

Letter No: AAP/E&S/EC/2019/45+

Date: 25/05/2019

To

The Director
Eastern Regional Office
Ministry of Environment & Forests
A/3, Chandrashekharpur
Bhubaneswar - 750 023 (Odisha)

Sub: Submission of Six Monthly Compliance from Oct' 18 to Mar' 19.

Ref: Environmental Clearance Letter No: J-11011/136/2009-IA.I (I), dated 29/11/2012, J-11011/136/2009-IA.II (I), dated 14/06/2013 & J-

11011/136/2009-IA.II (I), dated 14/08/2018

Dear Sir,

As a part of the compliance to the Environmental Clearance accorded by MoEF&CC to Aditya Aluminium for 0.72 MTPA Smelter and 1650 MW CPP at Lapanga in Sambalpur district, please find enclosed herewith the six monthly compliance reports of aluminium smelter and captive power plant for the period October'18 to March'19.

Kindly acknowledge receipt of the reports.

Thanking You

Yours faithfully For Aditya Aluminium

(K. N. Pandey) President & Unit Head

Copy for kind information to:

- 1. The Member Secretary, SPCB, Bhubaneswar
- 2. The Regional Director, Zonal office of CPCB, Kolkata
- 3. The Regional Officer, SPCB, Sambalpur

Hindalco Industries Limited

Aditya Aluminium: At/P.O.: Lapanga - 768 212, District: Sambalpur, Odisha, India
T: +91 663 2536 247 | Fax: +91 663 2536 499 | E: hindalco@adityabirla.com | W: www.hindalco.com
Registered Office: Ahura Centre, 1st Floor, B-Wing, Mahakali Caves Road, Andheri (East), Mumbai 400 093
Tel: +91 22 6691 7000 | Fax: + 91 222 6691 7001
Corporate ID No.: L27020MH1958PLC011238

STATUS OF IMPLEMENTATION OF CONDITIONS STIPULATED IN ENVIRONMENTAL CLEARANCE FOR 7,20,000 TPA ALUMINIUM SMELTER & 1650 MW CAPTIVE POWER PLANT FOR ADITYA ALUMINIUM BY M/S HINDALCO INDUSTRIES AT LAPANGA, SAMBALPUR, ORISSA.

REF: Environmental Clearance Letter No: J-11011/136/2009-IA.I(1), Dated 29th November 2012, EC amendment dated 14 June 2013 & 14 Aug 2018 from MOEF&CC, GOI.

Sr. No.	Specific Conditions	Compliance
i)	The streams passing through the project site shall not be disturbed w.r.t their quantity and quality of flow	i i
ii)	Alumina shall be obtained from those refineries, which have been accorded environmental clearance by the Ministry of Environment and Forests.	Alumina is being obtained from refineries which have been accorded environmental clearance. At Present, the Alumina is being obtained from Utkal Alumina International Limited (UAIL), Rayagada Distt. and it has been accorded environmental clearance from MoEFCC.
		We have kept an option of importing Alumina in case of any shortage in supply from the above source.
	The gaseous emissions (PM, SO ₂ , NOx, PAH, HC, VOCs and Fluoride) from various process units shall confirm to the standards prescribed by the concerned authorities from time to time. The SPCB may specify more stringent standards for the relevant parameters keeping in view the nature of the Industry and its size and location. At no time the emissions level should go beyond the prescribed standards. In the event of failure of any pollution control system adopted by the unit, the respective unit should not be restarted until the control measures are rectified to achieve the desired efficiency. The particulate emissions from the bake oven plant shall not exceed 50 mg/Nm ³ .	Online Monitoring equipments have been installed at the outlet of following stacks for monitoring of particulate matter and gaseous emissions. The online data has been connected to the Servers of OSPCB and CPCB. a) Smelter GTC 1 & 2-2 Nos. b) Smelter FTC 1 & 2-2 Nos. c) CPP Unit 1 to 6 -6 Nos. Particulate matter emission from the bake oven does not exceed the prescribed limit of 50 mg/Nm3. The summarized monitoring report w.r.t. particulate matter emission from Oct 18 to Mar 19 in Anoe baking Furnace stacks of stated below Stack PM Emission (mg/Nm3) (Min) (Max) (Avg) FTC 1 7.6 10.11 8.7 FTC 2 8.9 10.5 9.4
		The stack monitoting report of stacks attached to Fume treatment system is attached as Annexure-

