performance.
- Adopt pollution prevention approach for all our processes; enhance material efficiency and achieve high productivity.
- Conserve key resources like electricity, coal, water, oil, and raw materials, by promoting efficient technologies and manufacturing process improvements, water conservation programmes, and efficient use of raw materials.
- Adopt energy efficient and cleaner technologies based on techno-economic viability, appropriate to the region in which we operate, and in line with our growth and diversification plans.
- Promote the principles of waste prevention, reduction, reuse, recycling and recovery to minimize waste generation and strengthen the practices for management of wastes.
- Work in partnership with regulatory authorities, relevant suppliers, contractors, distributors and logistics partners and all other stakeholders, as applicable, to understand and initiate improvement actions.
- Engage with internal and external stakeholders including key business partners such as joint venture partners, licensees and outsourcing partners and wider communities, to broaden our understanding of environmental priorities and initiate actions on key environmental challenges.
- Adapt environmental performance over life cycle as an important input to the <u>decision-making</u> processes in the organization.
- Raise environmental awareness at all levels of our operations, through training and effective communication, participation and consultation.
- Communicate this Policy within the Organization. Develop and follow appropriate communication system to inform other stakeholders, as applicable, about our environmental commitment and performance.
- Conduct environmental, health and safety due diligence before undergoing any mergers and acquisitions.

This policy shall be made available to all employees, suppliers, customers, community and other stakeholders, as appropriate. The implementation of this policy is the responsibility of respective heads of units with the monitoring and tracking done by the Apex Sustainability Committee under the guidance of the Managing Director.

Satish Pai MD, Hindalco Industries Limited Date: 9th August, 2022

POINT-WISE COMPLIANCE TO THE POINTS RAISED DURING PUBLIC HEARING OF ADITYA ALUMINIUM

SI. No.	POINTS RAISED	COMPLIANCE STATUS
1	The Project Proponent should provide employment to the locals on priority basis.	The industry has already provided employment to the locals based on the eligibility in the ongoing projects and they are committed to do so in the proposed expansion project.
2	The Industry should establish an ITI training centre to train the young people in technical field so as to enable them for getting suitable employment in the plant.	The industry has been providing opportunity for ITI studies in Polytechnic Rengali. Students are trained 2 year ITI course. Vocational training like Beautician, Mobile repairing, Micro irrigation Bike repairing, Soft Toy, Driving, Grafting, Organic Farming (Agriculture) and Tailoring has been instituted last months.
3	The Industry should carry out massive plantation in the vacant spaces of the surrounding villages, R.R colony etc. Trees which are not under the purview of the core plant area are to be protected and minimum 25% of the project area to be made green cover.	The industry has already planted 7,38,030 saplings inside the factory premises till September-2023. Also, the industry has started plantation in the vacant spaces of the surrounding and have been taking care of 30,000 nos of saplings to the villagers in the planted in the surrounding villages for FY-23-24.
4	The industry should inform the Public about the air pollution control measures to be adopted in the proposed plant for control of air pollution and also proactive measures to be taken by the company for control of rise in ambient temperature. Pollution measurement machines to be installed in every villages and pollution control committees to be formed to regulate the pollution.	The industry has installed ESPs, Bag filters etc to control air pollution. Greenbelt development and selecting the best environment friendly technology & equipment's for Smelter and Power plants are some of the proactive measures taken by the Company. Online ambient air quality monitoring stations are being installed inside the plant area for information on real time information on different pollutants.
5	The Project Proponent should inform the public about the peripheral developmental works to be carried out in future.	Peripheral developmental works are being carried out in consultation with the Gram Panchayat Sarpanch, villagers, opinion makers and well-wishers as per the CSR guideline. Drinking water supply to 72 nos of hamlets in peak summer, 01 nos of Blood donation camps, 2 nos of Village Mandaps and 1450 nos of cataract surgeries have been done. SHG training on capacity building program for 1 nos have been conducted. There are 55 nos of sprinkler provided to 55 nos of beneficiaries. TB patients supported 60 nos in village. MDD program benefitted 115 nos. National nutrition week celebrated with 209 nos have been benefitted. World health day celebrated with 170 participants have joined. Menstrual hygiene day 70 nos

		of participants joined. Blood donation 132 nos of participated.
6	The industry should make necessary arrangements for provision of drinking water in the affected area.	The industry has been supplying drinking water through tankers, into the project affected villages in coordination with Sarapanchs, RWSS, BDO and Block chairman, Rengali of 6 nos of Gram Panchayats in peak summer. Drinking water supply to 16 nos of revenue villages and 86 nos of hamlets and main villages also got the facility catering 25000 nos of villagers with 3000 households.
7	The industry should make necessary arrangement to provide round the clock doctors for better medical service in the Lapanga area.	The industry has been very actively contributing the greater causes of Health Opened up Eye Healthcare Unit at Rengali, and awareness program at all villages catering benefit to 1796 nos of beneficiaries. First Aid centre has facility to local areas for free treatment by reputed doctors. Provided free treatment facility to more than 2161 nos of local people with free treatment, medicine, and consultation. Telemedicine also supported to 3456 nos of beneficiaries in villages.
8	The industry should make alternate arrangement to source water instead of deep bore wells in & around the project area.	The industry is getting water from the Hirakud Reservoir meets all the requirements of the industry.
9	The industry should give financial support to grow small scale industries in the localities.	The industry is supporting farmers to grow the livelihood of the villagers as per their CSR policy. However, many training programs have been conducted for self-employment SHGs such as Spice units, Oil Processing units and paper cup making units, Vegetable farming, Phenol making, Hand wash making, Duckery, 7 nos of poultry units, Tailoring, to the 200 nos of SHGs comprising of 2125 nos of women and 7 Farmers Group adopted by Industry. CSR has mobilised 15.99 Lakh for SHG entrepreneurship program. There are 8 nos of villages girls have been placed in ABFRL.
10	The industry should pay financial support for each local traditional festival to villagers. Cremation ground should be provided in each village. Alternate Football ground to be provided to Bomaloi villagers as the company is occupying the existing football ground.	We are already providing financial support for each local Traditional festivals like Nuakhai, Sheetal Sasthi, Astaprahari and sports like Football, Badminton and Cricket tournament with the locals. We conducted women sports, school sports programs at different villages every year as a part of promotion of Rural sports. The nearby football grounds are maintained every year by industry.
11	The industry should provide community toilets at the surrounding affected villages. Special care to be taken for physical handicapped persons in the affected areas	We have already provided Toilets to each house in village Pitapali & community toilets in village Bomaloi & Tileimal. Physically challenged people are continuously supported by the company. Gayatri Sahu one blind graduate working with CSR team since three years and all programs are conducted regarding physically challenged persons in Block level every year.

SI.	Description	Amount Spent (In	Remarks
Nos.		Crores)	
1	G D Birla Medical Research and Education Foundation for School at Kurki	20.25	
2	Land taken on Lease from IDCO for School at Kurki	9.10	
3	Sponsorship of Kalinga Lancers in Indian Hockey league Fy15, Fy16 & Fy17	4.50	
4	CSR expenses in & around Aditya Aluminium including Hirakud areas in FY17	7.61	
5	Sponsorship for Asian Athletic Championship 2017	0.50	
6	CSR expenses in & around Aditya Aluminium including Hirakud areas during April 18 to March 19	4.65	
7	CSR expenses in & around Aditya Aluminium including Hirakud areas during April 2019 to March 2020	0.62	
8	CSR expenses in & around Aditya Aluminium including Hirakud areas during April 2020 to Mar 2021	5.31	
9	CSR expenses in & around Aditya Aluminium including Hirakud areas during April 2021 to Mar 2022	8.81	
10	CSR expenses in Education (EDU)	0.33	
11	CSR expenses in in & around in Environment and sustainable Livelhood	0.57	
12	CSR expenses in in & around in Healthcare in Hirakud areas also	1.06	
13	CSR expenses in in & around in social causes	0.40	
14	CSR expenses in in & around in Rural & Development projects	0.26	
15	Aditya Expenses from Oct-22 to March-23	0.76	
16	Hirakud power and Smelter Expenses from Oct-22 to Mar-23	0.87	
17	Aditya Expenses from Apr-23 to Sept-23	1.67	
18	Hirakud power and Smelter Expenses from Apr-23 to Sept-23	0.90	
	Total Expense	68.17	

Expense incurred under Enterprise Social Commitment till September- 2023:

Aditya Aluminium intends to continue with the following activities under Enterprise Social Commitment like: -

- a) Infrastructure development in villages around the Project area.
- b) Drinking Water supply facilities.
- c) Green cover development in collaboration with State Govt. departments.
- d) Football playground or mini stadium in Bomaloi village, as stated in the minutes of public consultation held before environmental clearance.
- e) Free distribution of schoolbooks & bags to children.
- f) Constructing Toilets for girls in schools/villages.
- g) Scholarship to poor, talented students in the schools.

- h) Subsidy for Ash supply (Rs 150/- per Tonne at present) to local Ash brick manufacturers, as per OSPCB/MOEF&CC Notifications.
- i) Providing Ash brick manufacturing machines to unemployed youth in the villages and one time assistance to establish the Unit.
- j) Contributing to the development of Railway infrastructures in consultation with the railway authorities (e.g., ROB).
- k) Implementation of skill development programmes and providing necessary infrastructure to existing ITI, Polytechnic colleges.
- I) Development of Schools in the State of Odisha.

The remaining 5% amount for Phase-1 capacity (i.e., Smelter of 0.38 MTPA and CPP of 900 MW) is proposed to be spent over a period of 39 years from the year 2017.

CSR REPORT APR- OCT FY 2023-24

EDUCATION		Total Till Date	
S. No	Name of the Activity	Activity Beneficiaries	
1	Science Exhibition	1	165
2	Teacher's Training Program on IT & Coding	1	47
3	Support of Desk & Bench	273	1227
4	Provision of New Bus for Jamankira High School	1	497
5	Inaugural Function of Desk & Bench Support	1	165
6	Inaugural Function of Govt. HSS, Lapanga	1	237
7	Observation of Gangadhar Meher Jayani	1	235
8	School Level Competition	4	57
9	Independence Day	72	4432
10	Science Seminar & Drama	1	165
11	Support for Interview Process	1	35
12	Support for Block level sports selection	2	120
13	Support for District Level Sports Selection.	1	45
14	Global Hand Wash Day	1	59
15	Awareness on POCSO	1	67
16	Awareness on Cyber Security	1	250
17	Exposure to STEM Education	1	8
18	Block Level Science Drama	1	165
19	SMC Meeting	1	15
20	Career Counselling	2	110
21	Awareness on Single Use Plastic	6	156
22	Awareness on Opening of + 2 Stream at Lapanga	1	45
23	Drawing Competition	1	5
24	Promotion of Yoga & Leadership Development	1	97
25	Observation of World Environment Day	1	87
26	Observation of Global Hand Wash Day	1	59
27	GET Emersion Program & ABGLP	3	46
28	Visit of Niti Ayog	1	127
	Total	383	8723

Lapanga High School +2 Inauguration by DEO

Lahmani High School Desk Bench Inauguration by DEO

Rengali Inter School Independence Day Celebration

Awareness Session in Lapanga High School Block Level Science Exhibition Desk Bench distribution in 17 Schools

HEALT	Н	Total T	ill Date
S. No	Name of the Activity	Activity	Beneficiaries
1	Community Dispensary	7	2403
2	Status of Vision Centre	8	1904
3	Eye screening Camp	76	1598
4	Cataract Operation	165	264
7	Menstrual Hygiene Day	1	77
8	Periodical Health Camp	4	31
9	Drinking Water Supply	1	12000
11	Awareness on Eye Care & Support service	54	891
17	Observation of BFW	1	97
18	Observation of Nutrition Week	4	97
21	Observation of Iron Deficiency Day	1	75
24	Blood Donation Camp	1	132
25	Observation of World Menstrual Hygiene Day	1	77
26	Awareness on TB	38	409
27	Swasthya Vahini Mobile Telemedicine	7	3276
32	Awareness on sun stroke	9	87
33	Support to Blood Donation Camp	0	0
34	In house training on Fire Safety	1	8
35	Inuguration of MDA	1	12
36	Cleanness Drive	1	48
37	Observation of World Food Day	1	78
	Total	382	23564

Water Tanker Jal Vahini during Peak

Swasthya Vahini Primary Health Care Mobile Telemedicine Unit

Blood Donation Camp

First Aid Centre for free Primary Healthcare Static Clinic

SUSTAINABLE LIVELIHOOD		Total Till Date	
S. No	Name of the Activity	Activity	Beneficiaries
1	SHG Mobilization	85	729
2	Farmer Interaction Meeting	50	1344
3	Training on Vegetable Cultivation & Organic Pest Management	1	47
4	SHG Federation Meeting	5	95
5	Study on Sustainable Agriculture	1	32
6	Training on Phenyl Marketing & branding	1	11
7	Meeting with ORMAS.ICDS,OLM Meeting	4	33
8	Turmeric	27	27
9	Startup Poultry Farm	3	42
11	Mixture & Namkeen	10	10
13	Paper cup & Plate Entrepreneurship	1	10
14	Certificate Distribution Program	1	60
15	Tailoring Unit(ORMAS School & AWC Centre	1	17
16	Training on Goat Rearing	1	31
18	Training on Driving	1	5
21	Exposure visits to ABRLF	1	50
22	All the best for ABRLF	1	17
24	Safety Jacket Tailoring Unit	10	10
26	Hand Wash Unit	1	10
27	Mixture & Namkeen	1	9
28	Training on Mushroom	2	63
29	Phenyl	1	10
30	Black Roice Beneficiary	1	27
31	ABGLP Visit	1	5
32	Awareness on Registration Farmer's ID	7	93

