

Letter No: AAP/E&F/EC/2016/138

Date: 30/05/2016

To

The Director
Eastern Regional Office
Ministry of Environment & Forests
A/3, Chandrashekharpur
Bhubaneswar – 750 023 (Odisha)

Sub: Submission of Six Monthly Compliance from October'15 to March' 16. Ref: Environmental Clearance Letter No: J-11011/136/2009-IA.I (1), dated 29/11/2012.

Dear Sir,

As a part of the compliance to the Environmental Clearance accorded by MoEFCC to Aditya Aluminium for 0.72 MTPA Smelter and 1650 MW CPP at Lapanga in Sambalpur district, please find enclosed herewith the six monthly compliance reports of aluminium smelter and captive power plant for the period October'15 to March' 16.

Kindly acknowledge receipt of the reports.

Thanking You

Yours faithfully For Aditya Aluminium

> Bibhu Prasad Mishra President & COO

Copy for kind information to:

- 1. The Member Secretary, SPCB, Bhubaneswar
- 2. The Scientist 'D' & In-charge, Zonal office of CPCB, Kolkata
- 3. The Regional Officer, SPCB, Sambalpur

ADITYA ALUMINIUM

(A Unit of Hindalco Industries Ltd.) SMELTER & POWER At/P.O. : Lapanga Sambalpur 768 212, Odisha

Telephone +91 663 2536247 Fax +91 663 2536499 REGISTERED OFFICE

Century Bhavan, 3rd Floor, Dr. Annie Besant Road, Worli, Mumbai 400 030 Telephone +91 22 6662 6666 Website E mail Corporate

www.hindalco.com hindalco@adityabirla.com

Identity No. L27020MH1958PLC011238

STATUS OF IMPLEMENTATION OF CONDITIONS STIPULATED IN ENVIRONMENTAL CLEARANCE FOR 7,20,000 TPA ALUMINIUM SMELTER& 1650 MW CAPTIVE POWER PLANT FOR ADITYA ALUMINIUM BY M/S HINDALCO INDUSTRIES AT LAPANGA, SAMBALPUR, ORISSA.

REF: Environmental Clearance Letter No: J-11011/136/2009-IA.I (1), Dated 29th November 2012 From MOEF, GOI.

Sr. No.	Specific Conditions	Compliance
i)	The streams passing through the project site shall not be disturbed w.r.t their quantity and quality of flow	,
ii)	Alumina shall be obtained from those refineries, which have been accorded environmental clearance by the Ministry of Environment and Forests.	, , , , , , , , , , , , , , , , , , , ,
iii)	The gaseous emissions (PM, SO2, NOx, PAH, HC, VOCs and Fluoride) from various process units shall confirm to the standards prescribed by the concerned authorities from time to time. The SPCB may specify more stringent standards for the relevant parameters keeping in view the nature of the Industry and its size and location. At no time the emissions level should go beyond the prescribed standards. In the event of failure of any pollution control system adopted by the unit, the respective unit should not be restarted until the control measures are rectified to achieve the desired efficiency. The particulate emissions from the bake oven plant shall not exceed 50 mg/Nm³.	b) FTC - 2 Nos. c) CPP - 5 Nos.
iv)	Particulate fluoride emissions should not be more than 0.65 mg/Nm3 and fugitive particulate fluoride emissions from pot room should not be more than 1.85 mg/Nm3.	Online monitoring equipment at Gas Treatment Centre (GTC) and Fume Treatment Centre (FTC) installed for monitoring of Hydrogen Fluoride (HF), Particulate Matter (PM).
v)	The poly aromatic hydrocarbons (PAH) from the carbon plant (anode bake oven) should not exceed 2 mg/Nm ³ . The data on PAH should be monitored quarterly and report submitted regularly to the Ministry/Regional Office at Bhubaneswar and SPCB.	The poly aromatic hydrocarbons (PAH) from the carbon plant (anode bake oven) are being monitored on quarterly basis and found within the standard. The monitoring report is enclosed as <i>Annexure-1</i> .
vi)	In plant, control measures like fume extraction and dust extraction system for controlling fugitive emissions from all the materials handling/transfer points shall be provided to control dust emissions. Fugitive Fluoride emissions from the pot room	Fume Extraction Centre (FTC) in Anode Baking furnace, Gas Treatment Plant (GTC) in potlines and bag filters in raw material handling, GAP, Anode Baking, Roding areas, bath recycling, carbon recycling area, butts recycling area, cathode sealing shop etc in smelter area and coal handling, ash handling

	and in the forage around the smelter complex and the data submitted regularly to the Ministry Regional Office at Bhubaneswar and	control fugitive dust emissions.
	Further dry scrubbing system to control the emissions from the pot lines should be provided.	I aratinal that appalton is ballon manifered to the
vii)	Electrostatic Precipitators (ESP) will be provided to Captive Power Plant (CPP) to control particulate emissions below 50 mg/Nm3.	efficiency is installed in Captive Power Plant
	The company shall provide bag filters, dry scrubbing system and dust suppression system to control all the emissions including fluoride	Gas Treatment Centre (GTC) and bag filters are provided in all material handling & transfer points.
	emissions from all melting and casting units. Tar, Dust and fluoride in the fumes shall be controlled in baking furnace by providing dry scrubber.	Anodo Baking Europea 1 & 2 to treat the ter
	The emissions shall conform to the standards prescribed by the Ministry CPCB/SPCB whichever is more stringent.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
viii)	Provision for installation of FGD shall be provided for future use.	Space has been kept for installation of FGD, in future if required.
ix)	Three tri-flue and one bi-flue stack of 275 m height with flue gas velocity not less than 22 m/s shall be installed and provided with	Two (02) numbers of tri-flue stacks of 275 m height is installed in phase-I.
	continuous online monitoring equipment's for SO_2 , NO_x , and PM_{10} .	Continuous monitoring equipment is installed for monitoring of SO ₂ , NOx, and PM at unit # 1, 2, 3, 4 & 5 of CPP.
x)	Adequate dust extraction system such as cyclones/ bag filters and water spray system in dusty areas such as in coal handling and ash handling points, transfer areas and other vulnerable dusty areas shall be provided.	Dust extraction systems (DE) and Dry fog system installed in coal handling plant and ash handling system of Captive Power Plant.
xi)	Utilization of 100% fly ash generated shall be made from 4 th year of operation. Status of implementation shall be reported to the	Presently, 100% of Ash generated is being utilized by means of supplying to M/s Ultratech Cements, Jharsuguda, M/s OCL,
	Regional Office of the Ministry from time to time.	Bargarh for cement manufacturing and in Road construction of Sambalpur-Rourkela SH expansion worksby L&T. Remaining ash is being utilized for filling the low lying areas inside the Plant with prior approval of SPCB and subsequently utilized for development of greenbelt.
	,	Status of utilization of Ash from Oct 15 to Mar 16 is enclosed as <i>Annexure-3</i> .

,	· · · · · · · · · · · · · · · · · · ·	
xii)	Fly ash shall be collected in dry form and storage facility (silos) shall be provided. Unutilized ash shall be disposed-off in the ash pond in the form of slurry. Mercury and other heavy metals (Ag, Hg, Cr, Pbetc) will be monitored in the bottom ash as also in the effluent emanating from the existing ash pond. No ash shall be disposed-off in low laying area.	Fly ash & bottom ash are being collected in dry formandSilos of adequate capacity have been installed. The unutilized ash will be stored in ash disposal area through high concentration slurry disposal (HCSD) system. Monitoring of Mercury and other heavy metals (Ag, Hg, Cr, Pbetc) is being done for fly ash and bottom ash. Bottom ash analysis report is enclosed as <i>Annexure-4</i> .
xiii)	Fluoride (as F) consumption shall be less than 10 kg/ton of Aluminium produced as specified by the CREP.	Fluoride consumption is maintained within the standard.
xiv)	Anode butts generated from the pots shall be cleaned and recycled to the Anode Plant.	Anode butts generated from the pots is being cleaned and recycled completely.
	The spent pot lining generated from the smelter shall be properly treated in spent pot lining treatment plant to remove fluoride and cyanide and disposed-off in secured landfill.	After generatation of the spent pot lining (SPL) from the smelter, it will be properly treated before disposal in the secured landfill/ supplied to CHWTSDF. However, efforts are being made for utilization of SPL in the cement kilns of different units of Ultratech Cements Ltd.
	The location and design of the land fill site shall be approved by the SPCB as per the Hazardous Waste (Management, Handling and Trans-boundary Movement) Rules, 2008. Leachate collection facilities shall be provided to the secured land fill facilities (SLF).	The location and design of the land fill site has been prepared as per the Hazardous Waste (Management, Handling and Trans-boundary Movement) Rules, 2008 and approved from SPCB.
	The dross shall be recycled in the cast house.	Dross will be sold to the authorized recyclers/reprocessors and we are in the process of establishment dross recycling unit inside the plant. Application submitted to SPCB to issue the consent to establish and to CPCB for issue of permission under Rule-11 of the Hazardoous Waste Managemet rule for utilization of Dross.
	STP sludge shall be utilized as manure for greenbelt development.	STP is commissioned at township and sludge is being used for greenbelt development.
	All the used oil and batteries shall be sold to the authorized recyclers/ re-processors.	The used oil is being sold to authorized recyclers and batteries kept for selling to the authorized recyclers/reprocessors.
xv)	As proposed, spent pot lining waste shall also be provided to cement and steel industries for further utilization.	SPL is generated is being stored under covered shed, the carbon part of the SPL is being supplied to authorized recyclers having permission from CPCB under rule 11 of the Hazardous Waste (M,H & TM) Rules 2008. The disposal pathway for the refractory part of the SPL is developed by M/s Ramky Enviro Pvt. Ltd

			at it CHW-TSDF, Sukinda, Jajpur.
	xvi)	Ash pond shall be lined with HDP/LDPE lining	
		or any other suitable impermeable media such	designated ash pond at present. All
		that no leachate takes place at any point of	
]	time. Adequate safety measures shall also be	1
		implemented to protect the ash dyke from	i and and being
		getting breached. Ash pond water shall be	· · · · · · · · · · · · · · · · · · ·
		recirculated and reused.	a congramented.
	xvii)	Cycle of concentration (CoC) of 5.0 shall be	Water Balance of CPP is being optimized
	,	adopted.	gradually, so as to maintain a CoC of 5.
	xviii)	Regular monitoring of ground water shall be	1 0 0 ······
		carried out by establishing a network of	done at baseline locations of EIA report
		existing wells and constructing new	enclosed as Annexure-5.
		piezometers.	
		Manitoria	
		Monitoring around the ash pond area shall be	Monitoring of heavy metals (Hg, Cr, As, Pb)
		carried out particularly for heavy metals (Hg,	around the Ash pond area will be carried out
		Cr, As, Pb) and records maintained and	as soon as it is in operation and records will be
		submitted to the regional office of this	maintained and compared with the baseline
		Ministry. The data so obtained should be	data.
		compared with the baseline data so as to	
		ensure that the ground waterquality is not	
-	vivl	adversely affected due to the project.	
	xix)	Regular ground water monitoring shall be	Regular ground water monitoring will be
		carried out by installing peizometers all around	carried out by installing peizometers all around
		the secured land fill site in consultation with	the secured landfill site after establishment of
		the SPCB, Central Ground Water Authority and	the SLF in consultation with the SPCB, Central
		State Ground Water Board and data submitted	Ground Water Authority and State Ground
ļ		to the Ministry's Regional Office and SPCB.	Water Board and data will be submitted to the
	·		Ministry's Regional Office and SPCB after
-	xx)	Total water requirement for the eventsing	establishment of secured land fill site.
	^^/	Total water requirement for the expansion from Hirakud Posorvoir shall not expand 5.200	No additional fresh water will be sourced from
		from Hirakud Reservoir shall not exceed 5,200	Hirakud Reservoir for the proposed expansion.
		m3/hr and prior permission for the existing	The water requirement will not exceed 52.73
		and proposed expansion shall be obtained	cusec as approved.
		from the concerned department before	
		commissioning of the plant.	
		All the effluent including from the cooling	The Effluent from the cooling toward and
		tower and de-mineralization plant shall be	The Effluent from the cooling towers and de-
		treated in the effluent treatment plant and	mineralization plant is being treated in Double
	ĺ	treated effluent shall be recycled/reutilized in	Stage RO based effluent treatment plant and is
		the process in smelter and CPP and also for fire	being recycled/reutilized in the process of CPP
		protection, dust suppression, greenbelt	and other areas.
		development etc.	
		, - · - - · · · · · · · · · · · · · · · · · ·	
		Domestic effluent shall be treated in sewage	Separate Sewage Treatment Plant (STP) is
		treatment plant (STP) and treated domestic	installed @ capacity 25 m ³ /hr for Smelter &
		waste water will be used for greenbelt	Captive Power Plant.
		development.	porto i otto i idilla
			The STP of 300 KLD capacity is installed at
٤	!_		or our ket capacity is installed at