iv)	Particulate fluoride emissions should not be		oring equipment at Gas Treatment
	more than 0.65 mg/Nm3 and fugitive	Centre (GTC)	and Fume Treatment Centre (FTC)
	particulate fluoride emissions from pot room	installed for	monitoring of Hydrogen Fluoride
	should not be more than 1.85 mg/Nm³.	(HF), Particula	ate Matter (PM). The particulate
			ion from the gas treatment system
		is within t	
		summarized re	eport is stated below:
		Stack	Particulte Fluoride Emission
		attached to	(mg/Nm3)
			(Min) (Max) (Avg)
		GTC # 1	0.14 0.24 0.19
		GTC # 2	0.13 0.24 0.18
		The average for	raibina markiandara film (1)
			Igitive particulate fluoride emission
		kg/ton of meta	ns during Oct 18 to Mar 18 is 0.09
		ns/ con or meto	n produced.
		The monitorin	g reports of stack emission from
			nt Centre stacks is attached as
		Annexure-2.	The second of th
v)	The poly aromatic hydrocarbons (PAH) from	The noty arom	vatic budracarbana /DALLY C
	the carbon plant (anode bake oven) should	I .	natic hydrocarbons (PAH) from the (anode bake oven) are being
17. T. L.	not exceed 2 mg/Nm³. The data on PAH		quarterly basis and found within
	should be monitored quarterly and report		Ref: Annexure 1).
	submitted regularly to the Ministry/Regional	The blandard,	ner. minicadie 1).
	Office at Bhubaneswar and SPCB.		
vi)	In plant, control measures like fume	Fume Extraction	on Centre (FTC) in Anode Baking
	extraction and dust extraction system for		reatment Plant (GTC) in potlines
	controlling fugitive emissions from all the		s in raw material handling, GAP,
	materials handling/transfer points shall be		, Roding areas, bath recycling,
	provided to control dust emissions.	carbon recycl	ing area, butts recycling area,
	Fugitive Fluoride emissions from the pot	cathode sealing	g shop etc in smelter area and coal
	room and in the forage around the smelter	handing, ash	handling plant in captive power
	complex and the data submitted regularly to	plant is inst	alled to control fugitive dust
	the Ministry Regional Office at Bhubaneswar	emissions.	
	and SPCB.		p Monitoring analyzer installed for
			de (HF) monitoring in potrooms,
	Further dry scrubbing system to control the	the online m	onitoring report is attached as
	emissions from the pot lines should be	Annexure-3 R	esides, forage fluoride analysis is
	provided.	heing carriado	ut on quarterly basis surrounding
		the Aluminium	smelter and the analysis report is
		attached as Anr	
		Dry scrubbing	system is being provided as gas
			re (GTC) in pot line area to control
2140714		fugitive emissio	· •
vii)	Electrostatic Precipitators (ESP) will be	Electrostatic P	recipitators (ESP) of adequate
			The state of the s