PRINCIPAL		8	NOVEMBER 2023
33	Awareness on Horticulture/ Agri schemes	6	62
34	Visit of Mission Shakti & Veterinary Dept	2	7
35	Farmer's Id preparation of SHG Members	1	110
36	Visit of Niti Ayog	1	127
39	Candidates Mobilization for ABRLF	14	123
40	Counselling season on Vocational Training & engagement	1	50
41	Training on Soft Toys	2	2
43	Paper Thunga Unit	1	10
45	Awareness on social Security Scheme	6	168
46	Meeting on new scope of entrepreneurship	15	11
48	GET Visit	2	65
52	Awareness on Project Sichai	3	15
56	Employment of 6 Widow of RR Colony	6	6
	Total	278	3543

Utility Boxes Given to SHGs

Regular SHGs Meetings

Women Advance Tailoring Training Certificate Course in partnership with ORMAS and SAHI

Farmer Supported with Sprinkler Irrigation

SOCIAL CAUSE		Total Till Date	
S. No	Name of the Activity	Activity	Beneficiaries
1	World Health Day	1	110
2	Inuguration of Samaleswari Temple	1	2200
3	Inuguration & Puja of Samaleswari	1	2500
4	Inter District Cricket Tournament	1	700
5	Puja & Nam Yagnya	2	1550
6	Hanuman Temple Pratishtha	1	1700
7	Karama Puja	1	137
8	Exceptional Achievement	1	1
9	Celebration of Kumar Purnima	1	1550
	Total	10	10448

Supported Ramchandranagar Hanuman Temple Pratistha

Dhorropani Namajagya

Supported Cricket Tournament Rengali Priemer League

World Environment Day Celebration

Niti Aayog Delegation Visit

INFRASTRUCTURE		Total Till Date	
S. No	Name of the Activity	Activity	Beneficiaries
1.	Bhumi Puja of Bhagabat Tungi & club	2	47
2.	Mandap Dhorropani and Bomoloi	2	1500
	Total	4	1547

Bomoloi mandap

Dhorropani Mandap

Jangla Temple WIP

Pondoloi Temple Construction WIP

Employee Volunteerism

8 NOVEMBER 2023

Employee Volunteerism												
KPIs	2018-19	2019-20	2020-21	2021-22	2022-23	2023-24						
No. of Employees	13	436	26	452	518	218						
No. of Manhours	364	467	70	558	726	328						

Blood Donation Camp

Raksha Bandhan Celebration at Old Age Home

siontek Consultancy Services (Committed For Better Environment) Annexure-12

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

- Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade
- Surface & Sub-Surface Investigation
- Agricultural Development Quality Control & Project Management
 - Information Technology

· Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Ref: VCSPL/23-24/TR-05915

Public Health Engineering

Renewable Energy

Date: 03.07.2023

Laboratory Services

Environment Lab Fred Lab

Material Lab

Soll Lab

Mineral Lab

a. Microbiology Lab

METEOROLOGICAL MONITORING REPORT JUNE-2023

- с т

I. I	vame of Indus	try	: M/s Hi	idalco Industri	es Limited			
2. I	Data Collected	By	: Unit-Ao	litya Aluminiu	m, Lapanga, S	ambalpur		
		A ==	Automa	tic Weather M	lonitoring Stat	ion		
Date	Tempera	ature("C)	Relative Hu	umidity (%)	Wind Spo	eed Km/h	Wind	Rain fall
1 1 22		Nin 27.0	Max	Nin 72.0		Min	Direction	(mm)
1-Jun-23	40.0	27.0	85.0	72.0	4.7	0.0		0
2-Jun-23	42.0	29.0	89.0	70.0	5.3	1.7	S	0
3-Jun-23	40.0	29.0	90.0	74.0	4.4	1.7	NW	0
4-Jun-23	40.0	27.0	84.0	68.0	6.9	1.4	NNE	0
5-Jun-23	40.0	27.0	87.0	70.0	5.3	1.7	NW	0
6-Jun-23	42.0	28.0	76.0	80.0	4.2	0.3	SW	0
7-Jun-23	41.0	27.0	71.0	82.0	4.2	0.3	NW	0
8-Jun-23	42.0	24.0	79.0	78.0	5.8	0.3	NNW	0
9-Jun-23	38.0	25.0	80.0	75.0	4.7	0.8	NNE	0
10-Jun-23	38.0	28.0	82.0	82.0	7.5	0.8	Ν	0
11-Jun-23	43.0	27.0	86.0	79.0	5.3	1.1	NNE	0
12-Jun-23	44.0	29.0	84.0	78.0	6.6	1.4	NNW	0
13-Jun-23	34.0	26.0	81.0	75.0	6.4	1.1	NNW	0
14-Jun-23	34.0	28.0	88.0	77.0	6.9	2.5	NNW	0
15-Jun-23	42.0	27.0	78.0	72.0	8.9	2.2	Ν	0
16-Jun-23	45.0	29.0	80.0	78.0	5.8	1.9	NNE	0
17-Jun-23	44.0	29.0	83.0	75.0	5.3	0.6	NNW	0
18-Jun-23	42.0	30.0	82.0	70.0	2.8	0.6	ENE	0
19-Jun-23	37.0	23.0	89.0	71.0	3.9	1.1	NNW	0
20-Jun-23	38.0	20.0	86.0	73.0	3.3	1.7	NW	0
21-Jun-23	38.0	20.0	87.0	74.0	7.8	1.9	NW	2.4
22-Jun-23	36.0	24.0	85.0	72.0	5.3	2.2	NW	0
23-Jun-23	31.0	24.0	89.0	68.0	4.7	1.7	NNW	0.8
24-Jun-23	30.0	26.0	81.0	70.0	4.4	2.2	NW	20.0
25-Jun-23	30.0	25.0	88.0	66.0	4.7	1.9	NW	92.0
26-Jun-23	30.0	26.0	87.0	64.0	4.7	1.9	NW	192.2
27-Jun-23	33.0	25.0	85.0	60.0	4.7	3.0	NW	33.2
28-Jun-23	34.0	28.0	77.0	66.0	6.6	2.8	NNW	0
29-Jun-23	36.0	28.0	76.0	68.0	6.4	2.2	NNW	0
30-Jun-23	36.0	28.0	84.0	67.0	5.3	1.7	NNW	0
AVERAGE	37 70	26.2	83 3	72.5	54	15	0.0	340.6
	UI.IU	40.4	00.0	1	5.7	1.0		010.0

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

- Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade Surface & Sub-Surface Investigation Agricultural Development
- Quality Control & Project Management Renewable Energy
- Information Technology Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Laboratory Services Environment Lab Food Lab Material Lab Suil Lab Mineral Lab & Microbiology Lab

Ref: VCSPL/23-24/TR-08327

Date: 14.10.2023

METEOROLOGICAL MONITORING REPORT SEPTEMBER-2023

- 1. Name of Industry
- 2. Data Collected By
- M/s Hindalco Industries Limited :
- Unit-Aditya Aluminium, Lapanga, Sambalpur : **Automatic Weather Monitoring Station**

Data	Tempera	ature(⁰ C)	Relative Hu	ımidity (%)	Wind Spe	ed Km/h	Wind	Rain fall
Date	Max	Min	Max	Min	Max	Min	Direction	(mm)
1-Sept-23	32.9	26.9	90.0	56.0	9.2	2.5	W	0.0
2-Sept-23	33.4	27.1	91.0	55.0	8.3	2.3	NE	0.8
3-Sept-23	31.6	27.8	94.0	73.0	12.4	3.4	NE	2.4
4-Sept-23	32.8	26.9	90.0	73.0	10.5	2.9	NNW	33.2
5- Sept-23	30.6	24.1	85.0	78.0	10.9	3.0	SW	34.6
6- Sept-23	31.4	25.3	89.0	77.0	9.8	2.7	SSW	10.2
7- Sept-23	30.5	26.2	90.0	55.0	13.4	3.7	S	7.2
8- Sept-23	31.9	24.8	92.0	64.0	14.2	3.9	W	4.4
9- Sept-23	30.5	25.9	91.0	68.0	10.6	2.9	NW	3.2
10- Sept-23	32.1	26.7	90.0	62.0	12.5	3.5	NNW	6.2
11- Sept-23	30.6	27.1	87.0	71.0	10.4	2.9	W	0.0
12- Sept-23	32.8	28.5	88.0	76.0	8.6	2.4	NNW	37.8
13- Sept-23	31.5	26.9	89.0	65.0	8.2	2.3	Ε	7.6
14- Sept-23	29.8	24.8	90.0	55.0	12.4	3.4	WNW	66.4
15- Sept-23	28.7	25.9	92.0	78.0	17.6	4.9	W	12.2
16- Sept-23	29.5	27.4	91.0	78.0	12.5	3.5	W	2.4
17- Sept-23	30.5	25.3	92.0	73.0	11.6	3.2	Ν	0.0
18- Sept-23	30.7	26.9	90.0	68.0	7.6	2.1	NNE	0.0
19- Sept-23	31.1	27.4	88.0	70.0	6.2	1.7	NNE	0.0
20- Sept-23	29.9	25.3	89.0	85.0	10.8	3.0	ENE	10.4
21- Sept-23	27.4	24.6	85.0	70.0	9.3	2.6	NW	44.6
22- Sept-23	30.1	23.8	90.0	67.0	18.4	5.1	NW	0.0
23- Sept-23	32.4	24.2	86.0	66.0	11.4	3.2	NNW	19.4
24- Sept-23	30.9	25.9	86.0	67.0	10.6	2.9	Ν	7.8
25- Sept-23	30.4	24.8	77.0	59.0	7.8	2.2	W	11.0
26- Sept-23	31.5	26.1	73.0	58.0	6.8	1.9	NNW	0.0
27- Sept-23	31.6	27.4	79.0	57.0	7.5	2.1	NE	0.0
28- Sept-23	31.3	25.8	68.0	58.0	5.3	1.5	NE	0.0
29- Sept-23	32.7	26.7	69.0	59.0	3.1	0.9	NE	45.2
30- Sept-23	30.1	24.2	70.0	61.0	5.4	1.5	SE	0.0
AVERAGE	31.0	26.0	86.0	66.7	10.1	2.8	0	367

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Surface & Sub-Surface Investigation Quality Control & Project Management
- Renewable Energy

:

:

•

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Ref: VCSPL/23-24/TR-05916

Date: 03.07.2023

Laboratory Service

Environment Lab Food Lab

Material Lab

Seil Lab

Miscral Lab

4 Microbiology Lal

AMBIENT AIR QUALITY MONITORING REPORT (APRIL-23 TO JUNE-23)

Name of Industry 1.

4.

M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga • Monitoring Station No.- AAQMS-1 : Gumkarma

RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

- 2. **Sampling Location**
- 3. **Monitoring Instruments**

Sample collected by

VCSPL representative

	PARAME	TERS											
Date	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO _x (µg/m ³)	O_3 ($\mu g/m^3$)	CO (mg/m ³)	NH ₃ (μg/m ³)	C ₆ H ₆ (µg/m ³)	BaP (ng/m ³)	Ni (ng/m ³)	Pb (μg/m ³)	As (ng/m ³)	F (μg/m ³)
04.04.2023	51.1	30.9	15.6	16.2	< 4.0	0.25	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
07.04.2023	46.2	31.5	16.4	18.1	<4.0	0.27	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
11.04.2023	54.3	29.7	15.4	15.4	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
14.04.2023	50.2	30.2	17.4	16.9	<4.0	0.29	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
18.04.2023	47.1	27.1	14.7	18.7	<4.0	0.34	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
21.04.2023	48.6	28.9	15.6	16.6	<4.0	0.26	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
25.04.2023	52.2	31.6	16.8	17.8	<4.0	0.24	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
28.04.2023	50.1	30.8	18.5	17.1	<4.0	0.26	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
02.05.2023	53.5	32.8	16.5	15.6	<4.0	0.37	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
05.05.2023	51.7	28.8	14.7	15.2	<4.0	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
09.05.2023	52.4	26.1	15.6	18.6	<4.0	0.31	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
12.05.2023	54.8	29.1	15.9	17.9	<4.0	0.27	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
16.05.2023	52.4	30.3	16.5	16.5	<4.0	0.26	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
19.05.2023	56.7	31.3	15.3	17.3	<4.0	0.28	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
23.05.2023	53.2	28.4	18.2	19.4	<4.0	0.31	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
26.05.2023	50.2	29.9	15.7	16.9	<4.0	0.34	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
30.05.2023	52.4	27.6	15.2	15.4	<4.0	0.32	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
02.06.2023	49.8	25.1	14.8	13.8	<4.0	0.31	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
06.06.2023	46.2	25.3	15.9	14.9	<4.0	0.29	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
09.06.2023	44.4	24.9	15.3	14.1	<4.0	0.28	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
13.06.2023	43.2	26.5	16.4	15.2	<4.0	0.31	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
16.06.2023	46.2	28.0	15.1	16.1	<4.0	0.27	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
20.06.2023	44.4	25.4	14.9	17.9	<4.0	0.30	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
23.06.2023	43.2	26.4	16.4	15.4	<4.0	0.29	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
27.06.2023	47.1	24.8	14.7	13.9	<4.0	0.30	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
30.06.2023	48.4	26.2	11.4	16.4	<4.0	0.25	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	
Average	49.6	28.4	15.7	16.4	<4.0	0.29	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
Testing method	Gravimet ric	Gravimet ric	Improve d West and Geake method	Modified Jacob & Hochheis er (Na- Arsenite)	Chemica l Method	NDIR Spectrosc opy	Indo phenol blue method	Absorptio n & Desorption followed by GC analysis	Solvent extraction followed by Gas Chromato graphy analysis	AAS method after sampling	AAS method after samplin g	AAS method after sampling	Zirconium SPADNS Method