Township area and the treated was used for greenbelt development. xxi) No effluent shall be discharged outside the premises of smelter during non-monsoon period and shall be discharged during the monsoon period only after treatment and meeting the norms of the OSPCB/CPCB. xxii) Greenbelt of adequate width and density around the project site shall be developed in 33% area in consultation with the DFO as per the CPCB guidelines having density of 2,000 trees/Ha. Township area and the treated was used for greenbelt development. We are operating a Double Stage F effluent treatment plant (ETP) of 3 capacity (150m³/hr at present) and no effluent water is being disch outside without treatment. Aditya Aluminium has already development of Greenbelt inside plant & Township areas. Around saplings planted and a Central Nur been established inside the projection of the company of the com	RO based 00 m³/hr therefore arged to started the Core 1,27,000
xxi) No effluent shall be discharged outside the premises of smelter during non-monsoon period and shall be discharged during the monsoon period only after treatment and meeting the norms of the OSPCB/CPCB. xxii) Greenbelt of adequate width and density around the project site shall be developed in 33% area in consultation with the DFO as per the CPCB guidelines having density of 2,000 the capacity (150m³/hr at present) and no effluent water is being discharged during the outside without treatment. Aditya Aluminium has already development of Greenbelt inside plant & Township areas. Around saplings planted and a Central Nur been established inside the project.	oo m³/hr therefore arged to started the Core 1,27,000
premises of smelter during non-monsoon period and shall be discharged during the monsoon period only after treatment and meeting the norms of the OSPCB/CPCB. xxii) Greenbelt of adequate width and density around the project site shall be developed in 33% area in consultation with the DFO as per the CPCB guidelines having density of 2,000 trees/Ha. effluent treatment plant (ETP) of 3 capacity (150m³/hr at present) and no effluent water is being discharged without treatment. Aditya Aluminium has already development of Greenbelt inside plant & Township areas. Around saplings planted and a Central Nur been established inside the project.	oo m³/hr therefore arged to started the Core 1,27,000
period and shall be discharged during the monsoon period only after treatment and meeting the norms of the OSPCB/CPCB. xxii) Greenbelt of adequate width and density around the project site shall be developed in 33% area in consultation with the DFO as per the CPCB guidelines having density of 2,000 trees/Ha. capacity (150m³/hr at present) and no effluent water is being discharged outside without treatment. Aditya Aluminium has already development of Greenbelt inside plant & Township areas. Around saplings planted and a Central Nur been established inside the projection.	started the Core 1,27,000
monsoon period only after treatment and meeting the norms of the OSPCB/CPCB. xxii) Greenbelt of adequate width and density around the project site shall be developed in 33% area in consultation with the DFO as per the CPCB guidelines having density of 2,000 trees/Ha. no effluent water is being dischard outside without treatment. Aditya Aluminium has already development of Greenbelt inside plant & Township areas. Around saplings planted and a Central Nur been established inside the project.	started the Core 1,27,000
meeting the norms of the OSPCB/CPCB. xxii) Greenbelt of adequate width and density around the project site shall be developed in 33% area in consultation with the DFO as per the CPCB guidelines having density of 2,000 trees/Ha. outside without treatment. Aditya Aluminium has already development of Greenbelt inside plant & Township areas. Around saplings planted and a Central Number of Saplings planted and a Central Number of Saplings planted inside the project site shall be developed in plant & Township areas.	started the Core 1,27,000
Aditya Aluminium has already development of Greenbelt inside around the project site shall be developed in 33% area in consultation with the DFO as per the CPCB guidelines having density of 2,000 trees/Ha. Aditya Aluminium has already development of Greenbelt inside plant & Township areas. Around saplings planted and a Central Nur been established inside the project.	the Core 1,27,000
around the project site shall be developed in 33% area in consultation with the DFO as per the CPCB guidelines having density of 2,000 trees/Ha. development of Greenbelt inside plant & Township areas. Around saplings planted and a Central Number trees/Ha.	the Core 1,27,000
33% area in consultation with the DFO as per the CPCB guidelines having density of 2,000 saplings planted and a Central Nurtrees/Ha.	1,27,000
the CPCB guidelines having density of 2,000 saplings planted and a Central Nur trees/Ha. been established inside the proje	
trees/Ha. been established inside the projection	con boo
}	•
naving a capacity to raiser takins sapiir	
xxiii) Occupational Health Surveillance of the Occupational Health Surveillance	
	of the
workers should be done on a regular basis and workers is being done as per the	: Odisha
records maintained as per the Factories Act. Factories Act.	
xxiv) The company shall develop rain water Rain water harvesting structure is bei	-
structures in the township area for recharge of in buildings of township area and a	•
ground water in consultation with the Central space is planned in township area	tor rain
Ground Water Authority/Board. water recharge.	
xxv) Rehabilitation and Resettlement Action Plan as Rehabilitation and Resettlement Action	
prepared and submitted to the State Govt. being implemented as per the R &	R policy,
shall be implemented as per the R & R Policy of 2006 of the State Govt.	
the State Government.	
All the recommendations mentioned in the All the recommendations are	being
R&R Plan shall be strictly followed including followed/complied.	
suitable employment and other facilities to all	
the oustees.	
xxvi) All the recommendations made in the Charter All the conditions of CREP guide	line for
on Corporate Responsibility for Environment Aluminium sector is being followed.	
Protection (CREP) for the Aluminium Sector	
shall be strictly implemented.	
xxvii) The company shall adopt well laid down The company has adopted a well la	id down
corporate policy and identified and designate corporate policy. The Corporate Envi	ronment
responsible officers at all levels of its hierarchy Policy is approved by the Board of	Directors
for ensuring adherence to the policy and and already submitted to MoEF, cop	y of the
compliance with environmental clearance, approved environment policy is enc	losed as
environmental laws and regulations.	
xxviii) All the commitments made to the public All the commitments made to the	e public
during public hearing /public consultation during public hearing/public con	sultation
meeting held on 2 nd march 2012 should be meeting held on 2 nd march 2012	s under
satisfactorily implemented and a separate gradual implementation. Budget is	not a
budget for implementing the same should be constraint for implementation	of the
allocated and information submitted to the commitments.	
Ministry's Regional Office at Bhubaneswar.	
xxix) At least 5% of the total cost of the project shall As the expansion will be carried out	in two
be earmarked for towards the Enterprise Social phases i.e. Aluminium Smelter from 0.3	26 MTPA
Commitment and item-wise details along with to 0.36 MTPA & Captive Power Plant f	rom 650
time bound action plan should be prepared MW to 900 MW in phase-I ar	nd later

	and submitted to the Ministry's office at Bhubaneswar. Implementation of such program should be ensured accordingly in a time bound manner.	MTPA and Captive Power Plant to 1650 MW in
xxx)	The company shall provide housing for construction labour within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP, safe drinking water, medical health care, crèche etc. the housing may be in the form of temporary structures to be ensured accordingly in a time bound manner.	being provided to the workers from time to time.
xxxi)	The company shall submit within three months their policy towards Corporate Environment Responsibility which should inter-alia address (i) standard operating process/procedure to being into focus any infringement/deviation/violation of environmental or forests norms/ conditions (ii) Hierarchical system or administrative order of the company to deal with environmental issues and ensuring compliance to the environmental clearance and (iii) system of reporting of noncompliance/violation environmental norms to the Board of Directors of the company and/or stakeholders or shareholders.	the state of the s
i)	GENERAL CONDITIONS The project authorities must strictly adhere to the stipulations made by the OSPCB and the	We will follow the stipulations made by OSPCB and the State Government.
ii)	State Government. No further expansion or modification in the plant shall be carried out without prior approval of the Ministry of Environment and Forests.	We will not carry out any expansion or modification in the plant without prior approval of MoEF.
iii)	The gaseous emissions from various process units shall conform to the load/mass based standards notified by this Ministry on 19th May, 1993 and standards prescribed from time to time. The SPCB may specify more stringent standards for the relevant parameters keeping in view the nature of the industry and its size and location.	We have noted and accepted the stipulated condition.
iv)	At least four number of ambient air quality monitoring stations shall be established in the downward direction as well as where maximum ground level concentration of SPM,	Installation of four (04) CAAQMS completed and commissioned. All the stack emission and ambient air monitoring stations synchronized with the

v)	SO ₂ and NO _x are anticipated in consultation with the OSPCB. Data on ambient air quality and stack emission should be regularly submitted to this Ministry including its Regional Office at Bhubaneswar and Orissa State Pollution Control Board once in Six months. The overall noise levels in and around the plant area should be kept well within the standards (85 dBA) by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels should conform to the	webserver of the SPCBwithURL http://117.239.117.27/ospcbrtdas/ &CPCB withURL http://113.19.81.38/cpcbrtdas/ respectively. The six-monthly compliance is being submitted to the concerned authorities regularly. The overall noise levels in and around the plant area is within the prescribed standards and it is made possible by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation.
	standards prescribed under EPA Rules, 1989 viz 75 dBA (daytime) and 70 dBA (nighttime).	The overall noise level is within the standard, regular monitoring is being done.
		All necessary PPEs are provided to the workers and engineers working in the factory.
vi)	Occupational Health Surveillance of the workers should be done on a regular basis and records maintained as per the Factories Act.	Occupational Health Surveillance of the workers is being done as per the Factories Act.
vii)	The company shall develop surface water harvesting structures to harvest the rain water for utilization in the lean season besides recharging the ground water table.	The company has developed surface water harvesting structures to store water in the lean season and it will harvest the rain water during rainy season in the same reservoirs.
viii)	The project proponent shall also comply with all the environmental protection measures and safeguards recommended in the EIA report. Further the company must undertake socioeconomic development activities in the surrounding villages like community development programmes, drinking water supply and health care etc.	We have noted and accepted all the conditions and will comply in a time bound manner. The economic development activities are going on regularly as a part of our corporate social responsibility. Details of the CSR, R&R activities undertaken is attached as <i>Annexure-7</i> . A team of personnel are working dedicatedly for peripheral development work like conducting health camps, community developed programmes, formation SHG groups, supply of drinking water and other common infrastructural development works.
	Requisite fund shall be earmarked towards capital cost and recurring cost/annum for environment pollution control measures to implement the conditions stipulated by the Ministry of Environment & Forests as well the State Government. An implementation schedule for implementing all the conditions stipulated herein shall be submitted to Regional Office of the Ministry at Bhubaneswar. The funds so provided shall not be diverted for any other purpose.	Requisite fund has been allotted towards capital cost and recurring cost/annum for environment pollution control measures and the fund will not be diverted for any other expenditure.

(x)	A copy of the clearance letter shall be send by	Copy of the clearance letter has already been
^/	the proponent to concerned Panchayat,	, , , , , , , , , , , , , , , , , , , ,
	Zillaparishad/Municipality corporation, urban	
	local boby and the local NGO, if any from	· •
	whom suggestions/representations, if any,	1 ' '
	were received while processing the proposal.	
	The clearance letter also be put on the web	
	site of the company by the proponent.	
xi)	The project proponent shall upload the status	The status of compliance is being submitted to
	of compliance of the stipulated environment	
	clearance conditions, including results of	J , , , , , , , , , , , , , , , , , , ,
	monitoring data on their website and shall	· · · · · · · · · · · · · · · · · · ·
	update the same periodically. It shall	The monitoring is being done for ambient air
	l .	quality, Ambient Noise, Water, Soil and
	of the MoEF at Bhubaneswar. The respective	Meteorological etc at all the baseline locations
	zonal office of CPCB and SPCB. The criteria	after operation of the plant.
	poliutant levels namely' PM10, SO2, NOx	· · · · · · · · · · · · · · · · · · ·
	(ambient levels as well as stack emissions) or	Installation of continuous stack emission
	critical sectoral parameters, indicated for the	monitoring equipment's completed and
	project shall be monitored and displayed at a	commissioned. Four (04) CAAQMS installed
	convenient location near the main gate of the	and commissioned.
	company in the public domain.	
		All the stack emission and ambient air
		monitoring stations synchronized with the
		webserver of the SPCB & CPCB.
xii)	The project proponent shall also submit six	We are submitting the six monthly compliance
	monthly reports on the status of the	reports of the stipulated environmental
	compliance of the stipulated environmental	conditions (both in hard & soft copies as well
	conditions including results of monitoring data	as by e-mail) to the Regional Office of MOEF,
	(both in hard & soft copies as well as by e-mail)	
	to the Regional Office of MOEF, the respective	SPCB.
	Zonal Offices of CPCB and the SPCB. The	
	Regional office of this Ministry at	The monitoring data in respect of AAQ, water,
	Bhubaneswar. CPCB/SPCB shall monitor the	soil, noise etc is enclosed as Annexure-8.
	stipulated conditions.	
xiii)	The environmental statement for each	The environmental statement for each
	financial year ending 31st March in Form-V as is	financial year ending 31st March in Form-V is
	mandated to be submitted by the project	being submitted to the concerned authorities
	proponent to the concerned State Pollution	of SPCB and MoEF.
	Control Board as prescribed under the	
	Environment (protection) Rules, 1986, as	
	amended subsequently, shall also be put on	
	the website of the company along with the	
	status of compliance of environmental	
	conditions and shall also be sent to the	
	respective Regional Office at Bhubaneswar.	
xiv)	The project proponent shall inform the public	Information to Public has been madethrough
	that the project has been accorded	advertisement of the environmental clearance
	environmental clearance by the Ministry and	in two widely circulated daily newspapers i.e.
	copies of the clearance letter are available with	"The New Indian Express" on 04-12-2012 &
	the SPCB and may also be seen at website of	· ·
		·· ···

	· · · · · · · · · · · · · · · · · · ·	
	the Ministry of Environment & Forest at http/www.envfor.nic.in. This shall be advertised within seven days from the date of issue of the clearance letter, at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same should be forwarded to	days of receiving the clearance letter. The copy of the advertisement was submitted to the Ministry's Regional Office at Bhubaneswar vide our office letter no. AAP/E&F/786, dated 07-12-2012.
xv)	the Regional office at Bhubaneswar. The authorities shall inform the regional office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of commencing the land development work.	Financial closure for Phase-1(Smelter capacity of 0.36 MTPA and CPP of 1650 MW) of the Project is completed on 17th September 2012 and operation of Phase-1 is under progress. Four Units(§ x 150 MW) of CPP and \$60, out of
L		360 Pots are in operation.

Encl: As above

(Authorized Signatory)

100

Visiontek Consultancy Services Pvt.Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

Ref. NCS PL 16 1R-015

Date: 05.01.2016

STATIONARY EMISSION MONITORING REPORT

1. Name of Industry : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Date of Sampling : 15.12.2015

3. Sampling Location : ST-1: Stack attached to ABF I -FTC 1

4. Name of sampling Instrument : Vayubodhan Stack Sampler VSS 2

5. Sample Collected by : VCSPL in presence of Aditya Aluminium representative

6. Date of Analysis : 20.12.2015 to 21.12.2015

Parameters	Unit of Measurement	Methodology	Analysis Results ST-1
Stack Temperature	⁰ C	Stack Sampler	110.0
Velocity of Flue Gas	m/sec	Stack Sampler	11.2
Concentration of Particulate Matter as PM	mg/Nm³	Gravimetric	4.5
Sulphur dioxide as SO ₂	mg/Nm ³	IPA- Thorin method	72.0
Oxides of Nitrogen as NO _x	mg/Nm³	Modified Jacob & Hochheiser (Na-Arsenite)	32.0
Particulate Fluoride	mg/Nm ³	Gravimetric	0.14
Gaseous Fluoride	mg/Nm³	Ion Electrode method	0.54
Total Fluoride as F	mg/Nm ³	Calculation	0.68
Tar Fumes	mg/Nm³	Extraction followed by Gas Chromatogrphy	ND
Poly Aromatic Hydrocarbon as PAHs	μg/Nm³	Gas Chromatography	ND

Note: ND: Not Detected.

B. K. Mishra, B.Sc. Engg. (Chem)
GOVT. ANALYST

For (GAZETTE No. 834 Dt. 12-04-2013)
For Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 9001: 2008 OHSAS 18001:2007

Ref. VCSPL 16 | R-016

Date: 05.01.2016

STATIONARY EMISSION MONITORING REPORT

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Date of Sampling

: 15.12.2015

3. Sampling Location

: ST-2: Stack attached to ABF II -FTC 2

4. Name of sampling Instrument

: Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

: VCSPL in presence of Aditya Aluminium representative

6. Date of Analysis

: 20.12.2015 to 21.12.2015

Parameters	Unit of Measurement	Methodology	Analysis Results ST-2
Stack Temperature	⁰ C	Stack Sampler	105.0
Velocity of Flue Gas	m/sec	Stack Sampler	9.5
Concentration of Particulate Matter as PM	mg/Nm ³	Gravimetric	5.2
Sulphur dioxide as SO ₂	mg/Nm ³	IPA- Thorin method	74.0
Oxides of Nitrogen as NO _x	mg/Nm ³	Modified Jacob & Hochheiser (Na-Arsenite)	44.0
Particulate Fluoride	mg/Nm ³	Gravimetric	0.11
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	0.32
Total Fluoride as F	mg/Nm ³	Calculation	0.43
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatogrphy	ND
Poly Aromatic Hydrocarbon as PAHs	μg/Nm³	Gas Chromatography	ND

Note: ND: Not Detected.

ra, B.Sc. Engg. (Chem) (GAZETTE No. 834 Dt. 12-04-2013)
For Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 9001: 2008 OHSAS 18001:2007

Ref: VCSPL116 12-376

Date . BC. 04. 2016

STACK EMISSION MONITORING REPORT FOR MARCH-2016

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Date of Sampling

: 18.03.2016

3. Sampling Location

: ST-1: Stack attached to ABF I -FTC 1

4. Name of sampling Instrument

: Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

: VCSPL in presence of Aditya Aluminium representative

6. Date of Analysis

: 19.03.2016 to 21.03.2016

Parameters	Unit of Measurement	Methodology	Analysis Results
	0.0000000000000000000000000000000000000		ST-1
Stack Temperature	⁰ C	Stack Sampler	101.0
Velocity of Flue Gas	m/sec	Stack Sampler	12.23
Concentration of Particulate Matter as PM	mg/Nm³	Gravimetric	5.2
Sulphur dioxide as SO ₂	mg/Nm³	IPA- Thorin method	51.0
Oxides of Nitrogen as NO _x	mg/Nm ³	Modified Jacob & Hochheiser (Na-Arsenite)	28.0
Particulate Fluoride	mg/Nm³	Distillation followed by Ion Electrode method	0.14
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	0.62
Total Fluoride as F	mg/Nm ³	Calculation	0.76
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatogrphy	ND
Poly Aromatic Hydrocarbon as PAHs	μg/Nm³	Gas Chromatography	ND

Note: ND: Not Detected.