	provided to Captive Power Plant (CPP) to control particulate emissions below 50 mg/Nm3.	efficiency is insta to restrict par mg/Nm³.	•		!
	The company shall provide bag filters, dry scrubbing system and dust suppression system to control all the emissions including fluoride emissions from all melting and casting units. Tar, Dust and fluoride in the fumes shall be controlled in baking furnace by providing dry scrubber.	Two nos. of Gas and connected filters installed transfer points in (FTC) provided to treat the tar fum fluorides general	to each 1 in all the Smelter. Deach And Ses, dust, g	.80 pots. Be material Fume treatrode Baking gaseous and	esides, Bag handling & nent centre Furnaces to particulate
	The emissions shall conform to the standards prescribed by the Ministry CPCB/SPCB whichever is more stringent.	The standards p SPCB is being ad CPP Stack	hered.	by the Mini	
	windlevel is more stringent.	L Stack	(Min)	(Max)	(Avg)
		CPP 1	45.8	48.1	47.0
		CPP 2	45.6	48.5	47.1
		CPP 3	44.3	47.3	46.4
		CPP 4	41.26	46.3	44.0
		CPP 5	42.8	48.2	45.6
		CPP 6	SD	SD	SD
		The CPP Unit -6	<u></u>	1	<u></u>
		period.	was anac	.r snataowi	rading this
viii)	Provision for installation of FGD shall be provided for future use.	Provisional Spac will be utilized f Power plant.	•		
ix)	Three tri-flue and one bi-flue stack of 275 m height with flue gas velocity not less than 22 m/s shall be installed and provided with continuous online monitoring equipment's for SO ₂ , NO _x , and PM ₁₀ .	stacks will be installed during Phase-II.			
x)	Adequate dust extraction system such as cyclones/ bag filters and water spray system in dusty areas such as in coal handling and ash handling points, transfer areas and other vulnerable dusty areas shall be provided.	Dust extraction suppression (Distriction) handling plant Captive Power P	FDS) syst	tem install	ed in coal
xi)	Utilization of 100% fly ash generated shall be made from 4 th year of operation. Status of implementation shall be reported to the Regional Office of the Ministry from time to time.	supplying to M/ M/s ACC, Barga	s Ultrated or	h Cements, I/s OCL, Ra Also we an ctures, used ing for deventions I SPCB, Odis	Jharsuguda, jgangpur for e supplying d in own fly elopment of ant premises ha. The low-

4		Abandoned Quarries with Ash of SPCB, Odisha.
		The efforrts being made for achiving 100% ash utilization is stated below:
		 Increase supply to Cement Plants Exploring transportation of ash through rakes to cement plants. Increased Supply to the local brick manufacturing Units. We have constituted a Team for exploring more areas of Ash utilization like Road making, Abandoned mines/quarry filling, infrastructure projects etc. The Collector & DM, Sambalpur has been requested to provide us permission for filling of abandoned mines and voids available in the region.
		The Status of ash utilization from Oct 18 to Mar 19 is enclosed as Annexure-5.
xii)	Fly ash shall be collected in dry form and storage facility (silos) shall be provided. Unutilized ash shall be disposed-off in the ash pond in the form of slurry. Mercury and other heavy metals (Ag, Hg, Cr, Pbetc) will be monitored in the bottom ash and also in the effluent emanating from the existing ash pond. No ash shall be disposed-off in low	Fly ash & bottom ash are collected in dry form and 3x2500 MT Fly ash silo and 1x3000 MT bottom ash silo have been installed. We are exploring maximum utilization of Ash and unutilized ash is being dischatged to the Ash pond through High Concentration Slurry Dsipsoal (HCSD) system, which is the most environment friendly conveying system at present.
	laying area.	
		Monitoring of Mercury and other heavy metals (Ag, Hg, Cr, Pb etc) is being done for the fly ash and bottom ash. The analysis report is enclosed as Annexure-6.
		The ash filling in the low lying area inside the plant premises is being in line with the guideline for Reclamation Low Lying Areas and Abandoned Quarries with Ash after receipt of permission
		from SPCB, Odisha. Reclamation of low lying area and abandoned quarries with ash generated from
		thermal power plants is an acceptable method of utilization under the fly ash utilization of
		MOEFCC, GOI. (Ref: SPCB Resolution vide letter no. 11047/IND-IV-PCP-FARC-120, dated:
xiii)	Fluoride (as F) consumption shall be less than	21/08/2017.). The specific fluoride (as F) consumption for the
•	10 kg/ton of Aluminium produced as specified	i man in the feat of constitution in the