BDL Values: SO₂< 4 µg/m³, NO_X< 9 µg/m³, O₃< 4 µg/m³, Ni<0.01 ng/m³, As< 0.001 ng/m³, C₆H₆<0.001 µg/m³, BaP<0.002 ng/m³, Pb<0.001 µg/m³, F<0.01µg/m³.CO<0.1 mg/m³

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Surface & Sub-Surface Investigation Quality Control & Project Management

:

- Information Technology
- Agricultural Development Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Ref: VCSPL/23-24/-TR-05917

Date: 03.07.2023

Laboratory Service

Environment Lab Food Lab

Material Lab

Seil Lab

Mineral Lab

4 Microbiology Lal

AMBIENT AIR OUALITY MONITORING REPORT (APRIL-23 TO JUNE-23)

- 1. Name of Industry
- : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

Monitoring Station No.- AAQMS-2: Ghichamura

2. **Sampling Location**

Renewable Energy

- RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler •
- 3. Monitoring Instruments Sample collected by 4.
- : VCSPL representative

						Р	ARAMETE	RS					
Date	PM10	PM2.5	SO ₂	NOx	O3	СО	NH ₃	C ₆ H ₆	BaP	Ni	Pb	As	F
2	(µg/m³)	(µg/m³)	(µg/m ³)	(µg/m³)	(µg/m ³)	(mg/m ³)	(µg/m³)	(µg/m³)	(ng/m ³)	(ng/m ³)	(µg/m³)	(ng/m ³)	(µg/m³)
04.04.2023	50.4	30.4	9.5	18.5	<4.0	0.38	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
07.04.2023	52.1	29.1	10.8	16.8	<4.0	0.35	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
11.04.2023	51.2	30.6	11.4	17.4	<4.0	0.33	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
14.04.2023	52.9	31.1	10.7	16.7	<4.0	0.32	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
18.04.2023	54.1	30.9	9.6	18.6	<4.0	0.36	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
21.04.2023	52.5	29.4	10.4	15.4	<4.0	0.35	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
25.04.2023	50.1	30.7	7.4	16.4	<4.0	0.33	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
28.04.2023	49.8	31.6	9.3	18.3	<4.0	0.35	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
02.05.2023	52.2	29.6	10.4	17.4	<4.0	0.37	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
05.05.2023	50.5	30.8	8.6	18.6	<4.0	0.35	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
09.05.2023	49.5	28.5	9.8	17.8	<4.0	0.32	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
12.05.2023	51.5	29.3	10.5	18.5	<4.0	0.37	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
16.05.2023	52.8	31.6	8.7	16.7	<4.0	0.35	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
19.05.2023	48.5	27.2	8.9	17.9	<4.0	0.38	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
23.05.2023	52.7	28.0	9.9	15.9	<4.0	0.42	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
26.05.2023	51.4	29.2	8.7	18.7	<4.0	0.44	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
30.05.2023	50.9	28.7	10.1	16.5	<4.0	0.42	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
02.06.2023	49.1	27.5	8.2	15.6	<4.0	0.43	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
06.06.2023	48.5	26.6	6.5	16.5	<4.0	0.41	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
09.06.2023	49.8	25.6	10.4	17.4	<4.0	0.39	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
13.06.2023	49.5	27.1	7.9	15.9	<4.0	0.35	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
16.06.2023	47.7	28.5	9.2	16.2	<4.0	0.34	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
20.06.2023	48.2	26.4	6.8	15.8	<4.0	0.25	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
23.06.2023	46.5	27.4	7.9	17.9	<4.0	0.29	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
27.06.2023	48.8	26.0	7.5	16.5	<4.0	0.29	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
30.06.2023	46.8	25.5	7.9	15.9	<4.0	0.26	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
NAAQ	100	60	80	80	100	4	400	05	01	20	10	06	
Standard	100		00	00	100	•	100	00	01		1.0	00	
Average	50.3	28.7	9.1	17.1	<4.0	0.35	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
Testing method	Gravimetr ic	Gravimet ric	Improve d West and Gaeke method	Modified Jacob & Hochheise r (Na- Arsenite)	Chemical Method	NDIR Spectrosco py	Indo phenol blue method	Absorption & Desorption followed by GC analysis	Solvent extraction followed by Gas Chromato graphy analysis	AAS method after sampling	AAS method after sampling	AAS method after sampling	Zirconi um SPADN S Method

BDL Values: SO₂< 4 µg/m³, NO_X< 9 µg/m³, O₃< 4 µg/m³, Ni<0.01 ng/m³, As< 0.001 ng/m³, C₆H₆<0.001 µg/m³, BaP<0.002 ng/m³, Pb<0.001 µg/m³, F<0.01µg/m³·CO<0.1 mg/m³

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Surface & Sub-Surface Investigation Quality Control & Project Management

:

:

:

- Agricultural Development Information Technology Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Ref: VCSPL/23-24/TR-05918

4.

Date: 03.07.2023

Laboratory Service

Environment Lab Food Lab

Material Lab

Seil Lab

Mineral Lab

4 Microbiology Lal

AMBIENT AIR OUALITY MONITORING REPORT (APRIL-23 TO JUNE-23)

- Name of Industry 1.
- M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga :
- 2. **Sampling Location**
- Monitoring Station No.- AAQMS-3 : Tileimal

RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

3. **Monitoring Instruments** Sample collected by

Renewable Energy

VCSPL representative

						PA	ARAMETE	RS					
	PM ₁₀	PM	SO	NO.	0,	0	NH		BaP	Ni	Ph	45	F
Date	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	(mg/m^3)	$(\mu g/m^3)$	$(\mu g/m^3)$	(ng/m ³)	(ng/m^3)	$(\mu g/m^3)$	(ng/m ³)	$(\mu g/m^3)$
04.04.2023	48.6	29.6	10.8	19.3	<4.0	0.23	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
07.04.2023	50.2	27.8	9.6	19.8	<4.0	0.24	<20.0	<4	< 0.5	<2.5	< 0.02	<1	<0.01
11.04.2023	49.8	26.7	8.9	18.6	<4.0	0.25	<20.0	<4	< 0.5	<2.5	< 0.02	<1	<0.01
14.04.2023	48.4	29.4	10.2	19.2	<4.0	0.29	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
18.04.2023	50.9	28.2	9.5	18.9	<4.0	0.23	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
21.04.2023	48.7	30.5	10.4	18.5	<4.0	0.25	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
25.04.2023	46.4	28.6	8.1	17.9	<4.0	0.21	<20.0	<4	< 0.5	<2.5	< 0.02	<1	<0.01
28.04.2023	47.1	27.6	9.5	18.6	<4.0	0.23	<20.0	<4	< 0.5	<2.5	< 0.02	<1	<0.01
02.05.2023	49.8	26.7	11.4	18.7	<4.0	0.25	<20.0	<4	< 0.5	<2.5	< 0.02	<1	<0.01
05.05.2023	47.4	28.8	9.7	19.6	<4.0	0.23	<20.0	<4	< 0.5	<2.5	< 0.02	<1	<0.01
09.05.2023	50.1	30.5	10.5	19.5	<4.0	0.28	<20.0	<4	< 0.5	<2.5	< 0.02	<1	<0.01
12.05.2023	49.4	29.5	10.1	20.1	<4.0	0.29	<20.0	<4	< 0.5	<2.5	< 0.02	<1	<0.01
16.05.2023	51.1	28.7	9.8	19.8	<4.0	0.24	<20.0	<4	< 0.5	<2.5	< 0.02	<1	<0.01
19.05.2023	50.2	27.6	10.8	18.9	<4.0	0.26	<20.0	<4	< 0.5	<2.5	< 0.02	<1	<0.01
23.05.2023	52.6	29.5	10.1	19.1	<4.0	0.23	<20.0	<4	< 0.5	<2.5	< 0.02	<1	<0.01
26.05.2023	51.1	28.8	9.8	19.5	<4.0	0.25	<20.0	<4	< 0.5	<2.5	<0.02	<1	<0.01
30.05.2023	50.9	29.5	9.6	18.9	<4.0	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
02.06.2023	47.6	27.4	10.1	19.1	<4.0	0.22	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
06.06.2023	48.5	26.5	10.2	19.4	<4.0	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
09.06.2023	47.1	28.4	9.9	18.9	<4.0	0.23	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
13.06.2023	49.9	27.6	10.8	18.9	<4.0	0.29	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
16.06.2023	50.4	25.2	9.8	17.9	<4.0	0.25	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
20.06.2023	49.5	26.6	9.1	17.8	<4.0	0.25	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
23.06.2023	48.8	27.1	9.3	18.8	<4.0	0.29	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
27.06.2023	47.7	26.9	10.1	19.2	<4.0	0.29	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
30.06.2023	50.2	28.8	8.9	19.9	<4.0	0.26	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	
Average	49.3	28.2	9.9	19.0	<4.0	0.25	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
Testing method	Gravime tric	Gravimetr ic	Improve d West and Geake method	Modified Jacob & Hochheis er (Na- Arsenite)	Chemical Method	NDIR Spectros copy	Indo phenol blue method	Absorp tion & Desorpt ion followe d by GC analysis	Solvent extractio n followed by Gas Chromat ography analysis	AAS method after sampling	AAS method after sampling	AAS method after sampling	Zirconiu m SPADNS Method

BDL Values: SO₂< 4 µg/m³, NO_X< 9 µg/m³, O₃< 4 µg/m³, Ni<0.01 ng/m³, As< 0.001 ng/m³, C₆H₆<0.001 µg/m³, BaP<0.002 ng/m³, Pb<0.001 µg/m³, F<0.01µg/m³ CO-<0.1 mg/m³

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Surface & Sub-Surface Investigation

:

:

:

- Quality Control & Project Management Renewable Energy
- Agricultural Development Information Technology Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Ref: VCSPL/23-24/TR-05919

Date: 03.07.2023

Laboratory Service

Environment Lab Food Lab

Material Lab

Seil Lab

Miscral Lab

4 Microbiology Lal

AMBIENT AIR OUALITY MONITORING REPORT (APRIL-23 TO JUNE-23)

- Name of Industry 1.
- M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga
- 2. **Sampling Location**
- Monitoring Station No.- AAQMS-4 : Bomaloi
- **Monitoring Instruments** 3.
- 4. Sample collected by
- RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler
- VCSPL representative :

						PA	ARAMETE	RS					
Date	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NOx (µg/m ³)	O3 (µg/m ³)	CO (mg/m ³)	NH3 (μg/m ³)	C ₆ H ₆ (µg/m ³)	BaP (ng/m ³)	Ni (ng/m ³)	Ρb (μg/m ³)	As (ng/m ³)	F (μg/m ³)
04.04.2023	51.4	29.0	15.5	24.5	<4.0	0.32	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
07.04.2023	50.3	26.3	16.3	24.3	<4.0	0.33	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
11.04.2023	51.7	30.4	16.9	23.9	<4.0	0.35	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
14.04.2023	49.7	29.8	16.7	23.7	<4.0	0.36	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
18.04.2023	50.5	28.5	16.4	23.4	5.5	0.33	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
21.04.2023	48.9	26.3	19.7	26.7	5.3	0.32	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
25.04.2023	49.3	27.9	18.3	25.3	5.2	0.34	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
28.04.2023	47.3	25.8	17.6	24.6	5.4	0.31	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
02.05.2023	48.5	28.4	16.7	23.7	<4.0	0.38	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
05.05.2023	49.2	27.6	17.5	24.5	5.6	0.39	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
09.05.2023	48.4	29.1	15.4	25.4	5.5	0.35	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
12.05.2023	50.8	28.6	16.5	22.5	5.3	0.36	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
16.05.2023	49.1	27.1	18.3	20.3	<4.0	0.38	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
19.05.2023	50.2	28.6	16.4	23.4	<4.0	0.41	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
23.05.2023	46.9	25.1	17.5	22.5	5.2	0.43	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
26.05.2023	48.1	28.9	19.3	20.6	5.4	0.40	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
30.05.2023	50.5	26.4	16.5	23.5	5.5	0.34	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
02.06.2023	49.7	27.2	19.4	22.4	<4.0	0.30	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
06.06.2023	46.9	26.9	17.5	20.8	<4.0	0.32	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
09.06.2023	47.4	27.7	18.6	21.6	5.3	0.31	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
13.06.2023	46.9	26.2	18.9	22.9	5.4	0.36	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
16.06.2023	45.4	28.6	18.8	20.8	<4.0	0.35	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
20.06.2023	47.1	29.4	18.5	22.5	<4.0	0.33	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
23.06.2023	48.8	27.0	18.3	19.3	<4.0	0.34	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
27.06.2023	46.8	26.4	17.9	20.9	<4.0	0.31	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
30.06.2023	45.3	25.5	17.6	18.6	<4.0	0.26	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
NAAQ Standard	100	60	80	80	100	0.32	400	05	01	20	1.0	06	
Average	48.7	27.6	17.6	22.8	5.4	0.35	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
Testing method	Gravimet ric	Gravimet ric	Improved West and Gaeke method	Modified Jacob & Hochheis er (Na- Arsenite)	Chemical Method	NDIR Spectrosc opy	Indo phenol blue method	Absorpti on & Desorptio n followed by GC analysis	Solvent extractio n followed by Gas Chromat ography analysis	AAS method after sampling	AAS method after sampling	AAS method after sampling	Zirconiu m SPADNS Method

BDL Values: SO2<4 µg/m3, NOX<9 µg/m3, O3<4 µg/m3, Ni<0.01 ng/m3, As< 0.001 ng/m3, C6H6<0.001 µg/m3, BaP<0.002 ng/m3, Pb<0.001 µg/m3, F<0.01µg/m3,CO-<0.1 mg/m3

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Surface & Sub-Surface Investigation
- Quality Control & Project Management Renewable Energy
- Agricultural Development Information Technology Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Ref: VCSPL/23-24/TR-05920

Date: 03.07.2023

Laboratory Service

Environment Lab Food Lab

Material Lab

Seil Lab

Miscral Lab

4 Microbiology Lal

AMBIENT AIR OUALITY MONITORING REPORT (APRIL-23 TO JUNE-23)

- Name of Industry 1.
- M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

2. Sampling Location

4.