BANIN B. K. Mishra, B.Sc. Engg. (Chem)

ISO 9001: 2008 OHSAS 18001:2007

Ref: VCS DL116 | R-877

Date: 02.042016

STACK EMISSION MONITORING REPORT FOR MARCH-2016

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Date of Sampling

: 18.03.2016

3. Sampling Location

: ST-2: Stack attached to ABF II -FTC 2

4. Name of sampling Instrument

: Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

: VCSPL in presence of Aditya Aluminium representative

6. Date of Analysis

: 19.03.2016 to 21.03.2016

Parameters	Unit of Measurement	Methodology	Analysis Results ST-2
Stack Temperature	^{0}C	Stack Sampler	84.0
Velocity of Flue Gas	m/sec	Stack Sampler	8.51
Concentration of Particulate Matter as PM	mg/Nm ³	Gravimetric	6.5
Sulphur dioxide as SO ₂	mg/Nm ³	IPA- Thorin method	70.0
Oxides of Nitrogen as NO _x	mg/Nm ³	Modified Jacob & Hochheiser (Na-Arsenite)	40.0
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	0.12
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	0.48
Total Fluoride as F	mg/Nm ³	Calculation	0.6
Tar Fumes	mg/Nm ³	Extraction followed by Gas Chromatogrphy	ND
Poly Aromatic Hydrocarbon as PAHs	μg/Nm ³	Gas Chromatography	ND

Note: ND: Not Detected.

B. K. Mishra, B.Sc. Engg. (Chem)
GOVT. ANALYST

(GAZETTE No. 834 Dt. 12-04-2013)

(An Enviro Engineering Consulting Cell)

Ref: VCSPL 16 | R-041?

Date: 88. 01.2016

FORAGE FLUORIDE ANALYSIS REPORT

1. Name of Industry M/s Hindalco Industries Limited

(Unit- Aditya Aluminium), Lapanga

2. Nature of Sample

Leaf for Fluoride

3. Date of Analysis

06.01.2016 to 08.01.2016

Sl. No.	Date of	Name of the Location	Type of Species	Fluoride
	Sampling			ppm
1	04.01.2016	FF-1:Gumkarma	Grass	2.5
2	04.01.2016	FF-2:Ghichamura	Grass	2.8
3	04.01.2016	FF-3:Bamaloi	Dalbergiasisoo	4.6
4	05.01.2016	FF-4:Tilaimal	Azadirachtaindica	8.2
5	05.01.2016	FF-5:Lapanga	Albiziaprocera	6.9
6	05.01.2016	FF-6:Gurupali	Grass	1.5

granish.

B. K. Mishra, B.Sc. Engg. (Chem) **GOVT. ANALYST**

(GAZETTE No. 834 Dt. 12-04-2013)

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

Ref VCSPLITR-761

Date: 07.11.2015

FORAGE FLUORIDE ANALYSIS REPORT

1. Name of Industry : M/s Hindalco Industries Limited

(Unit- Aditya Aluminium), Lapanga

2. Nature of Sample : Leaf for Fluoride

3. Date of Analysis : 06.11.2015 to 07.11.2015

Sl. No.	Date of	Name of the Location	Type of Species	Fluoride
	Sampling		- JPC ST SPESSOR	ppm
1	02.11.2015	FF-1:Gumkarma	Grass	2.5
2	02.11.2015	FF-2:Ghichamura	Grass	1.8
3	02.11.2015	FF-3:Bamaloi	Dalbergiasisoo	6.8
4	03.11.2015	FF-4: Tilaimal	Azadirachtaindica	3.1
5	03.11.2015	FF-5:Lapanga	Albiziaprocera	5.5
6	03.11.2015	FF-6:Gurupali	Grass	2.0

	NAME OF THE INDUSTRY:- Aditya Aluminium																			
	SATUS OF UTILIZATION OF COAL ASH (FLY ASH AND BOTTOM ASH), For the Month of:- Oct 2015 - March 2016																			
SI. No	. Month	Year	Coal Consumption (Million Tonne)	Power Installed Capacity	Power Generated MWH	Qunatity of Fly Ash generated (MT)	Quantity of Bottom Ash generated (MT)	Total Ash Generated	Disposal Method	Brick manufacturing (MT)	Supplied to cement industries (M/s Ultratech & M/s OCL)	Mine Void Filling(MT)	Utilization in Embankment/Dyke Raising(MT)	Road Making	Land development	Low Lying area filling/land development	Aggregates	Agriculture/Horticult ure Sector	Total Ash Utilized (MT)	% of utilization
1	Oct	2015	230813	600	438.62	90102.43	3754.27	93856.69	Dry disposal	0	65525.58	0	0	3578.27	0	24752.84	0	0	93856.69	100.00
2	Nov	2015	246699	600	486.00	99799.84	4158.33	103958.17	Dry disposal	0	60306.87	0	0	7361.41	0	36289.83	0	0	103958.11	100.00
3	Dec	2015	273572	600	531.95	108442.06	4518.42	112960.48	Dry disposal	0	86291.71	0	0	3958.49	0	22710.27	0	0	112960.47	100.00
4	Jan	2016	299369.8	600	572.035	119264.7	4969.36	124234.06	Dry disposal	0	102878.08	0	0	4243.39	0	17112.59	0	0	124234.06	100.00
5	Feb	2016	302209	750	596.121	123220.77	5134.2	128354.97	Dry disposal	0	93648.09	0	0	3955.15	0	30751.73	0	0	128354.97	100.00
6	Mar	2016	324414	750	585.995	137074.07	5711.42	142785.49	Dry disposal	0	100028.85	0	0	4642.5	0	38114.14	0	0	142785.49	100.00

27739 0 169731 0

Total 1677077

ANNEXURE-I

isiontek Consultancy Services Pvt.Ltd.

(An Enviro Engineering Consulting Cell)

ISO 9001: 2008

OHSAS 18001:2007

Ref. VCSPLILTR-384

Date: 29 . 12-201

GROUND WATER QUALITY ANALYSIS REPORT

Name of Industry M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga.

Sampling location GW-1: Lapanga Village; GW-2: Pandiol Village; GW-3: Bamloi Village; GW-4: Tilaimal Village;

GW-5: Thelkoloi Village; GW-6: Ghichamura Village; GW-7: Gumkarama Village; GW-8: Chaltikra Village.

Date of sampling 22.12.2015

Date of analysis 23.12.2015 to 29.12.2015

Sample collected by VCSPL Representative in presence of Aditya Aluminium Representative

SI.	Parameter	Testing Methods	Unit	Standard as per 1S -								
No.		Testing internous	Cin	10500:1991	GW-1	GW-2	GW-3	GW-4	GW-5	GW-6	GW-7	GW-8
1	pH Value	APHA 4500H B	1.2	6,5-8,5	7.0	6.9	6.8	6.9	6.9	7.0	7.1	7.1
2	Colour	APHA 2120 B, C	Hazen	5	CL	CL						
3	Taste	APHA 2160 C		Agreeable	AL	AL						
4	Odour	APHA 2150 B		U/O	U/O	U/O	U/O	U/O	U/O	U/O	U/O	U/O
5	Conductivity	APHA 2510-B	us/cm		160.5	126.8	134.7	139.8	167.5	138.6	171.5	170.3
6	Turbidity	APHA 2130 B	NTU	5	<2	<2	<2	<2	<2	<2	<2	<2
7	Total Dissolved Solids	APHA 2540 C	mg/l	500	216.0	178.0	184.0	202.0	210.0	181.0	214.0	186.0
8	Total Hardness (as CaCO ₃)	APHA 2340 C	mg/l	300	74.0	60.0	56.0	52.0	74.0	50,0	68.0	60.0
9	Total Alkalinity	APHA 2320 B	mg/l	200	68.0	59.0	54.0	48.0	62.0	48.0	52.0	57.0
10	Calcium (as Ca)	APHA 3500Ca B	mg/l	75	22.4	12.8	12.0	13,6	20,8	12.8	15.2	11.2
11	Magnesium (as Mg)	APHA 3500Mg B	mg/l	30	4.4	6.8	6.3	4.4	5.3	4.4	7.3	7.8
12	Residual, free Chlorine	APHA 4500Cl, B	mg/l	0.2	ND	ND						
13	Boron (as B)	APHA 4500B, B	mg/l	1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
14	Chloride (as Cl)	APHA 4500Cl B	mg/l	250	21.0	14.0	19.0	20.0	18.0	17.0	22.0	19.0
15	Sulphate (as SO ₄)	APHA 4500 SO ₄ ² · E	mg/l	200	8.9	5.9	7.0	7.5	8.0	6.34	7.92	7.2
16	Fluoride (as F)	APHA 4500F C	mg/l	1.0	0.09	0.08	0.06	0.08	0.11	0.05	0.08	0.08
17	Nitrate (as NO ₃)	APHA 4500 NO ₃ E	mg/l	45	2.6	1.9	2.1	2.1	2.3	2.1	2.2	2.14
18	Sodium as Na	APHA3500-Na	mg/l		14.1	11.6	11.1	13.4	12.8	13.6	14.8	13.3
19	Potassium as K	APHA 3500-K	mg/l	-	1.3	1.1	0.92	0.98	1.24	1.0	1.15	1.12
20	Phenolic Compounds (as C ₆ H ₅ OH)	APHA 5530 B,D	mg/l	0.001	<0.001	<0.001	<0.001	<0.001	<0,001	<0.001	<0.001	<0.00
21	Cyanide (as CN)	APHA 4500 CN ⁻ C,D	mg/l	0.05	ND	ND						
22	Anionic Detergents (as MBAS)	APHA 5540 C	mg/l	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
23	Cadmium (as Cd)	APHA 3111 B,C	mg/l	0.01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
24	Arsenic (as As)	APHA 3114 B	mg/l	0.05	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
25	Copper (as Cu)	APHA 3111 B,C	mg/l	0.05	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
26	Lead (as Pb)	APHA 3111 B,C	mg/l	0.05	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
27	Manganese (as Mn)	APHA 3500Mn B	mg/l	0.1	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
28	Iron (as Fe)	APHA 3500Fe, B	mg/l	0.3	0.26	0.25	0.23	0.28	0.26	0.27	0.28	0.26
29	Chromium (as Cr ⁺⁶)	APHA 3500Cr B	mg/l	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
30	Selenium (as Se)	APHA 3114 B	mg/l	0.01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
31	Zinc (as Zn)	APHA 3111 B,C	mg/l	5	< 0.05	< 0.05	< 0.05	<0:05	< 0.05	< 0.05	< 0.05	< 0.05
32	Aluminium as(Al)	APHA 3500Al B	mg/l	0.03	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
33	Mercury (as Hg)	APHA 3500 Hg	mg/l	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
34	Mineral Oil	APHA 5220 B	mg/l	0.01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
35	Pesticides	APHA 6630 B,C	mg/l	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Abser
36	E.Coli	АРНА 9221-F	MPN/100 ml	Shall not be detectable in any 100 ml sample	Absent	Abser						
37	Total Coliforms	АРНА9221-В	MPN/100 ml	Shall not be detectable in any 100 ml sample	Absent	Absen						

Note: CL: Colourless, AL: Agreeable, U/O: Unobjectionable, ND: Not Detected.

Brenist B. K. Mishra, B.Sc. Engg. (Chem) GOVT. ANALYST

FOGWINDING CANONIBINEY SERVICES PAR. 201.3)

Visiontek Consultancy Services Pvt.Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

Ref : VCSPL 15 1 P-383

Date: 29.13.2015

BOTTOM ASH ANALYSIS REPORT

1. Name of Industry

: M/s Hindalco Industries Limited

(Unit- Aditya Aluminium), Lapanga.

2. Sampling Location

: BA-01: CPP Bottom Ash Silo

3. Date of Sampling

: 22.12.2015

4. Date of Analysis

: 23.12.2015 to 29.12.2015

5. Sample Collected By

: VCSPL Representative in presence of Aditya Aluminium Representative.

Sl. No.	Parameters	Unit	Analysis Results
SI. 110.	rarameters	Unit	BA-01
A. C	hemical Analysis		
1	Na ₂ O	%	0.12
2	MgO	%	1.13
3	Al_2O_3	%	22.5
4	SiO ₂	%	56.6
5	P_2O_5	%	0.016
6	SO ₃	%	1.15
7	K_2O	%	0.86
8	CaO	%	3.96
9	TiO ₂	%	
10	MnO	%	0.15
11	Fe ₂ O ₃	%	7.7
В. Н	eavy Metals Analysis		
1	Hg	%	< 0.001
2	As	%	< 0.001
3	Pb	%	0.024
4	Cr	%	< 0.002
5	V	%	< 0.001
6	Fe	%	5.2
7	Co	%	< 0.001
8	Cu	%	0.044
9	Ni	%	0.079
10	Zn	%	0.06
11	Sr	%	
12	Ba	%	< 0.001

B. K. Mishra, B.Sc. Engg. (Chem)

GOVT. ANALYST (GAZETTE No. 834 Dt. 12-04-2013)

ENVIRONMENT POLICY

We, at Hindalco Industries Limited, operating across the process chain from mining to semi-fabricated products in non-ferrous metals, strive to continually improve the environmental performance for sustainable operations and responsible growth globally, by integrating sound environmental system and practices.

To achieve this, we shall

- Comply with all applicable legal requirements on environment.
- Continually improve environmental performance by strengthening the Environmental Management System conforming to National / International Standards, including setting and reviewing targets and measuring, monitoring and reporting their progress.
- Allocate sufficient resources such as organizational structure, technology and funds for implementation of the policy and regular monitoring of its performance.
- Adopt pollution prevention approach in all our processes, enhance material efficiency and achieve high productivity.
- Conserve key resources like electricity, coal, water, oil and raw materials by promoting efficient technologies and manufacturing process improvements, water conservation program and efficient use of raw materials.
- Adopt energy efficient and cleaner technologies based on techno-economic viability, appropriate to the region in which we operate and in line with our growth and diversification plans.
- Promote principles of waste prevention, reduction, reuse, recycling and recovery to minimize waste generation and strengthen practices for management of wastes.
- Work in partnership with regulatory authorities, relevant suppliers, contractors and all stakeholders, as applicable, to meet the requirements of this Policy.
- Adapt environmental performance over life cycle as an important input in the decision process of the organization.
- Raise environmental awareness at all levels of our operations through training and effective communication, participation and consultation.
- Develop and follow appropriate communication system to inform stakeholders, as applicable, about our environmental commitment and performance.

This policy shall be made available to all employees, suppliers, customers, community and other stakeholders, as appropriate.

11th December 2014

D.Bhattacharya Managing Director

RR & CSR

"Half Yearly Report"

Scope of work ...