	by the CREP.	Aluminium produced.
xiv)	Anode butts generated from the pots shall be	Anode butts generated from the pots is being
	cleaned and recycled to the Anode Plant.	cleaned and recycled completely for making green anode in green anode plant.
	The spent pot lining generated from the	
	smelter shall be properly treated in spent pot	The spent pot lining generated from the smelter
	lining treatment plant to remove fluoride and	is having two parts, Carbon and Refractory.
	cyanide and disposed-off in secured landfill.	Carbon part is being supplied to M/s Green Energy Limited, Sambalpur for reprocessing and
	The location and design of the land fill site	utilization, in this way the carbon part is
	shall be approved by the SPCB as per the	completely recycled.
	Hazardous Waste (Management, Handling	
	and Trans-boundary Movement) Rules, 2008.	The SPL refractory part generated is being stored
	Leachate collection facilities shall be provided	inside the covered shed in line with the Rule – 8
	to the secured land fill facilities (SLF).	of HW (H,M & TM) Rules, 2016 for disposal to
	The dross shall be recycled in the cast house.	CHW-TSDF. M/s Ramky Enviro Pvt. Ltd is establishing the facility for detoxification and
	STP sludge shall be utilized as manure for	disposal as per the protocol given by CPCB in its CHW-TSDF at kanchichuhan, Dist-Jajpur site. M/s
	greenbelt development.	Ramky is likely to lift the refractory part of SPL
	All the used oil and batteries shall be sold to the authorized recyclers/ re-processors.	soon after fulfilling the terms & conditions specified in the Protocol.
		The location and design of the land fill site has
		been prepared as per the Hazardous Waste (Management, Handling and Trans-boundary Movement) Rules, 2008 and approved from SPCB.
		The dross recycling is being done in the inhouse
		dross processing unit and the residue generated is sent to CHW-TSDF for disposal.
		STP is commissioned and is in operation at
		township & Plant area separately, the sludge
		generated is being used for gardening/greenbelt
		development.
		The used oil and batteries are being
		sold/supplied to authorized
		recyclers/reprocessors only.
xv)	As proposed, spent pot lining waste shall also	The Carbon part of the SPL which is being
,	be provided to cement and steel industries	supposed to be sent to Cement and Steel
	for further utilization.	Industries, we are supplying to M/s Green Energy
		Resources for detoxification and complete
	Aslamandalahali kadimadan dah UDD/IDDF Baina	recycling.
xvi)	Ash pond shall be lined with HDP/LDPE lining or any other suitable impermeable media	
	such that no leachate takes place at any point	pond and water decantation system is
	of time. Adequate safety measures shall also	
L		

pond is
te safety
y kind of
gh HCSD
January
n pond is
al.
ver above
is being
twork of
nos new
and the
7.
As, Pb)
rried and
t of the
ond area
tablished
er quality
olishment
ced from
xpansion.
for the
ved.
·
and de-
and de- 1 Double
nt and is
of CPP.
u Cariri Tanan
(STP) is
melter &
apacity is ed water
eu water
Reverse
(S

······		1 1 501
	premises of smelter during non-monsoon period and shall be discharged during the monsoon period only after treatment and meeting the norms of the OSPCB/CPCB.	Osmosis based effluent treatment plant (ETP) of 300 m ³ /hr capacity and therefore no effluent water is being discharged to outside without treatment from Smelter.
xxii)	Greenbelt of adequate width and density around the project site shall be developed in 33% area in consultation with the DFO as per the CPCB guidelines having density of 2,000 trees/Ha.	Aditya Aluminium has developed Greenbelt over 537 acres inside the Core plant & Township areas. Around 3,80,500 saplings planted till March 2019. The action plan for achiving 33% greenbelt is attached as annexure - 9).
xxiii)	Occupational Health Surveillance of the workers should be done on a regular basis and records maintained as per the Factories Act.	Occupational Health Surveillance of the workers is being done as per the Odisha Factories Act.
xxiv)	The company shall develop rain water structures in the township area for recharge of ground water in consultation with the Central Ground Water Authority/Board.	Rain water recharging arrangement is being made in the township buildings, besides a rain water harvesting pond is being established inside the township area which is being utilised for gardening purposes. A rain water harvesting scheme has been submitted to CGWA for approval vide our letter no. AA/E&F/EC/2016/131, dated 09/04/2016.
xxv)	Rehabilitation and Resettlement Action Plan as prepared and submitted to the State Govt. shall be implemented as per the R & R Policy of the State Government.	Rehabilitation and Resettlement Action Plan is being implemented as per the R & R policy, 2006 of the State Govt.
	All the recommendations mentioned in the R&R Plan shall be strictly followed including suitable employment and other facilities to all the oustees.	All the recommendations are being followed/complied.
xxvi)	Charter on Corporate Responsibility for	
xxvii)	The company shall adopt well laid down corporate policy and identified and designate responsible officers at all levels of its hierarchy for ensuring adherence to the policy and compliance with environmental clearance, environmental laws and regulations.	Corporate Environment Policy. The copy of the same has been communicated in the last Six-Monthly EC Compliance report vide our letter no. AA/E&S/EC/2018/410, dated 27/11/2018.
xxviii)		implementation is enclosed as annexure-11).