- Monitoring Station No.- AAQMS-5 : Kapulas :
- 3. Monitoring Instruments Sample collected by
- : VCSPL representative

						PA	ARAMETE	RS					
Date	PM10	PM2.5	SO ₂	NOx	O 3	CO	NH3	C ₆ H ₆	BaP	Ni	Pb	As	F
Date	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(mg/m ³)	(µg/m ³)	(µg/m ³)	(ng/m ³)	(ng/m ³)	(µg/m ³)	(ng/m ³)	(µg/m ³)
04.04.2023	51.3	28.6	16.2	21.2	< 4.0	0.36	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
07.04.2023	50.5	27.6	17.4	24.4	< 4.0	0.37	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
11.04.2023	49.4	29.7	16.2	23.2	< 4.0	0.31	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
14.04.2023	48.5	28.6	15.4	22.4	< 4.0	0.38	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
18.04.2023	50.3	26.0	17.8	24.8	< 4.0	0.45	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
21.04.2023	48.8	28.0	15.7	20.4	< 4.0	0.42	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
25.04.2023	49.5	26.1	18.4	20.7	< 4.0	0.36	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
28.04.2023	49.6	25.9	16.5	21.4	< 4.0	0.39	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
02.05.2023	48.4	29.1	23.6	26.5	< 4.0	0.38	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
05.05.2023	50.4	28.0	20.4	27.2	< 4.0	0.42	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
09.05.2023	49.5	27.6	19.7	26.5	< 4.0	0.44	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
12.05.2023	48.4	26.4	17.5	29.6	< 4.0	0.45	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
16.05.2023	50.1	25.1	16.5	28.4	< 4.0	0.42	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
19.05.2023	49.2	28.6	14.5	26.4	< 4.0	0.46	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
23.05.2023	48.9	27.1	18.7	25.1	< 4.0	0.49	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
26.05.2023	48.1	26.9	16.9	28.2	< 4.0	0.45	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
30.05.2023	49.7	28.4	15.7	30.2	<4.0	0.44	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
02.06.2023	47.2	29.7	15.1	27.6	<4.0	0.38	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
06.06.2023	49.5	29.4	16.4	29.4	< 4.0	0.35	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
09.06.2023	48.1	25.7	14.9	28.2	< 4.0	0.39	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
13.06.2023	47.9	24.2	15.4	27.5	< 4.0	0.37	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
16.06.2023	47.4	29.6	16.7	27.4	< 4.0	0.35	<20.0	<4	<0.5	<2.5	<0.02	<1	< 0.01
20.06.2023	49.5	27.3	12.5	23.5	< 4.0	0.27	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
23.06.2023	47.8	26.6	14.6	21.6	< 4.0	0.34	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
27.06.2023	48.7	25.9	17.2	24.2	< 4.0	0.29	<20.0	<4	<0.5	<2.5	< 0.02	<1	< 0.01
30.06.2023	49.2	28.7	16.2	23.2	< 4.0	0.26	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
NAAQ	100	60	80	80	100	4	400	05	01	20	1.0	06	
Standard	100				100				••				
Average	49.1	27.5	16.8	25.4	<4.0	0.38	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
Testing method	Gravim etric	Gravim etric	Improve d West and Gaeke method	Modifie d Jacob & Hochhei ser (Na- Arsenite)	Chemic al Method	NDIR Spectros copy	Indo phenol blue method	Absorpt ion & Desorpti on followed by GC analysis	Solvent extracti on followed by Gas Chroma tograph y analysis	AAS method after samplin g	AAS method after samplin g	AAS method after samplin g	Zirconiu m SPADN S Method

BDL Values: SO₂<4 µg/m³, NO₃<9 µg/m³, O₃<4 µg/m³, Ni<0.01 ng/m³, As<0.001 ng/m³, C₆H₆<0.001 µg/m³, BaP<0.002 ng/m³, Pb<0.001 µg/m³, F<0.01µg/m³ CO-<0.1 mg/m³

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Surface & Sub-Surface Investigation Quality Control & Project Management

:

:

:

- Renewable Energy
- Agricultural Development Information Technology Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Ref: VCSPL/23-24/TR-05921

4.

Date: 03.07.2023

Laboratory Service

Environment Lab Food Lab

Material Lab

Seil Lab

Mineral Lab

4 Microbiology Lal

AMBIENT AIR OUALITY MONITORING REPORT (APRIL-23 TO JUNE-23)

- Name of Industry 1.
- M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga
- 2. **Sampling Location**
- Monitoring Station No.- AAQMS-6 : Phulchanghal

RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

- 3. **Monitoring Instruments** Sample collected by
- VCSPL representative :

						P	ARAMETE	RS					
Date	РМ10 (µg/m3)	PM2.5 (μg/m3)	SO2 (μg/m3)	NOx (µg/m3)	O3 (µg/m3)	CO (mg/m3)	NH3 (μg/m3)	С6Н6 (µg/m3)	BaP (ng/m3)	Ni (ng/m3)	Рb (µg/m3)	As (ng/m3)	F (µg/m3)
04.04.2023	53.5	28.2	16.2	25.2	<4.0	0.33	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
07.04.2023	52.3	29.6	17.9	25.9	<4.0	0.34	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
11.04.2023	51.5	27.5	18.4	24.4	<4.0	0.35	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
14.04.2023	50.2	29.1	16.3	23.3	<4.0	0.36	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
18.04.2023	49.2	28.2	17.2	25.2	<4.0	0.32	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
21.04.2023	51.8	26.6	18.5	26.5	<4.0	0.33	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
25.04.2023	52.7	25.4	17.8	22.8	<4.0	0.31	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
28.04.2023	50.7	27.2	16.9	24.9	<4.0	0.34	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
02.05.2023	51.5	28.2	15.7	25.7	<4.0	0.36	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
05.05.2023	52.3	26.4	18.5	25.5	<4.0	0.35	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
09.05.2023	51.6	28.2	16.9	24.9	<4.0	0.32	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
12.05.2023	49.5	27.1	17.6	24.6	<4.0	0.31	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
16.05.2023	46.8	26.6	16.9	23.9	<4.0	0.36	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
19.05.2023	48.5	29.1	16.5	23.5	<4.0	0.31	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
23.05.2023	50.6	30.2	16.3	23.3	<4.0	0.28	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
26.05.2023	51.4	27.6	18.9	25.9	<4.0	0.29	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
30.05.2023	52.8	28.3	19.5	26.5	<4.0	0.26	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
02.06.2023	47.6	25.4	18.1	24.1	<4.0	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
06.06.2023	48.2	27.7	18.7	25.7	<4.0	0.27	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
09.06.2023	49.8	29.3	18.5	25.5	<4.0	0.26	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
13.06.2023	48.6	28.4	17.9	24.9	<4.0	0.36	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
16.06.2023	46.4	26.4	17.6	24.6	<4.0	0.31	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
20.06.2023	49.6	29.2	16.9	23.9	<4.0	0.29	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
23.06.2023	48.2	28.7	16.5	23.5	<4.0	0.28	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
27.06.2023	50.8	27.6	16.3	23.3	<4.0	0.31	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
30.06.2023	48.5	29.8	17.1	25.1	<4.0	0.27	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	
Average	50.2	27.9	17.4	24.7	<4.0	0.31	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
Testing method	Gravime tric	Gravime tric	Improve d West and Gaeke method	Modified Jacob & Hochheis er (Na- Arsenite)	Chemical Method	NDIR Spectros copy	Indo phenol blue method	Absorpti on & Desorpti on followed by GC analysis	Solvent extractio n followed by Gas Chromat ography analysis	AAS method after sampling	AAS method after sampling	AAS method after samplin g	Zirconi um SPADN S Method

BDL Values: SO₂< 4 µg/m³, NO₃< 9 µg/m³, O₃< 4 µg/m³, Ni<0.01 ng/m³, As< 0.001 ng/m³, C₆H₆<0.001 µg/m³, BaP<0.002 ng/m³, Pb<0.001 µg/m³, F<0.01µg/m³·CO<0.1 mg/m³

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Surface & Sub-Surface Investigation
 - Quality Control & Project Management Renewable Energy

:

:

:

:

- Agricultural Development Information Technology Public Health Engineering
- Mine Planning & Design Mineral/Sub-Soil Exploration
- Waste Management Services

Ref: VCSPL/23-24/TR-05922

Date: 03.07.2023

Laboratory Service

Environment Lab Food Lab

Material Lab

Seil Lab

Mineral Lab

4 Microbiology Lal

AMBIENT AIR QUALITY MONITORING REPORT (APRIL-23 TO JUNE-23)

- 1. Name of Industry
- M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga
- 2. **Sampling Location**

4.

Monitoring Station No.- AAQMS-7 : Khadiapali

RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

- 3. **Monitoring Instruments** Sample collected by
- VCSPL representative

						PA	RAMETER	RS					
Date	PM10 (μg/m ³)	PM2.5 (μg/m ³)	SO2 (μg/m ³)	NOx (µg/m ³)	O3 (µg/m ³)	CO (mg/m ³)	NH3 (µg/m ³)	С6Н6 (µg/m ³)	BaP (ng/m ³)	Ni (ng/m ³)	Pb (μg/m ³)	As (ng/m ³)	F (μg/m ³)
04.04.2023	52.4	30.6	11.8	19.3	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
07.04.2023	50.2	29.8	10.1	19.8	<4.0	0.24	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
11.04.2023	54.8	28.7	12.9	18.6	<4.0	0.25	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
14.04.2023	51.4	29.4	13.1	19.2	<4.0	0.29	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
18.04.2023	53.9	29.2	10.2	18.9	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
21.04.2023	52.7	30.5	12.4	18.5	<4.0	0.25	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
25.04.2023	51.4	28.6	11.1	17.9	<4.0	0.21	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
28.04.2023	50.1	29.6	10.5	18.6	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
02.05.2023	52.8	30.7	12.4	18.7	<4.0	0.25	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
05.05.2023	50.4	28.8	11.7	19.6	<4.0	0.23	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
09.05.2023	49.1	27.5	10.9	19.5	<4.0	0.28	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
12.05.2023	51.4	28.5	11.9	20.1	<4.0	0.29	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
16.05.2023	52.1	29.7	12.5	19.8	<4.0	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
19.05.2023	48.2	30.6	13.3	18.9	<4.0	0.26	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
23.05.2023	51.9	27.5	10.1	19.1	<4.0	0.23	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
26.05.2023	52.1	28.8	12.5	19.5	<4.0	0.25	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
30.05.2023	50.5	27.4	11.2	20.1	<4.0	0.26	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
02.06.2023	47.6	25.1	10.4	18.7	<4.0	0.22	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
06.06.2023	49.5	29.5	10.9	19.4	<4.0	0.24	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
09.06.2023	50.1	27.9	12.4	18.9	<4.0	0.23	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
13.06.2023	50.1	29.6	10.8	18.9	<4.0	0.29	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
16.06.2023	48.9	28.2	11.9	17.9	<4.0	0.25	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
20.06.2023	47.5	27.6	12.1	17.8	<4.0	0.25	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
23.06.2023	49.8	28.1	10.8	18.8	<4.0	0.29	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
27.06.2023	50.1	29.9	11.5	19.2	<4.0	0.29	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
30.06.2023	49.2	28.8	12.1	19.9	<4.0	0.26	<20.0	<4	<0.5	<2.5	< 0.02	<1	<0.01
NAAQ	100	60	80	80	100	4	400	05	01	20	10	06	
Standard	100		00	00	100				•••		1.0		
Average	50.7	28.9	11.6	19.1	<4.0	0.25	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
Testing method	Gravimetric	Gravimetric	Improved West and Geake method	Modified Jacob & Hochheiser (Na-Arsenite)	Chemical Method	NDIR Spectroscopy	Indo phenol blue method	Absorption & Desorption followed by GC analysis	Solvent extraction followed by Gas Chromatogra phy analysis	AAS method after sampling	AAS method after sampling	AAS method after sampling	Zirconium SPADNS Method

BDL Values: SO₂< 4 µg/m³, NO_X< 9 µg/m³, O₃< 4 µg/m³, Ni<0.01 ng/m³, As< 0.001 ng/m³, C₆H₆<0.001 µg/m³, BaP<0.002 ng/m³, Pb<0.001 µg/m³, F<0.01µg/m³·CO<0.1 mg/m³

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Surface & Sub-Surface Investigation Quality Control & Project Management

:

:

:

- Agricultural Development Information Technology
 - Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Ref: VCSPL/23-24/TR-05923

Renewable Energy

Date: 03.07.2023

Laboratory Service

Environment Lab Food Lab

Material Lab

Seil Lab

Mineral Lab

4 Microbiology Lal

AMBIENT AIR OUALITY MONITORING REPORT (APRIL-23 TO JUNE-23)

- 1. Name of Industry
- M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga
- 2. **Sampling Location**

4.