- Villages 23
- Population 23,500
- Blocks 2
- District Sambalpur

Aditya Aluminium CSR Expenses Dash Board 2005 - 2016

SI. No	Year	CSR Expenses year wise	Remarks
1	2005	240,000	Completed
2	2006	133,600	Completed
3	2007	110,000	Completed
4	2008	358,479	Completed
5	2009-10	65,418,975	Completed
6	2010-11	12,808,666	Completed
7	2011-12	9,128,786	Completed
8	2012-13	16,241,048	Completed
9	2013-14	11,445,539	Completed
10	2014-15	14,632,199	Completed
11	2015-16	6,26,17000	Completed
Grand Total		130,517,292	

ADITYA CSR Focus Areas:

- Education
- > Health
- Sustainable Livelihood (Focus on Women Empowerment)
- Infrastructural development
- Social Issues (Special Support for Sports & Cultural activities)

RR & CSR

"Half Yearly Report"

cope of work ...

Villages - 23

Population - 23,500

Blocks - 2

District - Sambalpur

Aditya Aluminium CSR Expenses Dash Board 2005 - 2016

	SI. No	Year	CSR Expenses year wise	Remarks
	1	2005	240,000	Completed
	2	2006	133,600	Completed
	3	2007	110,000	Completed
	4	2008	358,479	Completed
]	5	2009-10	65,418,975	Completed
	6	2010-11	12,808,666	Completed
	7	2011-12	9,128,786	Completed
	8	2012-13	16,241,048	Completed
	9	2013-14	11,445,539	Completed
1	10	2014-15	14,632,199	Completed
	11	2015-16	6,26,17000	Completed
	Grand Total		130,517,292	
	11	2015-16	6,26,17000	•

ADITYA CSR Focus Areas:

- Education
- > Health
- Sustainable Livelihood (Focus on Women Empowerment)
- Infrastructural development
- Social Issues (Special Support for Sports & Cultural activities)

SUSTAINABLE LIVELIHOOD

EY ACHIEVEMENTS

Non farm & Skill Based Income Generation Program

etc. covering 549 nos of SHG member

Natural Resource Conservation & Non-conventional energy: Provided 29 nos of solar street light in 7 hamlet covering 1050 beneficiaries. Low Smoke Stove with Solar Home Lights

:There are 175 nos of SHG women got benefitted out of 35 nos of solar home light

: IGP training, SHG strengthening, Phenyl, Mushroom, Fish, Poultry, mixture, badi

and low-smoke cooking stove.

Sewing Machine Distribution for better Livelihood

:Facilitated 70 nos of Rural women with Sewing machines for better livelihood of rural women.

Namkeen Making Training

Solar Street Light Installation

Low-Smoke Stove distribution

RR & CSR

"Half Yearly Report"

SOCIAL ISSUES

EY ACHIEVEMENTS

Disaster relief programs beneficiaries

Promotion of Heritage/culture/sports

Social events minimize causes of poverty

Awareness program

:Flood situation management program in Sambalpur city covering 1295

Supporting rural sports, culture and festivals in 23 villages covering more than 22000 population.

:Pressure cooker distributed to 1250 beneficiaries

:Awareness program on Anti-dowry, widow remarriage, Blind Believes, Disaster Management, Snake bite, Water management and many more covering more than 2500 beneficiaries

Pressure Cooker Distribution

Friendly Football Match

Awareness Program on AIDS

CSR Expenses & Activities Till March 2015-16

Focus Area	Total Beneficiaries	Total Expenses
EDUCATION	15095	1656000
HEALTH	143501	56033000
LIVELIHOOD PROMOTION	6648	1508000
RURAL INFRASTRUCTURE	7926	2205000
SOCIAL CAUSES	15520	1215000
GRAND TOTAL	188690	62617000

Aditya Aluminium CSR expenses for the Year 2015-16

Project Activities		2015-16						
	Unit:							
	Total spend Rs/-in Lakhs	Programme	Overheads	Population Reached				
	Amount	Expenses						
	Rs. (in lacs)	Rs. (in lacs)	Rs. (in lacs)	(Nos)				
Education								
Pre school education	0.000	0.000	0.00	0				
School Education Program	7.000	7.000	0.00	7900				
Education support programs	2.630	2.630	0.00	5806				
Vocational and Technical Education	0.000	0.000	0.00	0				
School Infrastructure	4.800	4.800	0.00	1350				
Others	2.130	2.130	0.00	39				
Sub Total-Education	16.560	16.560	0.00	15095				
Health								
Preventive Health Care	37.720	37.720	0.00	16189				
Curative Health Care program	1.670	1.670	0.00	144				
Reproductive and Child Health	1.450	1.450	0.00	1687				
Quality / Support Program	0.480	0.480	0.00	475				
Health Infrastructure	517.000	517.000	0.00	125000				
Others if any	2.010	2.010	0.00	6				
SubTotal-Health	560.330	560.330	0.00	143501				

Project Activities		2015-16		
		Unit:		
	Total spend Rs/-in Lakhs	Programme	Overheads	Population Reached
	Amount	Expenses		
	Rs. (in lacs)	Rs. (in lacs)	Rs. (in lacs)	(Nos)
Sustainable Livelihood				
Agriculture and Farm Based	1.860	1.860	0.00	
Animal Husbandry Based	0.530	0.530	0.00	2517
Non farm & Skills Based Income generation Program	4.130	4.130	0.00	1881
Natural Resource conservation programs & Non				
conventional Energy	6.550	6.550	0.00	1975
Livelihood Infrastructure	0.000	0.000	0.00	0
Others	2.010	2.010	0.00	6
Sub Total-Sustainable Livelihood	15.080	15.080	0.00	6648
Infrastructure				
Rural Infrastructure Development other than for the purpose of Health /Education /Livelihood	22.050	22.050	0.00	7926
SubTotal-Infrastructure	22.050	22.050	0.000	7926
Social Development Projects				
Institutional building & strengthening	0.480	0.480	0.00	322
Support to development organizations	0.000	0.000	0.00	0
Social Security	2.510	2.510	0.00	100
Awareness programmes	0.360	0.360	0.00	1270
Social Events to minimise causes of poverty	4.830	4.830	0.00	602
Promotion of heritage/culture/Sports	1.960	1.960	0.00	13220
Disaster Relief Programmes	0.000	0.000	0.00	0
Others if any	2.01	2.01	0.00	6
Sub Total- Social development Projects	12.150	12.150	0.00	15520
Salary/ Overheads	0.000	0.00	0.000	0
Grand Total	626.170	626.170	0.000	188690

EDUCATION

EY ACHIEVEMENTS

- **Pre School Education**
- **School Education program**
- **Education Support program**

- 4673 students have been treated for Polio vaccination since 2014 -16 in coordination wire government Odisha
- School Transport, Drawing Competition, Celebration of National Days, Distribution of Stationaries to 999 students in 07 schools and other activities facilitating 4243 students in periphery villages.
- Provided 1000 nos of school bags to the poor students in the periphery schools. Conducted school. Children sports were conducted in 6 schools and 11 Anganwadi.

School Sports Award Ceremony

School Toilet for Girls

Scholarship to Girl Students

KEY ACHIEVEMENTS

- ☐ Preventive Healthcare Awareness camp on Adolescent Girl health, Immunization, Tuberculosis, Dengue, Malaria, etc.
 - Organising Mega blood donation Camps
- □ Curative Healthcare -Running Community Dispensary covering 03 Gram Panchayats
 - -School health care program in govt. schools with whole body checkup and Blood Grouping covering,
- 1297 school children and health card distribution
- **Health Infrastructure** -Supply of drinking water through 120 tankers daily covering 121 hamlets facilitating 13100 population

Drinking Water Supply

School Health Care

Mega Blood Donation Camp

SUSTAINABLE LIVELIHOOD

KEY ACHIEVEMENTS

- Non farm & Skill Based Income Generation Program
 - Natural Resource Conservation & Non-conventional energy: Provided 29 nos of solar street light in 7 hamlet covering 1050 beneficiaries.
- Low Smoke Stove with Solar Home Lights
- **☐** Sewing Machine Distribution for better Livelihood

- : IGP training, SHG strengthening, Phenyl, Mushroom, Fish, Poultry, mixture, badi etc. covering 549 nos of SHG member
- :There are 175 nos of SHG women got benefitted out of 35 nos of solar home light
 - and low-smoke cooking stove.
 - :Facilitated 70 nos of Rural women with Sewing machines for better livelihood of rural women.

Namkeen Making Training

Solar Street Light Installation

Low-Smoke Stove distribution

RR & CSR

"Half Yearly Report"

SOCIAL ISSUES

KEY ACHIEVEMENTS

- □ Disaster relief programs beneficiaries
- □ Promotion of Heritage/culture/sports
- Social events minimize causes of poverty
- Awareness program

:Flood situation management program in Sambalpur city covering 1295

- :Supporting rural sports, culture and festivals in 23 villages covering more than 22000 population.
- :Pressure cooker distributed to 1250 beneficiaries
- :Awareness program on Anti-dowry, widow remarriage, Blind Believes, Disaster Management, Snake bite, Water management and many more covering more than 2500 beneficiaries

Pressure Cooker Distribution

Friendly Football Match

Awareness Program on AIDS

SOCIAL ISSUES

KEY ACHIEVEMENTS

- □ Disaster relief programs beneficiaries
- □ Promotion of Heritage/culture/sports
- Social events minimize causes of poverty
- Awareness program

:Flood situation management program in Sambalpur city covering 1295

- :Supporting rural sports, culture and festivals in 23 villages covering more than 22000 population.
- :Pressure cooker distributed to 1250 beneficiaries
- :Awareness program on Anti-dowry, widow remarriage, Blind Believes, Disaster Management, Snake bite, Water management and many more covering more than 2500 beneficiaries

Pressure Cooker Distribution

Friendly Football Match

Awareness Program on AIDS

RURAL INFRASTRUCTURE

KEY ACHIEVEMENTS

☐ Infrastructure development: Infrastructure developments relates to rural connectivity and facilities to mitigate the needs of the people. We have constructed Bituminous, WBM, Murrom Roads, Village Temples, Mandap, School Classrooms, Ponds, Tube-wells and many more.

Resettlement & Rehabilitation

Details of DP status as on 31st March 2016

SI. No	Village	Hamlet	No of DPs as on 01.01.2012	Shifting Status upto July 2015	Shifted to RR Colony		Balance DP to shift	Opted for Job	Training done and in Job	Bal DP for Training	CILE Paid	CILE Applied for	RR Benefit given to shifted DPs Y/N	Remark
1	Derba	Dhudkabahal	45	45	43	2	0	13	9	4	32	0	V	*1 DP done 2yrs ITI but seriously ill and 3are still studying
2	Tileimal	Situpada	16	16	9	7	0	2	2	0	14	0	Υ	
_		Mareipada	24	24	13	11	0	1	1	0	23	0	Υ	
		Biripada	15	15	15	0	0	3	3	0	12	0	Υ	
		Mundapada	35	35	32	3	0	3	3	0	31	1	Υ	
3	Bomaloi	Nuapada	82	61	59	2	6	20	7	13	11	24	Υ	A) 01 DP Ms. Para Kisan, D/o Krushna Kisan Married before shifting). B) 14 DP excluded from the list (4 opted for job) C) 10 DP will be going for training in Sep'15 and 01 DP is doing course at their own expenses
4	Katarbaga	Bhalududia	147	147	138	9	0	21	20	1	126	1	Υ	1 DP will pass out ITI in Sep'15
		Parekhapada-1	19	4	4	0	15	4	0	4	4	0	Υ	
5	Jangala	Parekhapada-2	14	14	14	0	0	0	0	0	0	13	Υ	
		Khamaripada	12	3	3		9	5	1	4	2	0	Υ	
6	Bhoipalli	Bhoipali	12	8	7	1	4	0	0	0	2	5	Υ	
7	Ludhapalli	Ludhapali	12	12	11	1	0	0	0	0	10	2		CILE already approved, but to be deposited at Spl. LAO office
	Total		433	384	348	36	34	72	* 46	26	267	46		

Updated DP List from District Administration is still awaited

THANK YOU

(An Enviro Engineering Consulting Cell)

Ref. VCS PL/15/R-385

Date: 29-12:201

SURFACE WATER QUALITY ANALYSIS REPORT

Name of Industry

M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

Sampling location

SW-1: Hirakud Reservoir; SW-2: Lapanga Pond; SW-3: Matwadinadi, SW-4: Bamloi Pond;

SW-5: Bhedan rive ampling : 22.12.2015

Date of samplingDate of analysis

: 23.12.2015 to 29.12.2015

5. Sample collected by

VCSPL Representative in presence of Aditya Aluminium Representative

SI. No	Parameter	Testing Methods	Unit	Standards as per			Analysis Resu	lts	
	100000000000000000000000000000000000000	9	40000	IS-2296:1992 Class -'C'	SW-1	SW-2	SW-3	SW-4	SW-5
1	pH Value	APHA 4500H ⁺ B		6.0-9.0	7.2	7.1	7.1	7.0	7.23
2	Colour	APHA 2120 B, C	Hazen	300	CL	3	2	4	2
3	Taste	APHA 2160 C			AL	AL	AL	AL	AL
4	Odour	APHA 2150 B		-	U/O	U/O	U/O	U/O	U/O
5	Conductivity	APHA 2510-B	μs/cm	**	98.4	96.8	88.1	96.5	82.5
6	Turbidity	APHA 2130 B	NTU	-	2.2	3.2	2.2	5.1	2.3
7	Total Dissolved Solids	APHA 2540 C	mg/l	1500	120.0	123.0	118.0	132.0	119.0
8	Total Hardness (as CaCO ₃)	APHA 2340 C	mg/l	-	56.0	54.0	50.0	62.0	46.0
9	Total Alkalinity	APHA 2320 B	mg/l		52.0	49.0	43.0	54.0	42.0
10	Calcium (as Ca)	APHA 3500Ca B	mg/l	-	13.6	12.8	11.2	14.4	11.2
11	Magnesium (as Mg)	APHA 3500Mg B	mg/l		5.3	5.3	5.3	6.3	4.4
12	Residual, free Chlorine	APHA 4500Cl, B	mg/l		ND	ND	ND	ND	ND
13	Boron (as B)	APHA 4500B, B	mg/l		< 0.01	< 0.01	< 0.01	<0.01	< 0.01
14	Chloride (as Cl)	APHA 4500Cl B	mg/l	600	23.0	26.0	17.0	19.0	17.0
15	Sulphate (as SO ₄)	APHA 4500 SO ₄ ² · E	mg/l	400	10.4	8.8	9.3	8.8	8.5
16	Fluoride (as F)	APHA 4500F C	mg/l	1.5	0.17	0.2	0.21	0.23	0.2
17	Nitrate (as NO ₃)	APHA 4500 NO ₃ E	mg/l	50	1.4	1.76	1.6	1.8	1.6
18	Sodium as Na	APHA3500-Na	mg/l		13.6	12.7	10.4	11.8	9.8
19	Potassium as K	APHA 3500-K	mg/l		1.1	0.92	0.94	0.88	0.76
20	Phenolic Compounds (as C ₆ H ₅ OH)	APHA 5530 B,D	mg/l	0.005	<0.001	<0.001	<0.001	<0.001	< 0.00
21	Cyanide (as CN)	APHA 4500 CN C,D	mg/l	0.05	ND	ND	ND	ND	ND
22	Anionic Detergents (as MBAS)	APHA 5540 C	mg/l	1.0	<0.2	<0.2	<0.2	<0.2	<0.2
23	Cadmium (as Cd)	APHA 3111 B,C	mg/l	0.01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
24	Arsenic (as As)	APHA 3114 B	mg/l	0.2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
25	Copper (as Cu)	APHA 3111 B,C	mg/l	1.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
26	Lead (as Pb)	APHA 3111 B,C	mg/l	0.1	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
27	Manganese (as Mn)	APHA 3500Mn B	mg/l		< 0.005	< 0.005	< 0.005	< 0.005	< 0.00
28	Iron (as Fe)	APHA 3500Fe, B	mg/l	0.5	0.24	0.26	0.23	0.24	0.2
29	Chromium (as Cr ⁺⁶)	APHA 3500Cr B	mg/l	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
30	Selenium (as Se)	APHA 3114 B	mg/l	0.05	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
31	Zinc (as Zn)	APHA 3111 B,C	mg/l	15	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
32	Aluminium as(Al)	APHA 3500Al B	mg/l		< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
33	Mercury (as Hg)	APHA 3500 Hg	mg/l		< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
34	Mineral Oil	APHA 5220 B	mg/l	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
35	Pesticides	APHA 6630 B,C	mg/l		Absent	Absent	Absent	Absent	Abser
36	E.Coli	APHA 9221-F	MPN/100 ml	-	Absent	Absent	Absent	Absent	Abser
37	Total Coliforms	APHA9221-B	MPN/100 ml	5000	440	560	630	420	470

Note: CL: Colourless, AL: Agreeable, U/O:Unobjectionable, ND: Not detected.