	Ministry's Ragional Office of Phylones	
xxix)	Ministry's Regional Office at Bhubaneswar.	
^^!^/	At least 5% of the total cost of the project	
***************************************	shall be earmarked for towards the Enterprise	
	Social Commitment and item-wise details	
	along with time bound action plan should be	The state of the s
	prepared and submitted to the Ministry's	
	office at Bhubaneswar. Implementation of	2019 is attached as annexure-12.
Alabanitri	such program should be ensured accordingly	
,,,,pp	in a time bound manner.	
xxx)	The company shall provide housing for	All necessary infrastructure and facilities are
	construction labour within the site with all	being provided to the workers from time to time.
	necessary infrastructure and facilities such as	
	fuel for cooking, mobile toilets, mobile STP,	1
	safe drinking water, medical health care,	
	crèche etc. the housing may be in the form of)
	temporary structures to be ensured	
	accordingly in a time bound manner.	
xxxi)	The company shall submit within three	The Corporate Facility D. P.
,	months their policy towards Corporate	The Corporate Environment Policy prepared and
	Environment Responsibility which should	approved by the company Board of Directors,
	i e e e e e e e e e e e e e e e e e e e	o
	inter-alia address (i) standard operating	, it is a solution of the solu
	process/procedure to being into focus any	
	infringement/deviation/violation of	more minimical in a differin
-	environmental or forests norms/ conditions	submitted to MoEF.
	(ii) Hierarchical system or administrative	
	order of the company to deal with	The organizational structure of Corporate
	environmental issues and ensuring	Sustainability cell is being revised and the
	compliance to the environmental clearance	modified one will be submitted after the formal
	and (iii) system of reporting of non-	structure is published by Hindalco Management.
	compliance/violation environmental norms	
	to the Board of Directors of the company	
	and/or stakeholders or shareholders.	en e
-/	GENERAL CONDITIONS	
i)	The project authorities must strictly adhere	We will follow the stipulations made by OSPCB
	to the stipulations made by the OSPCB and	and the State Government.
	the State Government.	
ii)	No further expansion or modification in the	We will not carry out any expansion or
	plant shall be carried out without prior	modification in the plant without prior approval
	approval of the Ministry of Environment and	of MoEFCC.
	Forests.	OF MOEFICE.
iii)	The gaseous emissions from various process	
,		We have noted and accepted the stipulated
	units shall conform to the load/mass based	condition.
	standards notified by this Ministry on 19th	
	May, 1993 and standards prescribed from	
	time to time. The SPCB may specify more	
f 1	stringent standards for the relevant	the angle of the first of the second of the second
ABBOURE	parameters keeping in view the nature of the	
1	industry and its size and location.	