Monitoring Station No.- AAQMS-8 : Thelkoloi

RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

- 3. **Monitoring Instruments** Sample collected by
- VCSPL representative :

						PA	ARAMETE	RS					
Date	РМ10 (µg/m3)	PM2.5 (μg/m3)	SO2 (μg/m3)	NOx (µg/m3)	O3 (µg/m3)	CO (mg/m3)	NH3 (μg/m3)	C6H6 (µg/m3)	BaP (ng/m3)	Ni (ng/m3)	Рb (µg/m3)	As (ng/m3)	F (µg/m3)
04.04.2023	58.2	32.7	14.8	26.3	8.2	0.33	24.6	<4	<0.5	<2.5	< 0.02	<1	< 0.01
07.04.2023	53.5	32.6	15.1	28.8	6.4	0.35	21.6	<4	<0.5	<2.5	<0.02	<1	< 0.01
11.04.2023	56.8	30.3	15.9	25.6	7.7	0.36	22.4	<4	<0.5	<2.5	< 0.02	<1	< 0.01
14.04.2023	55.9	29.5	16.1	28.2	9.2	0.39	25.5	<4	<0.5	<2.5	< 0.02	<1	<0.01
18.04.2023	52.5	28.5	16.2	26.9	8.5	0.35	24.6	<4	<0.5	<2.5	< 0.02	<1	<0.01
21.04.2023	50.7	29.4	17.4	27.5	7.5	0.34	20.2	<4	<0.5	<2.5	<0.02	<1	< 0.01
25.04.2023	52.4	31.7	17.1	29.9	8.8	0.36	22.3	<4	<0.5	<2.5	< 0.02	<1	< 0.01
28.04.2023	50.8	26.7	17.5	28.6	9.3	0.38	25.4	<4	<0.5	<2.5	< 0.02	<1	<0.01
02.05.2023	53.4	28.0	18.4	19.7	10.2	0.39	25.9	<4	<0.5	<2.5	< 0.02	<1	<0.01
05.05.2023	55.7	29.0	18.7	22.6	7.5	0.31	21.4	<4	<0.5	<2.5	<0.02	<1	<0.01
09.05.2023	52.2	30.1	18.9	26.5	9.6	0.35	25.9	<4	<0.5	<2.5	<0.02	<1	<0.01
12.05.2023	50.8	32.6	17.9	24.1	8.4	0.31	22.5	<4	<0.5	<2.5	<0.02	<1	<0.01
16.05.2023	53.1	29.1	18.5	30.8	6.5	0.39	20.2	<4	<0.5	<2.5	<0.02	<1	<0.01
19.05.2023	55.2	31.6	17.3	28.9	9.3	0.33	26.1	<4	<0.5	<2.5	< 0.02	<1	< 0.01
23.05.2023	52.9	30.1	17.1	25.1	10.5	0.42	28.9	<4	<0.5	<2.5	< 0.02	<1	<0.01
26.05.2023	54.4	28.7	16.5	29.5	11.5	0.37	22.6	<4	<0.5	<2.5	< 0.02	<1	<0.01
30.05.2023	55.8	29.6	17.2	28.4	<4.0	0.39	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
02.06.2023	51.2	27.1	15.5	26.3	<4.0	0.32	<20.0	<4	<0.5	<2.5	<0.02	<1	<0.01
06.06.2023	50.6	29.4	15.9	29.4	8.3	0.36	24.9	<4	<0.5	<2.5	<0.02	<1	<0.01
09.06.2023	51.4	27.7	16.4	30.9	6.6	0.34	20.1	<4	<0.5	<2.5	<0.02	<1	<0.01
13.06.2023	52.9	28.2	15.8	22.9	8.8	0.31	22.8	<4	<0.5	<2.5	<0.02	<1	<0.01
16.06.2023	53.4	30.6	16.9	27.9	9.7	0.33	24.5	<4	<0.5	<2.5	< 0.02	<1	<0.01
20.06.2023	54.4	29.4	17.1	29.8	8.2	0.35	25.9	<4	<0.5	<2.5	<0.02	<1	<0.01
23.06.2023	50.8	32.0	16.8	28.8	7.4	0.36	21.3	<4	<0.5	<2.5	<0.02	<1	<0.01
27.06.2023	51.8	28.4	17.5	26.2	6.3	0.32	23.9	<4	<0.5	<2.5	< 0.02	<1	<0.01
30.06.2023	52.4	26.5	18.1	28.9	7.6	0.30	22.8	<4	<0.5	<2.5	< 0.02	<1	<0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	
Average	53.2	29.6	16.9	27.3	8.4	0.35	23.6	<4	<0.5	<2.5	<0.02	<1	<0.01
Testing method	Gravime tric	Gravimet ric	Improve d West and Geake method	Modified Jacob & Hochheis er (Na- Arsenite)	Chemica l Method	NDIR Spectros copy	Indo phenol blue method	Absorptio n & Desorptio n followed by GC analysis	Solvent extraction followed by Gas Chromato graphy analysis	AAS method after sampling	AAS method after sampling	AAS metho d after sampli ng	Zirconi um SPADN S Method

BDL Values: SO₂<4 µg/m³, NO_X<9 µg/m³, O₃<4 µg/m³, Ni<0.01 ng/m³, As<0.001 ng/m³, C₆H₆<0.001 µg/m³, BaP<0.002 ng/m³, Pb<0.001 µg/m³, F<0.01µg/m³ CO-<0.1 mg/m³

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Infrastructure Engineering
- Water Resource Management
- · Environmental & Social Study

 Surface & Sub-Surface Investigation Quality Control & Project Management

:

Renewable Energy

- Agricultural Development
 - Information Technology
 - Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Ref: VCSPL/23-24/TR-05933

SURFACE WATER QUALITY ANALYSIS REPORT JUNE-2023

M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga :

- Name of Industry Sampling location
- SW-1: Hirakud Reservoir; SW-2: Lapanga Pond; SW-3: Matwadinadi –U/S,
- SW-4:Bamloi Pond; SW-5: Bhedan River Near Katikela
- Date of sampling **Date of analysis**
- 16.06.2023 TO 22.06.2023

15.06.2023

- Sample collected by
- VCSPL Representative

				Standards		Α	nalysis Resul	ts	
Sl. No	Parameter	Testing Methods	Unit	as per IS-2296:1992	SW-1	SW-2	SW-3	SW-4	SW-5
				Class –'C'					
1	pH at 25°C	APHA 4500H ⁺ B		6.0-9.0	7.37	7.26	7.81	7.77	7.85
2	Colour	APHA 2120 B, C	Hazen	300	<1.0	<1.0	<1.0	<1.0	<1.0
3	Taste	APHA 2160 C			Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
4	Odour	APHA 2150 B			Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
5	Turbidity	APHA 2130 B	NTU		3.4	5.1	2.3	5.6	2.2
6	Total Dissolved Solids	APHA 2540 C	mg/l	1500	114	138	102	145	110
7	Total Hardness (as CaCO ₃)	APHA 2340 C	mg/l		66	82	72	93	68
8	Total Alkalinity	APHA 2320 B	mg/l		56	78	62	70	66
9	Calcium (as Ca)	APHA 3500Ca B	mg/l		19.2	22.5	20.1	22.6	18.8
10	Magnesium (as Mg)	APHA 3500Mg B	mg/l		4.39	6.27	5.30	8.89	5.12
11	Residual, free Chlorine	APHA 4500Cl, B	mg/l		BDL	BDL	BDL	BDL	BDL
12	Boron (as B)	APHA 4500B, B	mg/l		<0.1	<0.01	< 0.01	< 0.01	<0.01
13	Chloride (as Cl)	APHA 4500Cl-B	mg/l	600	30	32	28	34	36
14	Sulphate (as SO ₄)	APHA 4500 SO42- E	mg/l	400	20.6	35.4	18.6	44.2	19.7
15	Fluoride (as F)	APHA 4500F-C	mg/l	1.5	0.34	0.25	0.29	0.32	0.33
16	Nitrate (as NO ₃)	APHA 4500 NO3 ⁻ E	mg/l	50	1.45	1.61	1.31	1.55	1.34
17	Sodium as Na	APHA3500-Na	mg/l		8.4	9.2	9.9	9.0	8.7
18	Potassium as K	APHA 3500-K	mg/l		2.1	2.5	2.4	2.2	2.4
19	Phenolic Compounds (as C6H5OH)	APHA 5530 B,D	mg/l	0.005	<0.05	<0.05	<0.05	<0.05	<0.05
20	Cyanide (as CN)	APHA 4500 CN- C,D	mg/l	0.05	BDL	BDL	BDL	BDL	BDL
21	Anionic Detergents (as MBAS)	APHA 5540 C	mg/l	1.0	<0.2	<0.2	<0.2	<0.2	<0.2
22	Cadmium (as Cd)	APHA 3111 B,C	mg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
23	Arsenic (as As)	APHA 3114 B	mg/l	0.2	<0.004	<0.004	< 0.004	< 0.004	< 0.004
24	Copper (as Cu)	APHA 3111 B,C	mg/l	1.5	< 0.02	< 0.02	< 0.02	< 0.02	<0.02
25	Lead (as Pb)	APHA 3111 B,C	mg/l	0.1	<0.02	< 0.02	< 0.02	< 0.02	<0.02
26	Manganese (as Mn)	APHA 3500Mn B	mg/l		<0.03	<0.03	< 0.03	<0.03	<0.03
27	Iron (as Fe)	APHA 3500Fe, B	mg/l	0.5	0.054	0.15	0.048	0.14	0.059
28	Chromium (as Cr ⁺⁶)	APHA 3500Cr B	mg/l	0.05	< 0.02	< 0.02	< 0.02	<0.02	<0.02
29	Selenium (as Se)	APHA 3114 B	mg/l	0.05	<0.001	<0.001	<0.001	<0.001	< 0.001
30	Zinc (as Zn)	APHA 3111 B,C	mg/l	15	<0.01	<0.01	< 0.01	<0.01	<0.01
31	Aluminium as(Al)	APHA 3500Al B	mg/l		<0.1	<0.1	<0.1	<0.1	<0.1
32	Mercury (as Hg)	APHA 3500 Hg	mg/l		< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
33	Mineral Oil	APHA 5220 B	mg/l		<0.001	<0.001	<0.001	<0.001	<0.001
34	Pesticides	APHA 6630 B,C	mg/l		Absent	Absent	Absent	Absent	Absent
35	E.Coli	APHA 9221-F	MPN/ 100 ml		Absent	Absent	Absent	Absent	Absent
36	Total Coliforms	АРНА9221-В	MPN/ 100 ml	5000	240	280	340	260	280

Note: CL: Colourless, AL:Agreeable, U/O: Unobjectionable, ND: Not detected.

Date: 03.07.2023

Laboratory Services Environment Lab Food Lab

Material Lab Suil Lab

Mineral Lab

Æ Microbiology Lab

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Infrastructure Engineering
- Water Resource Management
- · Environmental & Social Study
- Surface & Sub-Surface Investigation Quality Control & Project Management

Renewable Energy

- Agricultural Development
 - Information Technology Public Health Engineering
- Mine Planning & Design Mineral/Sub-Soil Exploration
- Waste Management Services

Ref: VCSPL/23-24/TR-05934

Microbiology Lab

Date:03.07.2023

Laboratory Services Environment Lab Food Lab

Material Lab Suil Lab

Mineral Lab

Æ

SURFACE WATER QUALITY ANALYSIS REPORT JUNE-20223

- 1. Name of Industry
- 2. Sampling location
- M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga
- **SW-6:** Bhedan River Near Khinda Village;**SW-7**:Matwadinadi-D/S;
 - SW-8: Hirakud Reservoir Near Gurupali village; SW-9: Salepali village Pond; SW-10: Sanamal village Pond
- 3. Date of sampling
- 15.06.2023 :
- 16.06.2023 TO 22.06.2023 4. Date of analysis :

:

:

- 5. Sample collected by
- **VCSPL** Representative

				Standards as		An	alysis Resul	ts	
Sl. No.	Parameter	Testing Methods	Unit	per IS-2296:1992 Class –'C'	SW-6	SW-7	SW-8	SW-9	SW-10
1	pH at 25°C	APHA 4500H ⁺ B		6.0-9.0	7.42	7.74	7.39	7.45	7.31
2	Colour	APHA 2120 B, C	Hazen	300	<1.0	<1.0	<1.0	<1.0	<1.0
3	Taste	APHA 2160 C			Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
4	Odour	APHA 2150 B			Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
6	Turbidity	APHA 2130 B	NTU		4.6	3.2	3.1	5.5	5.4
7	Total Dissolved Solids	APHA 2540 C	mg/l	1500	113	98	121	112	141
8	Total Hardness (as CaCO3)	APHA 2340 C	mg/l		78	69	102	87	94
9	Total Alkalinity	APHA 2320 B	mg/l		62	70	66	72	81
10	Calcium (as Ca)	APHA 3500Ca B	mg/l		21.6	20.4	26.2	24.8	26.1
11	Magnesium (as Mg)	APHA 3500Mg B	mg/l		5.85	4.39	8.89	6.09	7.01
12	Residual, free Chlorine	APHA 4500Cl, B	mg/l		BDL	BDL	BDL	BDL	BDL
13	Boron (as B)	APHA 4500B, B	mg/l		<0.01	<0.01	<0.01	< 0.01	<0.01
14	Chloride (as Cl)	APHA 4500Cl ⁻ B	mg/l	600	30	24	31	49	51
15	Sulphate (as SO ₄)	APHA 4500 SO ₄ ²⁻ E	mg/l	400	18.2	15.6	18.4	28.1	25.0
16	Fluoride (as F)	APHA 4500F-C	mg/l	1.5	0.37	0.32	0.44	0.40	0.39
17	Nitrate (as NO3)	APHA 4500 NO3 ⁻ E	mg/l	50	2.86	2.34	2.48	3.09	3.31
18	Sodium as Na	АРНА 3500-К	mg/l		10.1	8.7	9.2	9.9	7.8
19	Potassium as K	APHA3500-Na	mg/l		3.6	2.7	2.5	3.1	3.4
20	Phenolic Compounds (as C ₆ H ₅ OH)	APHA 5530 B,D	mg/l	0.005	<0.05	<0.05	<0.05	<0.05	<0.05
21	Cyanide (as CN)	APHA 4500 CN- C,D	mg/l	0.05	BDL	BDL	BDL	BDL	BDL
22	Anionic Detergents (as MBAS)	APHA 5540 C	mg/l	1.0	<0.2	<0.2	<0.2	<0.2	<0.2
23	Cadmium (as Cd)	APHA 3111 B,C	mg/l	0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01
24	Arsenic (as As)	APHA 3114 B	mg/l	0.2	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
25	Copper (as Cu)	APHA 3111 B,C	mg/l	1.5	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
26	Lead (as Pb)	APHA 3111 B,C	mg/l	0.1	< 0.02	< 0.02	< 0.02	< 0.02	<0.02
27	Manganese (as Mn)	APHA 3500Mn B	mg/l		< 0.03	<0.03	< 0.03	< 0.03	<0.03
28	Iron (as Fe)	APHA 3500Fe, B	mg/l	0.5	0.045	0.064	0.060	0.049	0.052
29	Chromium (as Cr ⁺⁶)	APHA 3500Cr B	mg/l	0.05	< 0.02	<0.02	< 0.02	< 0.02	<0.02
30	Selenium (as Se)	APHA 3114 B	mg/l	0.05	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
31	Zinc (as Zn)	APHA 3111 B,C	mg/l	15	< 0.01	<0.01	< 0.01	<0.01	<0.01
32	Aluminium as(Al)	APHA 3500Al B	mg/l		<0.1	<0.1	<0.1	<0.1	<0.1
33	Mercury (as Hg)	APHA 3500 Hg	mg/l		< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
34	Mineral Oil	APHA 5220 B	mg/l		<0.001	<0.001	<0.001	<0.001	<0.001
35	Pesticides	APHA 6630 B,C	mg/l		Absent	Absent	Absent	Absent	Absent
36	E.Coli	APHA 9221-F	MPN/ 100 ml		Absent	Absent	Absent	Absent	Absent
37	Total Coliform	APHA9221-B	MPN/ 100 ml	5000	260	320	280	310	340

Agreeable, U/O: Unobjectionable, ND: Not detected. Note: CL: Colourless

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Infrastructure Engineering
- Water Resource Management
- · Environmental & Social Study
- Surface & Sub-Surface Investigation Quality Control & Project Management
 - Agricultural Development
 - Information Technology Public Health Engineering
- Mine Planning & Design Mineral/Sub-Soil Exploration
- Waste Management Services

Date: 03.07.2023

Environment Lab Food Lab Material Lab Suil Lab Mineral Lab Æ Microbiology Lab

Laboratory Services

Ref: VCSPL/23-24/TR-05927

GROUND WATER QUALITY ANALYSIS REPORT JUNE-2023

1. Name of Industry

Renewable Energy

- M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga.
- Sampling location 2.
- GW-1: Lapanga Village; GW-2: Pandoloi Village; GW-3:Bamloi Village; GW-4: Tilaimal Village
- 3. Date of sampling
 - 15.06.2023 : :

÷

:

- 4. Date of analysis
- Sample collected by 5.
- 16.06.2023 TO 22.06.2023 VCSPL Representative

SI.	Parameter	Testing Methods	Unit	Standa IS -105 Amended or	rd as per 500:2012 2015 & 2018		Analysis	Result	
110.				Acceptable Limit	Permissible Limit	GW-1	GW-2	GW-3	GW-4
1	pH Value at 25°C	APHA 4500H+ B		6.5-8.5	No Relaxation	7.46	7.39	7.40	7.52
2	Colour	APHA 2120 B, C	Hazen	5	15	CL	CL	CL	CL
3	Taste	APHA 2160 C		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
4	Odour	APHA 2150 B		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
5	Turbidity	APHA 2130 B	NTU	1	5	<1.0	<1.0	<1.0	<1.0
6	Total Dissolved Solids	APHA 2540 C	mg/l	500	2000	172	170	152	170
7	Total Hardness (as CaCO ₃)	АРНА 2340 C	mg/l	200	600	96	112	86	106
8	Total Alkalinity	APHA 2320 B	mg/l	200	600	86	88	90	86
9	Calcium (as Ca)	APHA 3500Ca B	mg/l	75	200	26.6	29.3	25.2	27.2
10	Magnesium (as Mg)	APHA 3500Mg B	mg/l	30	100	6.95	8.22	7.26.	8.20
11	Residual, free Chlorine	APHA 4500Cl, B	mg/l	0.2	1	BDL	BDL	BDL	BDL
12	Boron (as B)	APHA 4500B, B	mg/l	2.4	No Relaxation	<0.1	<0.1	<0.1	<0.1
13	Chloride (as Cl)	APHA 4500Cl-B	mg/l	250	1000	27.8	30.2	26.9	28.4
14	Sulphate (as SO ₄)	APHA 4500 SO ₄ ²⁻ E	mg/l	200	400	4.4	4.8	4.2	4.6
15	Fluoride (as F)	APHA 4500F-C	mg/l	1.0	1.5	0.37	0.29	0.28	0.33
16	Nitrate (as NO ₃)	APHA 4500 NO ₃ - E	mg/l	45	No Relaxation	2.8	3.2	3.4	3.0
17	Sodium as Na	APHA3500-Na	mg/l			15.2	14.2	14.4	15.2
18	Potassium as K	APHA 3500-K	mg/l			3.2	3.6	3.7	4.3
19	Phenolic Compounds (as C_6H_5OH)	APHA 5530 B,D	mg/l	0.001	0.002	<0.001	<0.001	<0.001	<0.001
20	Cyanide (as CN)	APHA 4500 CN- C,D	mg/l	0.05	No Relaxation	<0.01	<0.01	<0.01	<0.01
21	Anionic Detergents (as MBAS)	АРНА 5540 C	mg/l	0.2	1.0	<0.2	<0.2	<0.2	<0.2
22	Cadmium (as Cd)	APHA 3111 B,C	mg/l	0.003	No Relaxation	<0.01	<0.01	<0.01	<0.01
23	Arsenic (as As)	APHA 3114 B	mg/l	0.01	No Relaxation	<0.004	<0.004	<0.004	<0.004
24	Copper (as Cu)	APHA 3111 B,C	mg/l	0.05	1.5	<0.02	<0.02	< 0.02	<0.02
25	Lead (as Pb)	APHA 3111 B,C	mg/l	0.01	No Relaxation	< 0.02	< 0.02	< 0.02	< 0.02
26	Manganese (as Mn)	APHA 3500Mn B	mg/l	0.1	0.3	< 0.03	<0.03	< 0.03	<0.03
27	Iron (as Fe)	APHA 3500Fe, B	mg/l	1	No Relaxation	0.14	0.16	0.18	0.15
28	Chromium (as Cr)	APHA 3500Cr B	mg/l	0.05	No Relaxation	<0.05	<0.05	<0.05	< 0.05
29	Selenium (as Se)	APHA 3114 B	mg/l	0.01	No Relaxation	<0.001	<0.001	<0.001	<0.001
30	Zinc (as Zn)	APHA 3111 B,C	mg/l	5	15	<0.01	< 0.01	< 0.01	<0.01
31	Aluminium as(Al)	APHA 3500Al B	mg/l	0.03	0.2	<0.1	<0.1	<0.1	<0.1
32	Mercury (as Hg)	APHA 3500 Hg	mg/l	0.001	No Relaxation	<0.004	<0.004	<0.004	<0.004
33	Mineral Oil	APHA 5220 B	mg/l	0.5	No Relaxation	<0.001	<0.001	<0.001	<0.001
34	Pesticides	APHA 6630 B,C	mg/l	Absent		Absent	Absent	Absent	Absent
35	E.Coli	АРНА 9221-F	MPN/ 100 ml	Shall not be detectable in any 100 ml sample		Absent	Absent	Absent	Absent
36	Total Coliforms	АРНА9221-В	MPN/ 100 ml	Shall not be detectable in any 100 ml sample		<1.1	<1.1	<1.1	<1.1
Note	CL. Colonlago AL. Annaahl	ND. Not Detected		•					

repared By

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Infrastructure Engineering
- Water Resource Management
- · Environmental & Social Study

 Surface & Sub-Surface Investigation Quality Control & Project Management

:

:

:

:

- Agricultural Development
 - Information Technology

 Mine Planning & Design Mineral/Sub-Soil Exploration

- Waste Management Services

Date: 03.07.2023

Environment Lab Food Lab Material Lab Suil Lab Mineral Lab £ Microbiology Lab

Laboratory Services

Ref: VCSPL/23-24/TR-05928

Public Health Engineering

GROUND WATER QUALITY ANALYSIS REPORT JUNE-2023

- 1. Name of Industry
- M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga.
- Sampling location 2.

3.

4.

- GW-5: Thelkoloi Village, GW-6: Ghichamura Village,
- GW-7: Gumkarma Village, GW-8: Chalatikra Village 15.06.2023
- Date of sampling Date of analysis

Renewable Energy

- 16.06.2023 TO 22.06.2023 :
- 5. Sample collected by
- VCSPL Representative

SI.	Parameter	Testing Methods	Unit	Standar IS -1050 Amended on	d as per)0:2012 2015 & 2018		Analysis	Result	
190.				Acceptable Limit	Permissible Limit	GW-5	GW-6	GW-7	GW-8
1	pH Value at 25ºC	APHA 4500H+B		6.5-8.5	No Relaxation	7.36	7.40	7.28	7.34
2	Colour	APHA 2120 B, C	Hazen	5	15	CL	CL	CL	CL
3	Taste	APHA 2160 C		Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
4	Odour	APHA2510-B	µs/cm	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
5	Turbidity	APHA 2130 B	NTU	1	5	<1.0	<1.0	<1.0	<1.0
6	Total Dissolved Solids	APHA 2540 C	mg/l	500	2000	165	208	170	222
7	Total Hardness (as CaCO3)	АРНА 2340 С	mg/l	200	600	88	118	92	120
8	Total Alkalinity	APHA 2320 B	mg/l	200	600	92	100	98	96
9	Calcium (as Ca)	APHA 3500Ca B	mg/l	75	200	27.6	31.5	28.7	35.3
10	Magnesium (as Mg)	APHA 3500Mg B	mg/l	30	100	6.10	7.42	6.02	8.2
11	Residual, free Chlorine	APHA 4500Cl, B	mg/l	0.2	1	BDL	BDL	BDL	BDL
12	Boron (as B)	APHA 4500B, B	mg/l	2.4	No Relaxation	<0.1	<0.1	<0.1	<0.1
13	Chloride (as Cl)	APHA 4500Cl ⁻ B	mg/l	250	1000	26.2	29.4	24.1	30.2
14	Sulphate (as SO ₄)	APHA 4500 SO42- E	mg/l	200	400	5.5	5.1	4.9	5.5
15	Fluoride (as F)	APHA 4500F-C	mg/l	1.0	1.5	0.34	0.30	0.26	0.31
16	Nitrate (as NO3)	APHA 4500 NO3" E	mg/l	45	No Relaxation	2.5	3.0	2.3	3.3
17	Sodium as Na	APHA3500-Na	mg/l			14.4	13.5	14.2	13.8
18	Potassium as K	APHA 3500-K	mg/l			3.8	6.6	5.4	4.2
19	Phenolic Compounds (as C6H5OH)	APHA 5530 B,D	mg/l	0.001	0.002	<0.001	<0.001	<0.001	<0.001
20	Cyanide (as CN)	APHA 4500 CN ⁻ C,D	mg/l	0.05	No Relaxation	<0.01	<0.01	<0.01	<0.01
21	Anionic Detergents (as MBAS)	АРНА 5540 С	mg/l	0.2	1.0	<0.2	<0.2	<0.2	<0.2
22	Cadmium (as Cd)	APHA 3111 B,C	mg/l	0.003	No Relaxation	<0.01	<0.01	<0.01	<0.01
23	Arsenic (as As)	APHA 3114 B	mg/l	0.01	No Relaxation	<0.004	< 0.004	< 0.004	< 0.004
24	Copper (as Cu)	APHA 3111 B,C	mg/l	0.05	1.5	<0.02	< 0.02	<0.02	<0.02
25	Lead (as Pb)	APHA 3111 B,C	mg/l	0.01	No Relaxation	<0.02	< 0.02	<0.02	<0.02
26	Manganese (as Mn)	APHA 3500Mn B	mg/l	0.1	0.3	<0.03	<0.03	<0.03	<0.03
27	Iron (as Fe)	APHA 3500Fe, B	mg/l	1	No Relaxation	0.15	0.21	0.17	0.19
28	Chromium (as Cr)	APHA 3500Cr B	mg/l	0.05	No Relaxation	< 0.05	< 0.05	<0.05	<0.05
29	Selenium (as Se)	APHA 3114 B	mg/l	0.01	No Relaxation	<0.001	<0.001	<0.001	<0.001
30	Zinc (as Zn)	APHA 3111 B,C	mg/l	5	15	<0.01	<0.01	<0.01	<0.01
31	Aluminium as(Al)	APHA 3500Al B	mg/l	0.03	0.2	<0.1	<0.1	<0.1	<0.1
32	Mercury (as Hg)	APHA 3500 Hg	mg/l	0.001	No Relaxation	<0.004	<0.004	<0.004	<0.004
33	Mineral Oil	APHA 5220 B	mg/l	0.5	No Relaxation	<0.001	<0.001	<0.001	<0.001
34	Pesticides	APHA 6630 B,C	mg/l	Absent		Absent	Absent	Absent	Absent
35	E.Coli	АРНА 9221-F	MPN/ 100 ml	Shall not be detectable in any 100 ml sample		Absent	Absent	Absent	Absent
36	Total Coliforms	АРНА9221-В	MPN/ 100 ml	Shall not be detectable		<1.1	<1.1	<1.1	<1.1