B. K. Mishra, B.Sc. Engg. (Chem)
For Visiontek GOVALUAN Services Pvt. Lta
(GAZETTE No. 834 Dt. 12-04-2013)

(An Enviro Engineering Consulting Cell)

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

Ref: VCCDL/15/R-386

Date: 29.12.295

SURFACE WATER QUALITY ANALYSIS REPORT

Name of Industry

M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Sampling location

SW-6: Bhedan river near Katikela; SW-7: Matwadinadi-D/s; SW-8: Hirakud reservoir near Gurupali village;

SW-9: Salepali village; SW-10: Sanamal.

3. Date of sampling

22.12.2015

Date of analysis

23.12.2015 to 29.12.2015

5. Sample collected by

VCSPL Representative in presence of Aditya Aluminium Representative

SI. No.	Parameter	Testing Methods	Unit	Standards as per		A	analysis Result	ts	
INO.				IS-2296:1992 Class - 'C'	SW-6	SW-7	SW-8	SW-9	SW-10
1	pH Value	APHA 4500H B	-	6.0-9.0	7.1	7.0	7.2	7.1	7.1
2	Colour	APHA 2120 B, C	Hazen	300	2	3	CL	2	3
3	Taste	APHA 2160 C			AL	AL	AL	AL	AL
4	Odour	APHA 2150 B	22		U/O	U/O	U/O	U/O	U/O
5	Conductivity	APHA 2510-B	μs/cm	**2	97.5	95.6	110.2	103.6	110.2
6	Turbidity	APHA 2130 B	NTU		2.4	3.6	2.2	2.8	3.9
7	Total Dissolved Solids	APHA 2540 C	mg/l	1500	115.0	119.0	129.0	118,0	122.0
8	Total Hardness (as CaCO ₃)	АРНА 2340 С	mg/l	-	58.0	62.0	54.0	56.0	58.0
9	Total Alkalinity	APHA 2320 B	mg/l		52.0	55.0	48.0	45.0	47.0
10	Calcium (as Ca)	APHA 3500Ca B	mg/l		14.4	16.8	15.2	13.6	14.4
11	Magnesium (as Mg)	APHA 3500Mg B	mg/l		5.3	4.9	3.9	5.3	5.3
12	Residual, free Chlorine	APHA 4500Cl, B	mg/l		ND	ND	ND	ND	ND
13	Boron (as B)	APHA 4500B, B	mg/l		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
14	Chloride (as CI)	APHA 4500Cl B	mg/l	600	19.0	21.0	20.0	23.0	25.0
15	Sulphate (as SO ₄)	APHA 4500 SO ₄ ² · E	mg/l	400	6.5	8.6	8.4	8.7	9,6
16	Fluoride (as F)	APHA 4500F C	mg/l	1.5	0.22	0.28	0.24	0.25	0.2
17	Nitrate (as NO ₃)	APHA 4500 NO ₃ E	mg/I	50	2.72	2.7	2.66	2.8	2.74
18	Sodium as Na	APHA 3500-K	mg/l		11.8	10.1	13.4	12.8	15.6
19	Potassium as K	APHA3500-Na	mg/l		1.0	0.94	1.24	1.33	1.28
20	Phenolic Compounds (as C ₆ H ₅ OH)	APHA 5530 B,D	mg/l	0.005	<0.001	< 0.001	< 0.001	<0.001	< 0.001
21	Cyanide (as CN)	APHA 4500 CN C,D	mg/l	0.05	ND	ND	ND	ND	ND
22	Anionic Detergents (as MBAS)	APHA 5540 C	mg/l	1.0	<0.2	<0.2	<0.2	<0.2	<0.2
23	Cadmium (as Cd)	APHA 3111 B,C	mg/l	0.01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
24	Arsenic (as As)	APHA 3114 B	mg/l	0.2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
25	Copper (as Cu)	APHA 3111 B,C	mg/l	1,5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
26	Lead (as Pb)	APHA 3111 B,C	mg/I	0.1	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
27	Manganese (as Mn)	APHA 3500Mn B	mg/l		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
28	Iron (as Fe)	APHA 3500Fe, B	mg/l	0.5	0.26	0.33	0.22	0.25	0.27
29	Chromium (as Cr ⁺⁶)	APHA 3500Cr B	mg/l	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
30	Selenium (as Se)	APHA 3114 B	mg/l	0.05	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
31	Zinc (as Zn)	APHA 3111 B,C	mg/l	15	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
32	Aluminium as(Al)	APHA 3500Al B	mg/l	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
33	Mercury (as Hg)	APHA 3500 Hg	mg/l		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
34	Mineral Oil	APHA 5220 B	mg/l		< 0.001	< 0.001	<0.001	<0.001	< 0.001
35	Pesticides	APHA 6630 B,C	mg/l	4-1	Absent	Absent	Absent	Absent	Absen
36	E.Coli	APHA 9221-F	MPN/100 ml		Absent	Absent	Absent	Absent	Absent
37	Total Coliforms	APHA9221-B	MPN/100 ml	5000	510	450	470	410	670

Note: CL: Colourless, AL: Agreeable, U/O: Unobjectionable, ND: Not detected.

B. K. Mishra, B.Sc. Engg. (Chem)

GOVT. ANALYST
For Visiontek Consultanga Services Pdr. 22/13)

(An Enviro Engineering Consulting Cell)

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

Ref. VCSPL 16/R-081:

SOIL QUALITY ANALYSIS REPORT

Date: 08.00.2016

1. Name of Industry

M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Date of Sampling

17.12.2015

3. Sampling Location

S-1: Project Site; S-2: Thelkoloi; S-3: Ghichamura; S-4: Lapanga;

S-5: Bamloi; S-6: Tileimal; S-7: Jangala; S-8: Gurupali; S-9: Gumkarama; S-10:

4 Date of Analysis Bhadarpali. 18.12.2015 to 24.12.2015

Sample Collected By 5.

VCSPL representative in Presence of Aditya Aluminium representative

Sl.No.	Parameters	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	S-9	S-10
1	pH	5.6	5.7	5.6	5.5	5.8	5.7	5.7	5.6	5.5	5.5
2	Conductivity	102.4	96.4	83.4	90.1	99.6	86.7	80.4	78.8	88.6	79.6
3	Soil Texture	Sandy Loamy	Clay Loamy	Clay Loamy	Sandy Loamy	Sandy Loamy	Clay Loamy	Sandy Loamy	Sandy Loamy	Sandy Loamy	Clay Loamy
4	Sand	42.24	13.8	38.44	43.52	45.92	15.44	38.98	43.78	44.21	15.78
5	Silt	12.82	20.48	13.56	15.46	11.24	18.28	15.72	12.24	13.46	18.46
6	Clay	43.52	64.12	46.48	37.91	41.24	64.35	43.45	41.72	40.06	64.14
7	Bulk Density (gm/cc)	1.39	1.28	1.36	1.4	1.42	1.32	1.38	1.4	1.41	1.32
8	Exchangeable Calcium as Ca (%)	35.0	39.0	41.0	42.5	40.0	36.0	42.0	44.0	41.0	39.0
9	Exchangeable Magnesium as Mg (%)	48.36	58.2	52.46	57.38	55.74	49,18	59.02	65.57	65.57	51.64
10	Available Sodium as Na(%)	0.021	0.02	0.018	0.023	0.023	0.022	0.024	0.024	0.022	0.021
11	Available Potassium as K (%)	0.062	0.059	0.054	0.058	0.065	0.052	0.065	0.068	0.06	0.066
12	Available phosphorous as P (%)	0.018	0.016	0.022	0.019	0.019	0.02	0.021	0.022	0.016	0.018
13	Available Nitrogen as N (%)	0.14	0.2	0.18	0.16	0.16	0.18	0.2	0.19	0.18	0.16
14	Organic Matter (%)	2.72	2.98	3.14	2.68	2.72	2.88	3.2	3.14	3.24	3.1
15	Organic Carbon (%)	1,58	1.73	1.82	1.55	1.58	1.67	1.86	1.82	1.88	1.8
16	Water soluble Chlorides as Cl (%)	0.18	0.22	0.2	0.19	0.21	0.22	0.23	0.22	0.23	0.21
17	Water soluble Sulphates as SO ₄ (%)	0.21	0.18	0.2	0.18	0.15	0.19	0.2	0.17	0.2	0.16
18	Sodium Absorption Ratio (%)	0.141	0.125	0.114	0.141	0.144	0.146	0.147	0.141	0.131	0.136
19	Aluminium as Al (%)	0.0001	0.00008	0.00007	0.00007	0.00005	0.00008	0.00006	0.00004	0.00006	0.00003
20	Total Iron as Fe (%)	0.1	0.03	0.04	0.02	0.025	0.028	0.03	0.035	0.028	0.03
21	Manganese as Mn (%)	0.005	0.0014	0.0016	0.0018	0.005	0.0012	0.0012	0.0015	0.001	0.0011
22	Boron as B (%)	0.000036	0.00012	0.00014	0.00016	0.00021	0.0002	0.00022	0.00018	0.00014	0.00016
23	Zinc as Zn (%)	0.00028	0.00015	0.00011	0.00012	0.00015	0.00012	0.00016	0.00012	0.00013	0.0001
24	SiO ₂ (%)	6.68	5.72	6.28	6.24	6.36	5.98	5.96	5.92	6.08	5.88
25	Fe ₂ O ₃ (%)	0.066	0.02	0.026	0.013	0.017	0.018	0.02	0.023	0.018	0.02
26	CaO (%)	25.2	28.08	29.52	30.6	28.8	25.92	30.24	31.68	29.52	28.08
27	MgO (%)	29.0	34.92	31,47	34.42	33.44	29.5	35.41	39.34	39.34	30.98
28	Al ₂ O ₃ (%)	0.00006	0.0000528	0.0000462	0.0000462	0.000033	0.000053	0.00004	0.000026	0.00004	0.00003
29	FeO (%)	0.085	0.0255	0.034	0.017	0.0213	0.0238	0.0255	0.0298	0.0238	0.0255
30	MnO (%)	0.0065	0.0018	0.0021	0.0023	0.0065	0.0016	0.0016	0.002	0.0013	0.0014
31	K ₂ O (%)	0.0496	0.0472	0.0432	0.0464	0.052	0.0416	0.052	0.0544	0.048	0.0528
32	P ₂ O ₅ (%)	0.0083	0.0074	0.0101	0.0087	0.0087	0.0092	0.0097	0.0101	0.0074	0.0083

ND: Not Detected.

(An Enviro Engineering Consulting Cell)

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

Ref: VCSPLITTR-384

Date: 29 . 12-201

GROUND WATER QUALITY ANALYSIS REPORT

1. Name of Industry : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga.

Sampling location
 GW-1: Lapanga Village; GW-2: Pandiol Village; GW-3: Bamloi Village; GW-4: Tilaimal Village;

GW-5: Thelkoloi Village; GW-6: Ghichamura Village; GW-7: Gumkarama Village; GW-8: Chaltikra Village.

3. Date of sampling : 22.12.2015

4. Date of analysis : 23.12.2015 to 29.12.2015

5. Sample collected by : VCSPL Representative in presence of Aditya Aluminium Representative

SI.	Parameter	Testing Methods	Unit	Standard as per 1S -								
No.		Testing internous	Cin	10500:1991	GW-1	GW-2	GW-3	GW-4	GW-5	GW-6	GW-7	GW-8
1	pH Value	APHA 4500H B	1.2	6,5-8,5	7.0	6.9	6.8	6.9	6.9	7.0	7.1	7.1
2	Colour	APHA 2120 B, C	Hazen	5	CL	CL						
3	Taste	APHA 2160 C		Agreeable	AL	AL						
4	Odour	APHA 2150 B		U/O	U/O	U/O	U/O	U/O	U/O	U/O	U/O	U/O
5	Conductivity	APHA 2510-B	us/cm		160.5	126.8	134.7	139.8	167.5	138.6	171.5	170.3
6	Turbidity	APHA 2130 B	NTU	5	<2	<2	<2	<2	<2	<2	<2	<2
7	Total Dissolved Solids	APHA 2540 C	mg/l	500	216.0	178.0	184.0	202.0	210.0	181,0	214.0	186.0
8	Total Hardness (as CaCO ₃)	APHA 2340 C	mg/l	300	74.0	60.0	56.0	52.0	74.0	50.0	68.0	60.0
9	Total Alkalinity	APHA 2320 B	mg/l	200	68.0	59.0	54.0	48.0	62.0	48.0	52.0	57.0
10	Calcium (as Ca)	APHA 3500Ca B	mg/l	75	22.4	12.8	12.0	13,6	20.8	12.8	15.2	11.2
11	Magnesium (as Mg)	APHA 3500Mg B	mg/l	30	4.4	6.8	6.3	4.4	5.3	4.4	7.3	7.8
12	Residual, free Chlorine	APHA 4500Cl, B	mg/l	0.2	ND	ND						
13	Boron (as B)	APHA 4500B, B	mg/l	1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
14	Chloride (as Cl)	APHA 4500Cl B	mg/l	250	21.0	14.0	19.0	20.0	18.0	17.0	22.0	19.0
15	Sulphate (as SO ₄)	APHA 4500 SO ₄ ² - E	mg/l	200	8.9	5.9	7.0	7.5	8.0	6.34	7.92	7.2
16	Fluoride (as F)	APHA 4500F C	mg/l	1.0	0.09	0.08	0.06	0.08	0.11	0.05	0.08	0.08
17	Nitrate (as NO ₃)	APHA 4500 NO ₃ E	mg/l	45	2.6	1.9	2.1	2.1	2.3	2.1	2.2	2.14
18	Sodium as Na	APHA3500-Na	mg/l		14.1	11.6	11.1	13.4	12.8	13.6	14.8	13.3
19	Potassium as K	APHA 3500-K	mg/l	-	1.3	1.1	0.92	0.98	1.24	1.0	1.15	1.12
20	Phenolic Compounds (as C ₆ H ₅ OH)	APHA 5530 B,D	mg/l	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00
21	Cyanide (as CN)	APHA 4500 CN ⁻ C,D	mg/l	0.05	ND	ND						
22	Anionic Detergents (as MBAS)	APHA 5540 C	mg/l	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
23	Cadmium (as Cd)	APHA 3111 B,C	mg/l	0.01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
24	Arsenic (as As)	APHA 3114 B	mg/l	0.05	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
25	Copper (as Cu)	APHA 3111 B,C	mg/l	0.05	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
26	Lead (as Pb)	APHA 3111 B,C	mg/l	0.05	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
27	Manganese (as Mn)	APHA 3500Mn B	mg/l	0.1	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
28	Iron (as Fe)	APHA 3500Fe, B	mg/l	0.3	0.26	0.25	0.23	0.28	0.26	0.27	0.28	0.26
29	Chromium (as Cr ⁺⁶)	APHA 3500Cr B	mg/l	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
30	Selenium (as Se)	APHA 3114 B	mg/l	0.01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
31	Zinc (as Zn)	APHA 3111 B,C	mg/l	5	< 0.05	< 0.05	< 0.05	<0:05	< 0.05	< 0.05	< 0.05	< 0.05
32	Aluminium as(Al)	APHA 3500Al B	mg/l	0.03	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
33	Mercury (as Hg)	APHA 3500 Hg	mg/l	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
34	Mineral Oil	APHA 5220 B	mg/l	0.01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
35	Pesticides	APHA 6630 B,C	mg/l	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Abser
36	E.Coli	АРНА 9221-F	MPN/100 ml	Shall not be detectable in any 100 ml sample	Absent	Abser						
37	Total Coliforms	АРНА9221-В	MPN/100 ml	Shall not be detectable in any 100 ml sample	Absent	Absen						

Note: CL: Colourless, AL: Agreeable, U/O: Unobjectionable, ND: Not Detected.