Note: CL: Colorless, AL: Agreeable, ND: Not Detected.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering Water Resource Management

· Environmental & Social Study

 Surface & Sub-Surface Investigation Quality Control & Project Management Renewable Energy

- Agricultural Development Information Technology
- Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Environment Lab Food Lab Material Lab Seil Lab Mineral Lab A

Laboratory Services

Microbiology Lal

Ref: VCSPL/23-24/R-07868

Date: 27.09.2023

GROUND WATER LEVEL MONITORING REPORT SEPTMEBER-2023

 Name of Industry Sampling Location 		M/s Hindalco Industries Limited (Unit-Aditya Aluminium), Sambalpur GW-1:Near Ash Pond, GW-2:Near Proposed Pond, GW-3:Near RR Colony, GW-4: Bomaloi Village
3. Date of Sampling	:	18.09.2023
4. Monitoring By	:	VCSPL Representative

SL No.	Date of Sampling	Name of Location	Unit	Water Level
01	18.09.2023	GW1	Mbgl	2.37
02	18.09.2023	GW2	Mbgl	2.45
03	18.09.2023	GW3	Mbgl	3.60
04	18.09.2023	GW4	Mbgl	5.20

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Infrastructure Engineering Water Resource Management

· Environmental & Social Study

 Surface & Sub-Surface Investigation Quality Control & Project Management Renewable Energy

- Agricultural Development
- Information Technology Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Ref: VCSPL/23-24/R-07869

Date: 27.09.2023

Laboratory Services Environment Lab

Food Lab

Material Lab Seil Lab Mineral Lab

A Microbiology Lal

GROUND WATER QUALITY (Heavy Metals) ANALYSIS REPORT SEPT-2023

1. Name of Industry	:	M/s Hindalco Industries Limited (Unit-Aditya Aluminium), Sambalpur
2. Sampling Location	:	GW-1:Near Ash Pond,
3. Date of Sampling	:	18.09.2023
4. Date of Analysis		19.09.2023 TO 25.09.2023
5. Monitoring By	:	VCSPL Representative

SL No.	Parameters	Test Method	Unit	Standard	Result
01	Mercury as Hg	APHA 3112 B	Mg/l	0.001	<0.001
02	Arsenic as As	APHA 3112 B	Mg/l	0.01	<0.005
03	Lead as Pb	APHA 3112 B	Mg/l	0.01	<0.005
04	Chromium as Cr	APHA 3112 B	Mg/l	0.05	<0.01

Prepared B

(at) Verified By:

Visiontek Consultancy Services Pvt. Ltd. (Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Infrastructure Engineering

 Water Resource Management · Environmental & Social Study

 Surface & Sub-Surface Investigation Quality Control & Project Management Renewable Energy

- Agricultural Development
- Information Technology Public Health Engineering

Mineral/Sub-Soil Exploration

Waste Management Services

Mine Planning & Design

Ref: VCSPL/23-24/R-07870

Date: 27.09.2023

Laboratory Services Environment Lab

Food Lab

Material Lab Seil Lab Mineral Lab

A Microbiology Lab

GROUND WATER QUALITY ANALYSIS REPORT SEPT-2023

1. Name of Industry	:	M/s Hindalco Industries Limited (Unit-Aditya Aluminium), Sambalpur
2. Sampling Location	:	GW-1:Near Ash Pond, GW-2:Near Proposed Pond,
		GW-3:Near RR Colony, GW-4: Ash Pond Area Bore well
3. Date of Sampling	:	18.09.2023
4. Date of Analysis	:	19.09.2023 TO 25.09.2023
5. Sample Collected By	:	VCSPL Representative
- •		-

SI.	Parameter	Testing Method	Unit	Standa IS -10 Amended o	ard as per 500:2012 n 2015 & 2018		Analys	is Results	
No.				Acceptable Limit	Permissible Limit	GW-1	GW-2	GW-3	GW-4
1.	pH Value	APHA 4500 H^+ B		6.5-8.5	No Relaxation	7.35	7.48	7.26	7.31
2.	Turbidity	APHA 2130B	NTU	1	5	<1.0	<1.0	<1.0	<1.0
3.	Total Hardness(as CaCO ₃)	АРНА 2340 С	mg/l	200	600	126	104	132	128
4.	Iron (as Fe)	APHA 3500 Fe B	mg/l	1.0	No Relaxation	0.22	0.18	0.23	0.20
5.	Chloride (as Cl)	APHA 4500 Cl ⁻ B	mg/l	250	1000	28	34	26	24
6.	Dissolved Solids	APHA 2540 C	mg/l	500	2000	196	148	191	162
7.	Calcium (as Ca)	APHA 3500 Ca B	mg/l	75	200	31.6	35.9	44.2	32.4
8.	Magnesium (as Mg)	APHA 3500 Mg B	mg/l	30	100	11.44	3.49	5.26	11.44
9.	Copper (as Cu)	APHA 3111Cu B	mg/l	0.05	1.5	<0.001	<0.001	<0.001	<0.001
10.	Sodium (as Na)	APHA 3500Na B	mg/l			16.8	18.2	17.1	17.5
11.	Potassium (as K)	APHA 3500 K B	mg/l			5.1	4.9	5.5	5.0
12.	Manganese (as Mn)	APHA 3111 B	mg/l	0.1	0.3	<0.005	< 0.005	<0.005	<0.005
13.	Sulphate (as SO ₄)	APHA 4500 SO4 ²⁻ E	mg/l	200	400	11.4	10.9	12.1	13.7
14	Nitrate (as NO ₃)	APHA 4500 NO3 ⁻ B	mg/l	45	No Relaxation	0.76	0.62	0.69	0.55
15.	Fluoride (as F)	APHA 4500 F ⁻ D	mg/l	1.0	1.5	1.12	0.95	1.03	0.87
16.	Phenolic Compounds (as C ₆ H ₅ OH)	АРНА 5530 С	mg/l	0.001	0.002	<0.001	<0.001	<0.001	<0.001
17.	Mercury (as Hg)	APHA 3112B	mg/l	0.001	No Relaxation	<0.001	<0.001	<0.001	<0.001
18.	Cadmium (as Cd)	APHA 3111 B	mg/l	0.003	No Relaxation	<0.001	<0.001	<0.001	<0.001
19.	Selenium (as Se)	APHA 3114 B	mg/l	0.01	No Relaxation	< 0.001	< 0.001	< 0.001	<0.001
20	Arsenic (as As)	APHA 3114 B	mg/l	0.01	No Relaxation	< 0.001	< 0.001	< 0.001	<0.001
21.	Cyanide (as CN)	APHA 4500 CN ⁻ C,D	mg/l	0.05	No Relaxation	ND	ND	ND	ND
22.	Lead (as Pb)	APHA 3111 B	mg/l	0.01	No Relaxation	< 0.001	< 0.001	< 0.001	<0.001
23.	Zinc (as Zn)	APHA 3111 B	mg/l	5	15	<0.005	< 0.005	< 0.005	<0.005
24.	Chromium (as Cr)	APHA 3500 Cr B	mg/l	0.05	No Relaxation	< 0.005	<0.005	<0.005	<0.005
25.	Alkalinity	APHA 2320 B	mg/l	200	600	102.0	94.0	113.0	92.0
26.	Aluminium as(Al)	APHA 3500 Al B	mg/l	0.03	0.2	<0.001	<0.001	<0.001	<0.001
27.	Boron (as B)	APHA 4500 B	mg/l	2.4	No Relaxation	<0.001	< 0.001	<0.001	<0.001

Note : ND: Not Detected ,BDL :Below Detection Limit

rati

Verified By:

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Infrastructure Engineering
- Water Resource Management
- · Environmental & Social Study

4.

 Surface & Sub-Surface Investigation Quality Control & Project Management

- Agricultural Development
 - Information Technology
 - Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Environment Lab Food Lab Material Lab Suil Lab Mineral Lab Æ Microbiology Lab

Laboratory Services

Ref: VCSPL/23-24/TR-05936

Date: 03.07.2023

SOIL QUALITY ANALYSIS REPORT JUNE-2023

- 1. Name of Industry 2. Date of Sampling
- M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga :
- : 12.06.2023

Renewable Energy

- 3. Sampling Location
- S-1: Project Site; S-2: Thelkoloi; S-3: Ghichamura; : S-4: Lapanga; S-5: Bamloi
- Date of Analysis
 - 13.06.2023 TO 19.06.2023
- 5. Sample Collected By
- VCSPL representative :

-							
Sl. No	Parameters	Unit	S-1	S-2	S-3	S-4	S-5
1	P ^H at 25 ⁰ C		7.20	7.09	7.38	7.23	7.39
2	Conductivity		142	135	129	158	137
3	Soil Texture		Sandy Loamy	Clay Loamy	Clay Loamy	Sandy Loamy	Sandy Loamy
4	Sand	%	53.4	26.5	23.6	48.8	51.2
5	Silt	%	15.1	23.9	25.1	20.9	22.7
6	Clay	%	33.4	53.4	46.9	30.1	28.7
7	Bulk Density	gm/cc	1.75	1.39	1.66	1.51	1.60
8	Exchangeable Calcium as Ca	%	32.4	33.9	36.4	33.8	42.2
9	Exchangeable Magnesium as Mg	%	52.6	57.4	51.2	55.6	58.1
10	Available Sodium as Na	%	0.024	0.032	0.027	0.039	0.035
11	Available Potassium as K	%	0.056	0.062	0.055	0.052	0.052
12	Available phosphorous as P	%	0.030	0.028	0.026	0.024	0.034
13	Available Nitrogen as N	%	0.33	0.29	0.30	0.34	0.31
14	Organic Matter	%	4.1	6.0	4.8	4.8	4.6
15	Organic Carbon as OC	%	1.79	1.52	1.63	1.62	1.70
16	Water soluble Chlorides as Cl	%	0.32	0.36	0.30	0.28	0.34
17	Water soluble Sulphates as SO ₄	%	0.20	0.20	0.26	0.22	0.21
18	Sodium Absorption Ratio	%	0.00016	0.00015	0.00017	0.00016	0.00021
19	Aluminium as Al	%	0.072	0.054	0.048	0.072	0.066
20	Total Iron as Fe	%	0.0027	0.0024	0.0026	0.0032	0.0024
21	Manganese as Mn	%	0.00021	0.00024	0.00028	0.00026	0.00024
22	Boron as B	%	0.00034	0.00030	0.00028	0.00032	0.00032
23	Zinc as Zn	%	6.1	5.4	7.2	6.3	6.9
24	Silica as SiO ₂	%	0.048	0.054	0.052	0.050	0.046
25	Ferric Oxide as Fe ₂ O ₃	%	33.4	33.1	32.4	32.2	33.6
26	Calcium Oxide as CaO	%	25.2	26.7	23.6	27.4	24.2
27	Magnesium Oxide as MgO	%	0.00014	0.00013	0.00017	0.00021	0.00020
28	Aluminium Oxide as Al ₂ O ₃	%	0.040	0.026	0.052	0.032	0.032
29	Iron Oxide as FeO	%	0.0050	0.0026	0.0020	0.0027	0.0038
30	Manganese Oxide as MnO	%	0.0492	0.0471	0.0456	0.0528	0.0511
31	Potassium Oxide as K ₂ O	%	0.0080	0.0079	0.0076	0.0070	0.0082
32	Phosphorus Oxide as P2O5	%	0.00059	0.00038	0.00030	0.00046	0.00055
33	Fluoride as F	%	6.21	6.78	6.84	7.19	7.28

ND: Not Detected.

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

- Infrastructure Engineering
- Water Resource Management
- · Environmental & Social Study

5.