B. K. Mishra, B.Sc. Engg. (Chem) GOVT. ANALYST

FOR WIS DOTER CANSULTANAY SERVICES PAR. 291. 3)

(An Enviro Engineering Consulting Cell)

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

Ref : VCSPL 16 18-072

Date: 05.02.2016

AMBIENT AIR QUALITY MONITORING REPORT

1. Name of Industry : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Sampling Location : Monitoring Station No.- AAQMS-1 (Gumkarama)

3. Monitoring Instruments : RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

4. Sample collected by : VCSPL representative in presence of Aditya Aluminium representative

					_	P	ARAMETI	ERS		-			
Date	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO _x (μg/m ³)	Ο ₃ (μg/m ³)	CO (mg/m³)	NH ₃ (μg/m ³)	C ₆ H ₆ (μg/m ³)	BaP (ng/m³)	Ni (ng/m³)	Pb (μg/m³)	As (ng/m³)	F (μg/m ³)
02.11.2015	61.8	29.8	9.6	15.2	<4.0	0.30	33.4	< 0.001	< 0.002	<0.01	< 0.001	< 0.001	< 0.01
05.11.2015	68.2	36.2	10.2	16.8	<4.0	0.32	31.2	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
09.11.2015	57.4	30.6	9.5	16.6	<4.0	0.28	34.2	< 0.001	< 0.002	<0.01	< 0.001	< 0.001	< 0.01
12.11.2015	55.9	27.2	9.1	15.3	<4.0	0.24	30.6	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
16.11.2015	64.5	35.4	10.2	17.4	4.8	0.28	28.4	<0.001	< 0.002	<0.01	< 0.001	< 0.001	< 0.01
19.11.2015	72.8	42.5	11.8	18.2	5.8	0.29	26.9	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
23.11.2015	76,6	40.1	12.2	18.8	6.6	0.32	29.4	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
26.11.2015	67.3	38.3	11.1	16.9	6.1	0.28	32.1	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	<0.01
30.11.2015	70.5	40.5	11.5	17.4	6.8	0.30	30.4	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
03.12.2015	71.5	39.4	11.8	19.1	6.2	0.31	29.2	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
07.12.2015	74.6	42.2	11.2	18.5	6.6	0.29	27.6	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
10.12.2015	73.4	40.8	12.2	19.8	6.4	0.32	25.8	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
14.12.2015	66.8	34.5	10.6	16.3	5.1	0.28	27.6	<0.001	< 0.002	<0.01	< 0.001	< 0.001	< 0.01
17.12.2015	48.6	24.1	9.8	13.4	<4.0	0.24	29.2	< 0.001	<0.002	< 0.01	< 0.001	< 0.001	< 0.01
21.12.2015	50.4	25.2	10.2	13.8	<4.0	0.25	30.4	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
24.12.2015	52.5	26.4	10.6	14.5	<4.0	0.25	24.6	< 0.001	< 0.002	<0.01	< 0.001	< 0.001	< 0.01
28.12.2015	60.1	31.1	11.2	15.8	<4.0	0.26	25.6	< 0.001	< 0.002	<0.01	< 0.001	< 0.001	< 0.01
31.12.2015	64.5	33.7	11.7	17.1	4.8	0.28	27.2	< 0.001	< 0.002	<0.01	< 0.001	< 0.001	< 0.01
04.01.2016	68.2	36.5	10.8	20.4	5.2	0.29	24.5	< 0.001	<0.002	< 0.01	< 0.001	< 0.001	< 0.01
07.01.2016	70.2	37.8	10.5	19,6	5.6	0.31	25.6	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
11.01.2016	66.9	34.6	10.2	20.2	5.8	0.32	27.1	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
14.01.2016	71.4	39.2	11.4	21.4	6.1	0.34	25.2	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
18.01.2016	69.2	36.4	11.5	20.8	5.8	0.32	26.4	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
21.01.2016	64.7	33.8	10.8	21.6	6.2	0.35	23.7	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
25.01.2016	65.5	34.1	10.6	21.3	6.4	0.34	24.5	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
28.01.2016	68.3	35.4	10.4	20.8	5.9	0.32	25.6	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	-
Quarterly Average	65.45	34.84	10.80	17.96	<5.32	0.3	27.94	<0.001	<0.002	<0.01	<0.001	<0.001	< 0.01
Testing method	Gravimet ric	Gravimetri c	Improved West and Gacke method	Modified Jacob & Hochheis er (Na- Arsenite)	Chemical Method	NDIR Spectrosc opy	Indo phenol blue method	Absorption & Desorption followed by GC analysis	Solvent extraction followed by Gas Chromatog raphy analysis	AAS method after sampling	AAS method after sampling	AAS method after sampli ng	Ion Selectiv e method after samplin g

BDL Values: SO₂< 4 μg/m³, NO_X< 9 μg/m³, O₃<4 μg/m³, Ni<0.01 ng/m³, As < 0.001 ng/m³, C₆H₆<0.001 μg/m³, BaP<0.002 ng/m³, Pb<0.001 μg/m³, F<0.01 μg/m³, CO-<0.1 mg/m

(An Enviro Engineering Consulting Cell)

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

Ref. VCS. PL/16/18-073

Date: 45. 02-2011

AMBIENT AIR QUALITY MONITORING REPORT

1. Name of Industry : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Sampling Location : Monitoring Station No.- AAQMS-2 (Ghichamura)

3. Monitoring Instruments : RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

4. Sample collected by CSPL representative in presence of Aditya Aluminium representative

						P	ARAMETI	ERS					
Date	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO _x (μg/m ³)	Ο ₃ (μg/m ³)	CO (mg/m³)	NH ₃ (μg/m ³)	C ₆ H ₆ (μg/m ³)	BaP (ng/m³)	Ni (ng/m³)	Pb (μg/m³)	As (ng/m³)	F (μg/m³
02.11.2015	62.8	30.2	9.1	16.6	<4.0	0.18	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
05.11.2015	59.4	28.6	8.7	16.2	<4.0	0.17	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
09.11.2015	61.7	30.4	8.8	15.8	<4.0	0.19	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
12.11.2015	65.2	31.6	8.5	16.3	<4.0	0.17	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
16.11.2015	59.8	28.6	8.2	15.5	<4.0	0.16	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
19.11.2015	63.7	31.7	8.6	16.2	<4.0	0.17	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
23.11.2015	66.1	32.5	9.4	17.4	<4.0	0.19	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
26.11.2015	60.2	31.2	9.2	17.5	<4.0	0.20	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
30.11.2015	56.4	28.6	8.5	16.8	<4.0	0.18	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
03.12.2015	63.6	32.7	8.7	17.2	<4.0	0.21	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
07.12.2015	60.6	31.8	9.2	17.6	<4.0	0.22	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
10.12.2015	55.8	28.4	7.6	14.8	<4.0	0.17	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
14.12.2015	51.4	26.7	6.8	12.6	<4.0	0.15	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
17.12.2015	43.8	20.5	5.9	11.1	<4.0	0.14	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
21.12.2015	41.7	19.4	5.6	10.2	<4.0	0.15	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
24.12.2015	46.8	22.2	5.8	10.8	<4.0	0.14	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
28.12.2015	49.5	23.6	6.7	12.6	<4.0	0.15	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
31.12.2015	52.8	25.7	7.2	14.4	<4.0	0.17	<20.0	< 0.001	< 0.002	< 0.01	< 0.061	< 0.001	< 0.01
04.01.2016	61.5	30.8	6.8	15.6	<4.0	0.21	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
07.01.2016	56.7	28.6	6.2	15.2	<4.0	0.18	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
11.01.2016	64.2	33.8	6.7	16.1	<4.0	0.23	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
14.01.2016	58.9	30.4	6.4	15.4	<4.0	0.19	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
18.01.2016	63.4	31.5	6.2	14.8	<4.0	0.24	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
21.01.2016	55.8	27.6	6.6	15.6	<4.0	0.17	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
25.01.2016	58.2	30.8	6.2	14.8	<4.0	0.18	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
28.01.2016	63.4	33.1	5.9	14.6	<4.0	0.2	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	05	
Quarterly Average	57.82	28.88	7.44	15.07	<4.0	0.18	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	< 0.01
Testing method	Gravimet ric	Gravimetri c	Improved West and Gaeke method	Modified Jacob & Hochheis er (Na- Arsenite)	Chemical Method	NDIR Spectrose opy	Indo phenol blue method	Absorption & Desorption followed by GC analysis	Solvent extraction followed by Gas Chromatog raphy analysis	AAS method after sampling	AAS method after sampling	AAS method after sampli ng	Ion Selectiv e method after samplir g

BDL Values: SO₂< 4 μg/m³, NO_X< 9 μg/m³, O₃<4 μg/m³, Ni<0.01 ng/m³, As < 0.001 ng/m³, C₆H₆<0.001 μg/m³, BaP<0.002 ng/m³, Pb<0.001 μg/m³, F<0.01 μg/m³ CO-<0.1 mg/m³

(An Enviro Engineering Consulting Cell)

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

Ref: NCSDL 16 18-074

Date: 05.09.2016

AMBIENT AIR QUALITY MONITORING REPORT

1. Name of Industry : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Sampling Location : Monitoring Station No.- AAQMS-3 (Tileimal)

Monitoring Instruments : RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

4. Sample collected by : VCSPL representative in presence of Aditya Aluminium representative

						P	ARAMETI	ERS					
Date	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO _x (μg/m ³)	O ₃ (μg/m ³)	CO (mg/m³)	NH ₃ (μg/m ³)	C ₆ H ₆ (μg/m ³)	BaP (ng/m³)	Ni (ng/m³)	Pb (μg/m³)	As (ng/m³)	F (μg/m³
02.11.2015	50.2	24.8	5.2	11.8	<4.0	0.13	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
05.11.2015	52,4	25.8	5.5	12.2	<4.0	0.14	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
09.11.2015	55.6	27.2	5.4	12.4	<4.0	0.14	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
12.11.2015	53.7	26.8	5.5	12.8	<4.0	0.15	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
16.11.2015	51.8	25.5	5.1	12.5	<4.0	0.14	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
19.11.2015	49.6	24.6	4.7	11.8	<4.0	0.13	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
23.11.2015	54.2	26.2	4.8	12.1	<4.0	0.14	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
26.11.2015	55.1	27.4	5.2	12.5	<4.0	0.15	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
30.11.2015	50.8	31.5	5.4	12.9	<4.0	0.16	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
03.12.2015	53.8	26.2	5.5	13.2	<4.0	0.16	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
07.12.2015	57.2	27.2	6.1	13.8	<4.0	0.17	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
10.12.2015	52.9	25.6	5.4	13.5	<4.0	0.15	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
14.12.2015	54.8	26.7	5.8	13.8	<4.0	0.17	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
17.12.2015	55.6	26.4	5.6	13.4	<4.0	0.16	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
21.12.2015	42.8	20.5	4.3	11.8	<4.0	0.15	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
24.12.2015	50.6	24.2	4.8	11.5	<4.0	0.14	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
28.12.2015	52.8	25.5	5.4	12.6	<4.0	0.15	<20.0	< 0.001	<0.002	< 0.01	< 0.001	< 0.001	< 0.01
31.12.2015	55.7	27.4	5.5	12.8	<4.0	0.17	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
04.01,2016	59.2	28.4	5.4	12.8	<4.0	0.16	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
07.01.2016	54.8	26.2	5.2	12.5	<4.0	0.15	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
11.01.2016	58.2	28.1	5.8	13.5	<4.0	0.18	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
14.01.2016	60.4	29.4	5.6	13.2	<4.0	0.19	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
18.01.2016	57.3	28.6	5.2	12.6	<4.0	0.17	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
21.01.2016	52.4	25.8	5.1	12.5	<4.0	0,16	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
25.01.2016	56.4	27.5	5.5	12.8	<4.0	0.19	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
28.01.2016	55.8	27.4	5.1	12.4	<4.0	0.16	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	
Quarterly Average	54.0	26.57	5.31	12.68	<4.0	0.16	<20.0	< 0.001	<0.002	< 0.01	< 0.001	< 0.001	< 0.01
Testing method	Gravimet ric	Gravimetri e	Improved West and Gacke method	Modified Jacob & Hochheis er (Na- Arsenite)	Chemical Method	NDIR Spectrosc opy	Indo phenol blue method	Absorption & Desorption followed by GC analysis	Solvent extraction followed by Gas Chromatog raphy analysis	AAS method after sampling	AAS method after sampling	AAS method after sampli ng	Ion Selective e method after sampling

BDL Values: SO₂< 4 μg/m³, NO_X< 9 μg/m³, O₃<4 μg/m³, Ni<0.01 ng/m³, As < 0.001 ng/m³, C₆H₆<0.001 μg/m³, BaP<0.002 ng/m³, Pb<0.001 μg/m³, F<0.01 μg/m³, CO-<0.1 mg/m³

(An Enviro Engineering Consulting Cell)

Ref. VCSPL/16/R-075

Date: 05. 02.2016

AMBIENT AIR QUALITY MONITORING REPORT

1. Name of Industry : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Sampling Location : Monitoring Station No.- AAQMS-4 (Bomaloi)

3. Monitoring Instruments : RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

Sample collected by : VCSPL representative in presence of Aditya Aluminium representative

						P	ARAMET	ERS					
Date	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO _x (μg/m ³)	O ₃ (μg/m ³)	CO (mg/m³)	NH ₃ (μg/m ³)	C ₆ H ₆ (μg/m ³)	BaP (ng/m³)	Ni (ng/m³)	Pb (μg/m³)	As (ng/m³)	F (μg/m³
02.11.2015	44.2	21.9	4.5	10.3	<4.0	0.14	<20.0	< 0.001	<0.002	< 0.01	< 0.001	< 0.001	<0.01
05.11.2015	41.6	20.5	<4.0	10.1	<4.0	0.13	<20.0	< 0.001	<0.002	< 0.01	< 0.001	< 0.001	< 0.01
09.11.2015	47.3	23.6	4.4	10.5	<4.0	0.14	<20.0	< 0.001	< 0.002	< 0.01	<0.001	< 0.001	<0.01
12.11.2015	48.6	23.8	4.8	10.6	<4.0	0.15	<20.0	< 0.001	<0.002	<0.01	<0.001	< 0.001	< 0.01
16.11.2015	50.4	24.9	5.2	11.4	<4.0	0.17	<20.0	< 0.001	<0.002	<0.01	<0.001	<0.001	< 0.01
19.11.2015	52.5	25.8	5.5	11.1	<4.0	0.18	<20.0	< 0.001	<0.002	<0.01	< 0.001	<0.001	< 0.01
23.11,2015	49.6	24.2	5.1	11.5	<4.0	0.17	<20.0	< 0.001	<0.002	<0.01	< 0.001	<0.001	< 0.01
26.11.2015	47.5	23.4	4.8	10.8	<4.0	0.15	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	< 0.01
30.11.2015	51.6	25.9	5.3	11.4	<4.0	0.17	<20.0	<0.001	<0.002	<0.01	< 0.001	<0.001	< 0.01
03.12.2015	53.4	26.4	5.6	11.8	<4.0	0.18	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
07.12.2015	54.5	26.8	5.8	12.4	<4.0	0.19	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
10.12.2015	50.8	25.1	5.2	11.6	<4.0	0.18	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
14.12.2015	55.2	27.2	5.7	12.5	<4.0	0.20	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
17.12.2015	49.5	23.6	4.8	11.1	<4.0	0.19	<20.0	< 0.001	<0.002	<0.01	<0.001	<0.001	<0.01
21.12.2015	39.4	18.2	4.2	10.2	<4.0	0.16	<20.0	<0.001	<0.002	<0.01	<0.001		
24.12.2015	45.2	22.5	4.7	10.5	<4.0	0.14	<20.0	<0.001	<0.002	<0.01		<0.001	< 0.01
28.12.2015	48.9	24.3	5.2	11.8	<4.0	0.14	<20.0	<0.001	<0.002	<0.01	<0.001	< 0.001	< 0.01
31.12.2015	51.6	25.8	5.6	12.1	<4.0	0.10	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	< 0.01
04.01.2016	51.4	26.2	5.4	12.8	<4.0	0.19	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
07.01.2016	48.8	23.8	5.1	12.4	<4.0	0.19	<20.0	<0.001	<0.002	<0.01	<0.001		<0.01
11.01.2016	47.2	23.3	5.3	12.6	<4.0	0.17	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
14.01.2016	49.6	24.1	5.4	12.8	<4.0	0.20	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
18.01.2016	52.4	25.8	5.6	12.2	<4.0	0.16	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
21.01.2016	50.8	25.2	5.1	12.4	<4.0	0.18	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
25.01.2016	53.7	26.3	4.7	11.3	<4.0	0.16	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
28.01.2016	54.6	27.4	5.4	11.8	<4.0	0.17	<20.0	<0.001	<0.002	<0.01	<0.001	< 0.001	
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	<0.01
Quarterly Average	49.63	24.46	<5.14	11.54	<4.0	0.17	<20.0	<0.001	<0.002	<0.01	<0.001	< 0.001	<0.01
Testing method	Gravimet ric	Gravimetri c	Improved West and Gacke method	Modified Jacob & Hochheis er (Na- Arsenite)	Chemical Method	NDIR Spectrose opy	Indo phenol blue method	Absorption & Desorption followed by GC analysis	Solvent extraction followed by Gas Chromatog raphy analysis	AAS method after sampling	AAS method after sampling	AAS method after sampli ng	Ion Selectiv e method after sampling

 $BDL \ \textit{Values}: \ SO_2 < 4 \ \mu g/m^3, \ NO_X < 9 \ \mu g/m^3, \ O_3 < 4 \ \mu g/m^3, \ Ni < 0.01 \ ng/m^3, \ As < 0.001 \ ng/m^3, \ C_6H_6 < 0.001 \ \mu g/m^3, \ BaP < 0.002 \ ng/m^3, \ Pb < 0.001 \ \mu g/m^3, \ F < 0.01 \ \mu g/m^3, \ CO_3 < 0.01 \ ng/m^3, \ Pb < 0.002 \ ng/m^3,$

(An Enviro Engineering Consulting Cell)

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

Ref : VCSPL/16/R-076

Date: 05.02-2016

AMBIENT AIR QUALITY MONITORING REPORT

1. Name of Industry : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Sampling Location : Monitoring Station No.- AAQMS-5 (Kapulas)

Monitoring Instruments : RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

4. Sample collected by : VCSPL representative in presence of Aditya Aluminium representative

						1	PARAMET	ERS					
Date	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO _x (μg/m ³)	Ο ₃ (μg/m ³)	CO (mg/m³)	NH ₃ (μg/m ³)	C ₆ H ₆ (μg/m ³)	BaP (ng/m³)	Ni (ng/m³)	Pb (μg/m³)	As (ng/m³)	F
02.11.2015	46.2	23.7	4.6	9.8	<4.0	0.13	<20.0	< 0.001	<0.002	<0.01	<0.001	<0.001	(μg/m <0.01
05.11.2015	44.8	22.6	4.8	10.4	<4.0	0.14	<20.0	< 0.001	<0.002	<0.01	<0.001	< 0.001	< 0.01
09.11.2015	45.5	23.3	5.2	10.6	<4.0	0.15	<20.0	< 0.001	<0.002	<0.01	<0.001	< 0.001	
12.11.2015	49.1	25.1	5.4	10.8	<4.0	0.14	<20.0	< 0.001	<0.002	<0.01	<0.001	< 0.001	<0.01
16.11.2015	46.3	22.8	4.9	10.2	<4.0	0.13	<20.0	< 0.001	<0.002	<0.01	<0.001	<0.001	< 0.01
19.11.2015	48.5	24.4	5.5	11.2	<4.0	0.15	<20.0	< 0.001	<0.002	<0.01	< 0.001	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<0.01
23.11.2015	49.4	24.5	5.6	11.8	<4.0	0.16	<20.0	< 0.001	<0.002	<0.01	< 0.001	< 0.001	<0.01
26.11.2015	48.8	23.8	5.2	11.5	<4.0	0.15	<20.0	< 0.001	<0.002	<0.01		< 0.001	< 0.01
30.11.2015	49.5	24.2	5.7	12.4	<4.0	0.17	<20.0	< 0.001	<0.002		<0.001	< 0.001	<0.01
03.12.2015	50.6	26.4	5.8	12.6	<4.0	0.18	<20.0	< 0.001	<0.002	<0.01	<0.001	<0.001	<0.01
07.12.2015	54.3	27.3	5.6	13.2	<4.0	0.19	<20.0	< 0.001	<0.002	<0.01	< 0.001	< 0.001	< 0.01
10.12.2015	50.2	26.1	5.5	13.4	<4.0	0.21	<20.0	< 0.001	<0.002	<0.01	<0.001	< 0.001	< 0.01
14.12.2015	53.4	26.6	5.9	13.6	<4.0	0.22	<20.0	< 0.001	<0.002	< 0.01	<0.001	< 0.001	< 0.01
17.12.2015	51.6	25.6	5.2	12.8	<4.0	0.21	<20.0	<0.001	<0.002	<0.01	< 0.001	< 0.001	< 0.01
21.12.2015	42.8	20.9	4.8	11.1	<4.0	0.2	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	< 0.01
24.12.2015	46.2	22.8	5.2	11.6	<4.0	0.16	<20.0	<0.001	29701100	<0.01	<0.001	< 0.001	< 0.01
28.12.2015	50.6	24.9	5.5	11.9	<4.0	0.18	<20.0	<0.001	<0.002	<0.01	< 0.001	< 0.001	< 0.01
31.12.2015	53.7	26.6	5.7	12.5	<4.0	0.18	<20.0	<0.001	<0.002	<0.01	< 0.001	< 0.001	< 0.01
04.01.2016	49.8	24.8	5.3	13.1	<4.0	0.21	<20.0	<0.001	<0.002	< 0.01	< 0.001	< 0.001	< 0.01
07.01.2016	53.6	27.5	5.8	14.5	<4.0	0.22	<20.0	<0.001	<0.002	<0.01	< 0.001	< 0.001	< 0.01
11.01.2016	50.8	26.1	5.2	13.9	<4.0	0.21	<20.0	<0.001	<0.002	<0.01	<0.001	< 0.001	< 0.01
14.01.2016	47.4	23.6	4.9	12.2	<4.0	0.2	<20.0	<0.001		<0.01	< 0.001	< 0.001	< 0.01
18.01.2016	49.2	25.2	5.1	12.5	<4.0	0.19	<20.0	<0.001	<0.002	< 0.01	< 0.001	< 0.001	< 0.01
21.01.2016	52.4	26.3	5.3	12.3	<4.0	0.18	<20.0	<0.001	<0.002	<0.01	<0.001	< 0.001	< 0.01
25.01.2016	55.6	27.8	5.8	13.6	<4.0	0.21	<20.0	<0.001	<0.002	< 0.01	< 0.001	< 0.001	< 0.01
28.01.2016	54.7	27.3	5.9	13.8	<4.0	0.23	<20.0	<0.001	<0.002	<0.01	< 0.001	< 0.001	< 0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	<0.01	<0.001	<0.001	<0.01
Quarterly Average	49.81	25.01	5.36	12.20	<4.0	0.18	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
Testing method	Gravimet ric	Gravimetri c	Improved West and Gacke method	Modified Jacob & Hochheis er (Na- Arsenite)	Chemical Method	NDIR Spectrosc opy	Indo phenol blue method	Absorption & Desorption followed by GC analysis	Solvent extraction followed by Gas Chromatog raphy analysis	AAS method after sampling	AAS method after sampling	AAS method after sampli ng	Ion Selectiv e method after samplin

BDL Values: SO₂< 4 μg/m³, NO_X< 9 μg/m³, O₃<4 μg/m³, Ni<0.01 ng/m³, As < 0.001 ng/m³, C₆H₆<0.001 μg/m³, BaP<0.002 ng/m³, Pb<0.001 μg/m³, F<0.01 μg/m³, CO-<0.1 mg/m²

(An Enviro Engineering Consulting Cell)

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

Ref: VCSPL [16] R-077

Date: 05.02.296

AMBIENT AIR QUALITY MONITORING REPORT

1. Name of Industry : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Sampling Location : Monitoring Station No.- AAQMS-6 (Phulchanghal)

3. Monitoring Instruments : RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

Sample collected by : VCSPL representative in presence of Aditya Aluminium representative

						P	PARAMETE	ERS					
Date	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m³)	NO _x (μg/m³)	Ο ₃ (μg/m³)	CO (mg/m³)	NH ₃ (μg/m ³)	C ₆ H ₆ (μg/m ³)	BaP (ng/m³)	Ni (ng/m³)	Pb (μg/m³)	As (ng/m³)	F (μg/m³
02.11.2015	48.8	24.6	4.6	11.4	<4.0	0.12	<20.0	< 0.001	<0.002	<0.01	<0.001	< 0.001	<0.01
05.11.2015	46.5	23.3	4.5	11.5	<4.0	0.13	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
09.11.2015	51.4	25.4	5.5	11.8	<4.0	0.14	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
12.11.2015	53.5	26,3	5.2	11.3	<4.0	0.13	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
16.11.2015	50.8	25.1	5.3	11.8	<4.0	0.15	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
19.11.2015	54.6	26.5	5.8	12.5	<4.0	0.16	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
23.11.2015	52.8	25.8	5.5	12.4	<4.0	0.16	<20.0	< 0.001	< 0.002	< 0.01	<0.001	< 0.001	< 0.01
26.11.2015	56.8	27.8	5.9	12.6	<4.0	0.17	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
30.11.2015	53.5	26.5	6.1	13.2	<4.0	0.18	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
03.12.2015	55.4	27.4	6.3	13.3	<4.0	0.18	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	<0.001	< 0.01
07.12.2015	53.8	21.2	5,6	12.8	<4.0	0.17	<20.0	< 0.001	<0.002	< 0.01	< 0.001	<0.001	< 0.01
10.12.2015	56.6	27.5	5.8	13.2	<4.0	0.19	<20.0	< 0.001	<0.002	< 0.01	<0.001	< 0.001	< 0.01
14.12.2015	51.2	26.4	5.2	12.1	<4.0	0.16	<20.0	< 0.001	<0.002	< 0.01	< 0.001	<0.001	< 0.01
17.12.2015	49.6	24.5	4.9	10.8	<4.0	0.15	<20.0	< 0.001	<0.002	< 0.01	< 0.001	< 0.001	< 0.01
21.12.2015	42.8	20.8	4.5	10.5	<4.0	0.14	<20.0	< 0.001	<0.002	< 0.01	< 0.001	<0.001	< 0.01
24.12.2015	47.5	23.2	4.6	10.6	<4.0	0.16	<20.0	<0.001	<0.002	<0.01	< 0.001	<0.001	<0.01
28.12.2015	52.1	26.2	5.5	11.6	<4.0	0.17	<20.0	<0.001	<0.002	<0.01	< 0.001	<0.001	< 0.01
31.12.2015	53.7	26.8	5.8	11.9	<4.0	0.18	<20.0	<0.001	<0.002	<0.01	<0.001	< 0.001	< 0.01
04.01.2016	52.2	25.8	5.3	11.2	<4.0	0.16	<20.0	<0.001	<0.002	< 0.01	< 0.001	<0.001	<0.01
07.01.2016	50.7	24.9	5.1	10.8	<4.0	0.15	<20.0	<0.001	<0.002	< 0.01	< 0.001	<0.001	< 0.01
11.01.2016	49.3	24.1	4.9	10.6	<4.0	0.14	<20.0	< 0.001	<0.002	<0.01	< 0.001	< 0.001	< 0.01
14.01.2016	46.8	22.6	4.8	11.5	<4.0	0.15	<20.0	<0.001	<0.002	<0.01	< 0.001	< 0.001	< 0.01
18.01.2016	51.2	25.3	5.3	11.8	<4.0	0.16	<20.0	<0.001	<0.002	<0.01	< 0.001	< 0.001	< 0.01
21.01.2016	53.8	26.7	5.6	12.4	<4.0	0.18	<20.0	< 0.001	<0.002	< 0.01	< 0.001	< 0.001	< 0.01
25.01.2016	55.6	28.4	5.8	12.8	<4.0	0.19	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
28.01.2016	52.7	25.9	5.2	12.2	<4.0	0.18	<20.0	<0.001	<0.002	<0.01	<0.001	< 0.001	<0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	-
Quarterly Average	51.68	25.35	5.33	11.87	<4.0	0.16	<20.0	< 0.001	<0.002	<0.01	<0.001	<0.001	< 0.01
Testing method	Gravimet ric	Gravimetri c	Improve d West and Gaeke method	Modified Jacob & Hochheise r (Na- Arsenite)	Chemical Method	NDIR Spectrose opy	Indo phenol blue method	Absorption & Desorption followed by GC analysis	Solvent extraction followed by Gas Chromatog raphy analysis	AAS method after sampling	AAS method after sampling	AAS method after sampli ng	Ion Selecti e metho after sampli g

BDL Values: SO₂< 4 μg/m³, NO_X< 9 μg/m³, O₃<4 μg/m³, Ni<0.01 ng/m³, As < 0.001 ng/m³, C₆H₆<0.001 μg/m³, BaP<0.002 ng/m³, Pb<0.001 μg/m³, F<0.01 μg/m³, CO-<0.1 mg/m³

For Visiontek Consultancy Services Pvt. Ltd.