 Surface & Sub-Surface Investigation Quality Control & Project Management

Renewable Energy

- Agricultural Development

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Environment Lab Food Lab Material Lab Suil Lab Mineral Lab Æ Microbiology Lab

Laboratory Services

Information Technology

Public Health Engineering

Date: 03.07.2023

Ref: VCSPL/23-24/TR-05937

SOIL QUALITY ANALYSIS REPORT JUNE-2023

- 1. Name of Industry
- 2. Date of Sampling
- M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga :
- 12.06.2023 :
- 3. Sampling Location
- S-6: Tileimal; S-7: Jangala; S-8: Gurupali; S-9: Gumkarama; : S-10: Bhadarpali.
- 4. Date of Analysis
- 13.06.2023 TO 19.06.2023 :
- Sample Collected By VCSPL representative :

Sl. No.	Parameters	Unit	S-6	S-7	S-8	S-9	S-10
1	P ^H at 25 ⁰ C		7.28	7.31	6.92	7.41	7.26
2	Conductivity		154	131	162	136	132
•			Clay	Sandy	Sandy	Sandy	Clay
3	Soll Texture		Loamy	Loamy	Loamy	Loamy	Loamy
4	Sand	%	24.2	48.2	46.4	51.1	26.6
5	Silt	%	20.1	19.6	22.1	19.4	20.4
6	Clay	%	63.2	37.4	39.5	34.8	51.4
7	Bulk Density	gm/cc	1.62	1.59	1.42	1.52	1.77
8	Exchangeable Calcium as Ca	%	44.6	42.1	43.9	45.4	42.8
9	Exchangeable Magnesium as Mg	%	52.3	54.8	55.2	66.7	57.2
10	Available Sodium as Na	%	0.026	0.032	0.035	0.030	0.031
11	Available Potassium as K	%	0.051	0.056	0.057	0.049	0.052
12	Available phosphorous as P	%	0.026	0.028	0.025	0.028	0.033
13	Available Nitrogen as N	%	0.31	0.35	0.34	0.26	0.24
14	Organic Matter	%	4.1	3.6	4.5	4.3	3.7
15	Organic Carbon as OC	%	1.55	1.78	1.68	1.70	1.32
16	Water soluble Chlorides as Cl	%	0.36	0.32	0.35	0.42	0.44
17	Water soluble Sulphates as SO ₄	%	0.24	0.26	0.26	0.24	0.23
18	Sodium Absorption Ratio	%	0.00018	0.00015	0.00021	0.00022	0.00016
19	Aluminium as Al	%	0.058	0.052	0.063	0.056	0.054
20	Total Iron as Fe	%	0.0023	0.0030	0.0027	0.0024	0.0030
21	Manganese as Mn	%	0.00021	0.00022	0.00027	0.00032	0.00024
22	Boron as B	%	0.00026	0.00027	0.00025	0.00022	0.00030
23	Zinc as Zn	%	6.6	7.1	6.0	7.4	6.6
24	Silica as SiO2	%	0.030	0.036	0.033	0.042	0.040
25	Ferric Oxide as Fe ₂ O ₃	%	31.4	32.6	34.1	32.9	33.2
26	Calcium Oxide as CaO	%	22.6	27.8	28.7	23.2	24.4
27	Magnesium Oxide as MgO	%	0.00040	0.00035	0.00026	0.00025	0.00026
28	Aluminium Oxide as Al ₂ O ₃	%	0.0179	0.0180	0.0184	0.0203	0.0194
29	Iron Oxide as FeO	%	0.0021	0.0024	0.0026	0.0022	0.0024
30	Manganese Oxide as MnO	%	0.0408	0.0431	0.0502	0.0394	0.0467
31	Potassium Oxide as K ₂ O	%	0.0081	0.0095	0.0093	0.0087	0.0082
32	Phosphorus Oxide as P ₂ O ₅	%	0.00044	0.00036	0.00028	0.00032	0.00023
33	Fluoride as F	0/2	7 36	6 97	7 15	6.68	7 11

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

- Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade Surface & Sub-Surface Investigation
- Quality Control & Project Management Renewable Energy
- Agricultural Development Information Technology Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Ref: VCSPL/3-24/TR-05924

Date: 03.07.2023

Laboratory Services

Environment Lab Food Lab

Material Lab Soil Lab

Mineral Lab

A Microbiology Lat

NOISE MONITORING REPORT JUNE-2023

- 1. Name of Industry : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga
- 2. Monitored By : VCSPL representative

Daytime Noise monitoring results (Noise Level in dB (A) JUNE-2023

TIME (6.00AM to 9.00PM)	N1:Gumkarma (06.06.2023)	N2:Ghichamura (06.06.2023)	N3:Bomaloi (13.06.2023)	N4:Tileimal (13.06.2023)	N5:Thelkoli (20.06.2023)	N6:Khadiapali (20.06.2023)	N7:Kapilas (27.06.2023)	N8:Phulchanghal (27.06.2023)		
06.00am	49.2	50.8	45.9	46.5	49.6	52.6	46.4	45.6		
07.00am	47.6	51.1	49.9	48.7	50.1	53.4	47.2	47.1		
08.00am	50.5	50.9	50.5	49.2	53.2	54.7	48.9	48.2		
09.00am	51.3	52.4	53.6	48.6	54.1	53.5	50.4	47.9		
10.00am	52.9	53.6	54.1	47.9	51.6	54.8	46.5	49.5		
11.00am	50.4	54.2	54.2	49.8	53.2	52.6	48.7	50.1		
12.00 noon	49.6	52.6	50.2	47.5	52.4	53.1	49.5	47.9		
01.00pm	48.7	52.3	52.3	48.9	51.7	54.6	47.8	50.3		
02.00pm	52.3	53.1	53.9	50.1	54.2	53.2	50.1	49.5		
03.00pm	49.2	54.2	52.4	46.9	55.9	51.4	48.6	51.2		
04.00pm	50.8	53.9	54.9	47.8	51.7	50.6	49.7	52.6		
05.00pm	52.4	54.1	53.8	50.5	53.2	52.9	49.5	54.7		
06.00pm	51.6	52.6	52.7	51.3	54.6	54.1	47.5	52.9		
07.00pm	52.6	53.2	52.6	52.6	52.9	53.2	48.6	53.4		
08.00pm	53.2	54.6	54.5	54.2	53.7	52.6	46.5	54.1		
09.00pm	53.1	52.1	54.9	52.9	54.6	53.1	47.2	53.6		
Average	51.0	52.9	52.5	49.6	52.9	53.2	48.3	50.5		
Standard as per CPCB	55									

Night time Noise monitoring results (Noise Level in dB (A) JUNE-2023

TIME (10.00PM to 5.00AM)	N1:Gumkarma (06.06.2023)	N2:Ghichamura (06.06.2023)	N3:Bomaloi (13.06.2023)	N4:Tileimal (13.06.2023)	N5:Thelkoli (20.06.2023)	N6:Khadiapali (20.06.2023)	N7:Kapilas (27.06.2023)	N8:Phulchanghal (27.06.2023)
10.00pm	44.9	43.2	44.1	43.7	44.1	44.7	39.8	42.9
11.00pm	44.7	42.1	43.9	44.6	42.9	43.6	38.6	44.5
12.00 Midnight	43.2	41.6	43.7	43.5	43.4	43.8	39.9	43.7
01.00am	41.5	40.8	43.5	42.9	42.9	42.9	38.7	42.6
02.00am	42.6	41.3	42.6	43.1	43.1	43.1	37.6	42.1
03.00am	41.8	40.8	42.1	42.7	43.5	44.7	40.1	41.7
04.00am	43.7	41.4	44.7	44.6	42.6	43.6	38.6	43.5
05.00am	44.9	42.6	43.9	44.1	44.4	44.9	39.8	43.9
Average	43.4	41.7	43.6	43.7	43.4	43.9	39.1	43.1
Standard as per				45				-

CPCB

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017

Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

 Surface & Sub-Surface Investigation Quality Control & Project Management Renewable Energy

 Agricultural Development Information Technology Public Health Engineering Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Ref: Envlab/23-24/TR-03570

Date: 23.06.2023

Laboratory Services Environment Lab Food Lab

Material Lab

Soil Lab

Mineral Lab

& Microbiology Lab

FORAGE FLUORIDE ANALYSIS REPORT MAY-2023

1	Name of Industry	:	M/s Hindalco Industries Ltd, (Unit-Aditya Aluminium); Lapanga
2	Date of Sampling	:	15.05.2023 to 16.05.2023
3	Date of Analysis	:	17.05.2023 to 20.05.2023
4	Name of the Sample	:	Vegetation Sample
5	Sample Collected By	:	VCSPL Representative

Date of Sampling	Name of the Location	Type of Species	Scientific Name	Method of Analysis	Result (PPM)
15.05.2023	Bomaloi	Bela Tree, Rice Plant	Aegle marmelo, Oryza Sativa	AOAC 975.04	1.5
15.05.2023	Gurupali	Duba Ghasa, Neem Tree	Cynodon dactylo, Azadirachta Indica	AOAC 975.04	1.6
15.05.2023	Plant Site	Sisu Tree, Duba Ghasa	Dalbergia sissoo, Cynodon dactylon	AOAC 975.04	2.4
15.05.2023	Thelkoloi	Bamboo Tree, Rice Plant	Pongame oil tree, Cynodon dactylon	AOAC 975.04	1.7
15.05.2023	Gumukarma	Bamboo Tree, Rice Plant	Bambusoideae, Oryza Sativa	AOAC 975.04	2.1
16.05.2023	Ghichamura	Baulakoli Tree, Rice Plant	Mimusops elengi, Oryza Sativa	AOAC 975.04	1.6
16.05.2023	Tileimal	Rice Plant, Duba Ghasa	Oryza Sativa, Cynodon dactylon	AOAC 975.04	1.3
16.05.2023	Lapanga	Neem tree, Rice Plant	Azadirachta indica, Oryza Sativa	AOAC 975.04	2.1
16.05.2023	Jangala	Duba Ghasa, Rice Plant	Cynodon dactylon, Oryza Sativa	AOAC 975.04	1.3
16.05.2023	Bhadrapali	Karanj Tree, Duba Grass, Rice Plant	Pongame oil tree, Cynodon dactylon, Oryza Sativa	AOAC 975.04	1.2

(Committed For Better Environment)

Certified for : ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Accredited by : NABET-A Grade, MOEF & CC/CPCB & SPCB-A Grade

Infrastructure Engineering

 Water Resource Management · Environmental & Social Study Surface & Sub-Surface Investigation Quality Control & Project Management Renewable Energy

- Agricultural Development
- Information Technology Public Health Engineering

 Mine Planning & Design Mineral/Sub-Soil Exploration

Waste Management Services

Ref: Envlab/23-24/TR-07871

Date: 04.09.2023

Laboratory Services Environment Lab

Food Lab

Material Lab Seil Lab Mineral Lab

A Microbiology Lab

FORAGE FLUORIDE ANALYSIS REPORT AUGUST-2023

1	Name of Industry	:	M/s Hindalco Industries Ltd, (Unit-Aditya Aluminium); Lapanga
2	Date of Sampling	:	07.08.2023 TO 08.08.2023
3	Date of Analysis	:	09.08.2023 TO 10.08.2023
4	Name of the Sample	:	Vegetation Sample
5	Sample Collected By	:	VCSPL Representative

Date of Sampling	Name of the Location	Type of Species	Scientific Name	Method of Analysis	Result (PPM)
07.8.2023	Bomaloi	Bela Tree, Rice Plant	Aegle marmelo, Oryza Sativa	AOAC 975.04	1.7
07.8.2023	Gurupali	Duba Ghasa, Neem Tree	Cynodon dactylo, Azadirachta Indica	AOAC 975.04	1.4
07.8.2023	Plant Site	Sisu Tree, Duba Ghasa	Dalbergia sissoo, Cynodon dactylon	AOAC 975.04	2.1
07.8.2023	Thelkoloi	Bamboo Tree, Rice Plant	Pongame oil tree, Cynodon dactylon	AOAC 975.04	1.5
07.8.2023	Gumukarma	Bamboo Tree, Rice Plant	Bambusoideae, Oryza Sativa	AOAC 975.04	1.9
08.09.2023	Ghichamura	Baulakoli Tree, Rice Plant	Mimusops elengi, Oryza Sativa	AOAC 975.04	1.4
08.09.2023	Tileimal	Rice Plant, Duba Ghasa	Oryza Sativa, Cynodon dactylon	AOAC 975.04	1.2
08.09.2023	Lapanga	Neem tree, Rice Plant	Azadirachta indica, Oryza Sativa	AOAC 975.04	1.8
08.09.2023	Jangala	Duba Ghasa, Rice Plant	Cynodon dactylon, Oryza Sativa	AOAC 975.04	1.2
08.09.2023	Bhadrapali	Karanj Tree, Duba Grass, Rice Plant	Pongame oil tree, Cynodon dactylon, Oryza Sativa	AOAC 975.04	1.4

Reference: - MoEF&CC Office memorandum F. No. IA3-22/8/2021-1A.III [150512] dated 18/07/2022 <u>Glimpses of Sensitization & Awareness of ban on Single Use Plastic Inside Plant,</u> <u>Township and Nearby Villages</u>

SUP Ban Awareness in Benjipali & Phulchanger village

SUP Ban Awareness in Bomaloi & Naikpada village

SUP Ban Awareness to Workmen inside Plant & Township

SUP Ban Awareness to Workmen inside Plant & Township

SUP Ban Awareness to Workmen inside Plant & Township

SUP Ban Awareness to Workmen inside Plant & Township

Communication to Employee, Workmen and Contactors