. O 7

(An Enviro Engineering Consulting Cell)

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

Ref: VCSPL HIR -078

Date: 02.02.2016

AMBIENT AIR QUALITY MONITORING REPORT

1. Name of Industry : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Sampling Location : Monitoring Station No.- AAQMS-7 (Khadiapali)

3. Monitoring Instruments : RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

Sample collected by : VCSPL representative in presence of Aditya Aluminium representative

					Y	P	ARAMETI	ERS					
Date	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO _x (μg/m ³)	O ₃ (μg/m ³)	CO (mg/m³)	NH ₃ (μg/m ³)	C ₆ H ₆ (μg/m ³)	BaP (ng/m³)	Ni (ng/m³)	Pb (μg/m³)	As (ng/m³)	F (μg/m³
02.11.2015	55.7	27.2	7.8	14.6	<4.0	0.17	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
05.11.2015	56.2	27.8	7.6	15.2	<4.0	0.19	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
09.11.2015	61.4	31.3	8.2	15.8	<4.0	0.20	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
12.11.2015	63.8	33.1	8.4	15.4	<4.0	0.19	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
16.11.2015	59.2	30.4	8.6	16.1	<4.0	0.21	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
19.11.2015	52.8	26.6	7.5	14.8	<4.0	0.18	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
23.11.2015	60.2	31.6	7.8	15.3	<4.0	0.19	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
26.11.2015	63.4	32.9	8.5	15.9	<4.0	0.20	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
30.11.2015	56.9	28.7	7.9	14.8	<4.0	0.18	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
03.12.2015	55.6	28.2	8.1	15.2	<4.0	0.20	<20.0	< 0.001	<0.002	< 0.01	< 0.001	< 0.001	< 0.01
07.12.2015	59.2	30.5	8.3	15.7	<4.0	0.21	<20.0	< 0.001	<0.002	< 0.01	< 0.001	< 0.001	< 0.01
10.12.2015	62.4	32.5	8.7	16.6	<4.0	0.23	<20.0	< 0.001	<0.002	<0.01	< 0.001	< 0.001	< 0.01
14.12.2015	58.5	29.8	8.4	16.5	<4.0	0.22	<20.0	< 0.001	<0.002	<0.01	< 0.001	< 0.001	< 0.01
17.12.2015	48.2	23.4	6.4	11.1	<4.0	0.15	<20.0	< 0.001	<0.002	< 0.01	< 0.001	< 0.001	< 0.01
21.12.2015	43.5	21.6	5.9	10.2	<4.0	0.14	<20.0	<0.001	<0.002	< 0.01	< 0.001	< 0.001	< 0.01
24.12.2015	47.5	23.2	6.2	11.6	<4.0	0.15	<20.0	< 0.001	<0.002	<0.01	<0.001	< 0.001	< 0.01
28.12.2015	53.2	26.9	6.8	12.5	<4.0	0.16	<20.0	< 0.001	<0.002	<0.01	< 0.001	< 0.001	< 0.01
31.12.2015	56.7	28.8	7.6	13.8	<4.0	0.18	<20.0	< 0.001	<0.002	<0.01	< 0.001	< 0.001	< 0.01
04.01.2016	53.8	27.9	6.4	13.9	<4.0	0.2	<20.0	< 0.001	<0.002	<0.01	< 0.001	< 0.001	<0.01
07.01.2016	50.4	26.1	6.1	13.5	<4.0	0.19	<20.0	< 0.001	<0.002	<0.01	< 0.001	< 0.001	< 0.01
11.01.2016	49.5	25.2	5.6	13.2	<4.0	0.18	<20.0	< 0.001	<0.002	< 0.01	< 0.001	< 0.001	< 0.01
14.01.2016	52.7	26.3	5.9	13.7	<4.0	0.2	<20.0	< 0.001	<0.002	< 0.01	< 0.001	< 0.001	< 0.01
18.01.2016	47.6	23.4	5.7	14.1	<4.0	0.21	<20.0	< 0.001	<0.002	<0.01	< 0.001	< 0.001	< 0.01
21.01.2016	54.2	26.8	6.2	14.5	<4.0	0.22	<20.0	< 0.001	<0.002	< 0.01	< 0.001	< 0.001	< 0.01
25.01.2016	56.5	28.1	6.4	14.2	<4.0	0.2	<20.0	< 0.001	<0.002	<0.01	< 0.001	< 0.001	< 0.01
28.01.2016	51.8	25.3	5.8	13.5	<4.0	0.19	<20.0	< 0.001	<0.002	< 0.01	< 0.001	< 0.001	< 0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	
Quarterly Average	55.03	27.83	7.18	14.30	<4.0	0.19	<20.0	<0.001	<0.002	<0.01	< 0.001	<0.001	<0.01
Testing method	Gravimet ric	Gravimetri c	Improved West and Gaeke method	Modified Jacob & Hochheis er (Na- Arsenite)	Chemical Method	NDIR Spectrosc opy	Indo phenol blue method	Absorption & Desorption followed by GC analysis	Solvent extraction followed by Gas Chromatog raphy analysis	AAS method after sampling	AAS method after sampling	AAS method after sampli ng	Ion Selecti e method after sampli g

BDL Values: SO₂< 4 μg/m³, NO_X< 9 μg/m³, O₃<4 μg/m³, Ni<0.01 ng/m³, As<0.001 ng/m³, C₆H₆<0.001 μg/m³, BaP<0.002 ng/m³, Pb<0.001 μg/m³, F<0.01 μg/m³, CO-<0.1 mg/m³

(An Enviro Engineering Consulting Cell)

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

Ref. VCS PL/16/R-079

Date: 05.02.2010

AMBIENT AIR QUALITY MONITORING REPORT

1. Name of Industry : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Sampling Location : Monitoring Station No.- AAQMS-8 (Thelkolai)

3. Monitoring Instruments : RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

Sample collected by : VCSPL representative in presence of Aditya Aluminium representative

Date	PARAMETERS												
	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO _x (μg/m ³)	O ₃ (μg/m ³)	CO (mg/m³)	NH ₃ (μg/m ³)	C ₆ H ₆ (μg/m ³)	BaP (ng/m³)	Ni (ng/m³)	Pb (μg/m³)	As (ng/m³)	F (μg/m³
02.11.2015	59.5	30.2	10.4	15.5	<4.0	0.18	21.2	< 0.001	<0.002	<0.01	<0.001	<0.001	<0.01
05.11.2015	64.1	33.4	9.9	15.1	<4.0	0.17	22.6	< 0.001	<0.002	< 0.01	< 0.001	< 0.001	< 0.01
09.11.2015	58.2	28.8	9.2	15.8	<4.0	0.18	20.8	< 0.001	<0.002	< 0.01	< 0.001	< 0.001	< 0.01
12.11.2015	60.4	30.2	9.6	16.1	<4.0	0.2	22.5	< 0.001	<0.002	<0.01	<0.001	< 0.001	<0.01
16.11.2015	56.4	28.2	9.8	15.7	5.6	0.19	24.2	< 0.001	<0.002	<0.01	<0.001	< 0.001	< 0.01
19.11.2015	66.1	34.8	10.2	17.6	6.1	0.22	25.5	<0.001	<0.002	< 0.01	<0.001	<0.001	< 0.01
23.11.2015	70.2	37.8	10.4	18.1	6.4	0.23	23.8	< 0.001	<0.002	<0.01	<0.001	0.8	< 0.01
26.11.2015	63.4	33.8	9.9	16.4	5.8	0.21	22.5	< 0.001	<0.002	<0.01	<0.001	0.7	< 0.01
30.11.2015	67.5	35.6	10.3	16.8	5.2	0.22	23.7	<0.001	<0.002	< 0.01	< 0.001	0.9	< 0.01
03.12.2015	64.5	33.4	10.6	17.5	5.7	0.24	25.1	< 0.001	<0.002	<0.01	<0.001	1.2	<0.01
07.12.2015	70.4	38.3	10.1	16.6	5.5	0.23	23.5	<0.001	<0.002	< 0.01	<0.001	1.3	<0.01
10.12.2015	65.6	33.3	9.6	17.3	4.9	0.21	24.5	<0.001	<0.002	<0.01	<0.001	1.5	<0.01
14.12.2015	60.7	31.9	9.3	16.5	4.8	0.20	26.1	< 0.001	<0.002	<0.01	<0.001	1.3	<0.01
17.12.2015	50.4	24.6	7.5	13.4	4.4	0.18	22.2	< 0.001	<0.002	<0.01	<0.001	1.4	<0.01
21.12.2015	44.6	21.5	6.9	11.8	<4.0	0.15	<20.0	< 0.001	<0.002	<0.01	<0.001		< 0.01
24.12.2015	48.8	23.4	7.1	12.4	<4.0	0.16	<20.0	<0.001	<0.002	<0.01	<0.001	1.8	
28.12.2015	55.6	27.2	7.8	13.7	<4.0	0.17	<20.0	<0.001	<0.002	<0.01	<0.001	1.7	<0.01
31.12.2015	60.2	31.6	8.6	14.9	<4.0	0.18	<20.0	<0.001	<0.002	<0.01	<0.001	1.6	
04.01.2016	64.2	32.9	7.5	14.6	<4.0	0.22	<20.0	<0.001	<0.002	<0.01	<0.001	1.8	<0.01
07.01.2016	56.7	28.4	7.2	14.4	<4.0	0.18	<20.0	<0.001	<0.002	<0.01	<0.001	1.8	<0.01
11.01.2016	58.1	29.6	7.6	15.2	<4.0	0.21	<20.0	< 0.001	<0.002	<0.01	<0.001	2.1	< 0.01
14.01.2016	54.5	27.8	7.1	15.4	<4.0	0.19	<20.0	< 0.001	<0.002	<0.01	<0.001	2.2	< 0.01
18.01.2016	57.3	30.1	7.3	15.6	<4.0	0.2	<20.0	<0.001	<0.002	<0.01	<0.001	< 0.001	< 0.01
21.01.2016	61.2	31.2	7.7	15.8	<4.0	0.21	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
25.01.2016	63.6	32.4	7.8	16.2	4.8	0.23	<20.0	< 0.001	<0.002	<0.01	<0.001	<0.001	< 0.01
28.01.2016	65.4	33.6	8.2	16.5	5.2	0.25	<20.0	< 0.001	<0.002	<0.01	<0.001	1.5	< 0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	<0.01
Quarterly Average	60.29	30.92	8.75	15.57	<4.63	0.20	<21.85	<0.001	< 0.002	<0.01	<0.001	<1.02	<0.01
Testing method	Gravimet ric	Gravimetri c	Improved West and Gaeke method	Modified Jacob & Hochheis er (Na- Arsenite)	Chemical Method	NDIR Spectrosc opy	Indo phenol blue method	Absorption & Desorption followed by GC analysis	Solvent extraction followed by Gas Chromatog raphy analysis	AAS method after sampling	AAS method after sampling	AAS method after sampli ng	Ion Selectiv e method after samplin g

BDL Values: SO₂< 4 µg/m³, NO_X< 9 µg/m³, O₃<4 µg/m³, Ni<0.01 ng/m³, As<0.001 ng/m³, C₆H₆<0.001 µg/m³, BaP<0.002 ng/m³, Pb<0.001 µg/m³, F<0.01 µg/m³, CO<0.1 mg/m

(An Enviro Engineering Consulting Cell)

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

Ref. MCSPLILL R-080.

Date: 05-02-2016

NOISE MONITORING REPORT

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Monitored By

: VCSPL representative in presence of Aditya Aluminium representative

Daytime Noise monitoring results (Noise Level in dB (A)) Dec-2015

TIME (6.00AM to 10.00PM)	N1:Gumkarma (04.12.2015)	N2:Ghichamura (04.12.2015)	N3:Bomaloi (08.12.2015)	N4:Tileimal (08.12.2015)	N5:Thelkoli (11.12.2015)	N6:Lapanga (11.12.2015)	N7:Lapanga Railway Station (15.12.2015)	N8:Jangala (15.12.2015)			
06.00am	43.8	31.8	36.8	34.2	57.9	45.2	52.5	30.5			
07.00am	46.7	35.9	40.8	36.8	63.2	48.4	56.2	33.8			
08.00am	52.4	40.6	46.5	45.6	68.4	50.8	63.4	41.6			
09.00am	56.8	46.2	57.5	50.8	71.4	56.2	67.1	47.5			
10.00am	61.4	45.1	58.0	48.4	64.9	55.5	60.4	48.1			
11.00am	52.1	42.8	51.3	40.5	60.2	52.1	57.2	43.4			
12.00 noon	40.8	35.2	46.9	37.1	58.6	45.3	52.1	35.2			
01.00pm	41.2	33.5	42.1	35.7	54.1	41.4	45.6	33.6			
02.00pm	45.6	34.1	44.8	36.8	53.1	46.5	48.2	30.4			
03.00pm	53.7	35.6	46.2	40.7	55.4	53.2	56.4	31.2			
04.00pm	64.6	43.4	52.4	51.2	63.5	56.7	62.8	36.8			
05.00pm	70.5	50.6	56.7	56.4	71.4	62.5	68.4	42.6			
06.00pm	64.6	54.5	61.2	59.7	73.1	65.8	69.9	51.6			
07.00pm	60.7	56.2	57.2	55.6	66.8	63.5	65.7	46.2			
08.00pm	55.9	48.1	52.5	46.1	65.5	54.2	62.4	37.0			
09.00pm	51.4	40.2	45.6	43.4	60.1	49.4	56.5	34.5			
Average	53.9	42.1	49.8	44.9	63.0	52.9	59.1	39.0			
Standard as per CPCB		75									

TIME (10.00PM to 6.00AM)	N1:Gumkarma (04.12.2015)	N2:Ghichamura (04.12.2015)	N3:Bomaloi (08.12.2015)	N4:Tileimal (08.12.2015)	N5:Thelkoli (11.12.2015)	N6:Lapanga (11.12.2015)	N7:Lapanga Railway Station (15.12.2015)	N8:Jangala (15.12.2015)
10.00pm	40.2	23.8	28.4	24.0	52.0	30.5	43.5	23.0
11.00pm	39.5	23.6	26.3	23.9	50.5	28.4	40.6	22.9
12.00 midnight	38.0	23.2	25.4	23.4	42.8	· 26.5	35.2	22.7
01.00am	36.0	22.8	25.1	23.2	42.9	25.0	34.5	22.4
02.00am	35.0	22.4	24.4	22.8	40.2	25.0	34.0	22.0
03.00am	34.0	22.0	24.0	22.7	40.0	24.0	34.0	21.4
04.00am	34.2	21.9	23.6	22.5	40.0	24.0	34.2	22.1
05.00am	34.5	21.7	23.1	22.4	41.2	26.0	35.5	22.0
Average	36.4	22.7	25.0	23.1	43.7	26.2	36.4	22.3
Standard as per CPCB				70				