iv)	At least four number of ambient air quality	Installation of four (04) CAAQMStations
	monitoring stations shall be established in the downward direction as well as where maximum ground level concentration of SPM, SO ₂ and NO _x are anticipated in consultation with the OSPCB. Data on ambient air quality and stack emission should be regularly submitted to this Ministry including its Regional Office at Bhubaneswar and Orissa State Pollution Control Board once in Six months.	completed and commissioned. Data connectivity established with the servers of OSPCB and CPCB. Installation of the continuous stack emission monitoring system in all the major stacks completed. All the CAAQMS & CEMS synchronized with the webserver of the SPCB & CPCB. Six-monthly compliance along with the monitoring data is being submitted to the concerned authorities regularly.
v)	The overall noise levels in and around the plant area should be kept well within the standards (85 dBA) by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels should conform to the standards prescribed under EPA Rules, 1989 viz 75 dBA (daytime) and 70 dBA (nighttime).	The overall noise levels in and around the plant area is within the prescribed standards and it is being made possible by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The overall noise level is within the standard, regular monitoring is being done. All necessary PPEs are provided to the workers and engineers working in the factory.
vi)	Occupational Health Surveillance of the workers should be done on a regular basis and records maintained as per the Factories Act.	
vii)	The company shall develop surface water harvesting structures to harvest the rain	The company has developed surface water harvesting structures to the tune of 22 lakhs cum to store water in the lean season and it will harvest the rain water during rainy season in the same reservoirs.
viii)	The project proponent shall also comply with all the environmental protection measures and safeguards recommended in the EIA report. Further the company must undertake socio-economic development activities in the surrounding villages like community development programmes, drinking water supply and health care etc.	responsibility. A team of personnel are working dedicatedly for peripheral development work like
ix)	Requisite fund shall be earmarked towards capital cost and recurring cost/annum for environment pollution control measures to implement the conditions stipulated by the Ministry of Environment & Forests as well the State Government. An implementation	capital cost and recurring cost/annum for environment pollution control measures.

	schedule for implementing all the conditions	
	stipulated herein shall be submitted to	
	Regional Office of the Ministry at	
	Bhubaneswar. The funds so provided shall not	
	be diverted for any other purpose.	
V1	TOTAL TOTAL CONTRACTOR OF THE PROPERTY OF THE	
x)	A copy of the clearance letter shall be send by	
	the proponent to concerned Panchayat,	communicated to all concerned as mentioned in
	Zillaparishad/Municipality corporation, urban	
	local boby and the local NGO, if any from	displayed in our official website.
	whom suggestions/representations, if any,	
	were received while processing the proposal.	
	The clearance letter also be put on the web	
	site of the company by the proponent.	
xi)	The project proponent shall upload the status	The status of compliance to the EC conditions is
	of compliance of the stipulated environment	being submitted to the Regional office of the
-	clearance conditions, including results of	MOEF regularly on 1st June and 1st Dec respectively
	monitoring data on their website and shall	with a copy to CPCB & OSPCB and the same is
	update the same periodically. It shall	being uploaded into the Company website.
-	simultaneously be sent to the Regional Office	O stranga into the combany wichoute.
	of the MoEF at Bhubaneswar. The respective	All the stack emission and ambient air monitoring
	zonal office of CPCB and SPCB. The criteria	stations are synchronized with the webserver of
	pollutant levels namely' PM10, SO2, NOx	the SPCB & CPCB. The online monitoring data
	(ambient levels as well as stack emissions) or	w.r.t. stack emission, ambient air quality and
	critical sectoral parameters, indicated for the	t ·
	project shall be monitored and displayed at a	effluent water quality is being electrocically
	convenient location near the main gate of the	displayed at main entrance gate for information to the public.
	company in the public domain.	to the public.
xii)	1	We are submitting the six monthly compliance
	monthly reports on the status of the	reports of the stipulated environmental
1 18, 3 A.	compliance of the stipulated environmental	
	conditions including results of monitoring	conditions (both in hard & soft copies as well as
	data (both in hard & soft copies as well as by	by e-mail) to the Regional Office of MOEF, the
	e-mail) to the Regional Office of MOEF, the	respective Zonal Offices of CPCB and the SPCB.
1.1.1.1		
1, 17,	respective Zonal Offices of CPCB and the	The monitoring data in respect of AAQ, water,
	SPCB. The Regional office of this Ministry at	soil, noise etc is enclosed as Annexure-14.
:	Bhubaneswar. CPCB/SPCB shall monitor the	
VIII	stipulated conditions.	
xiii)	The environmental statement for each	The environmental statement for each financial
	financial year ending 31st March in Form-V as	year ending 31st March in Form-V is being
	is mandated to be submitted by the project	submitted to the concerned authorities of SPCB
	proponent to the concerned State Pollution	and MoEF.
	Control Board as prescribed under the	
	Environment (protection) Rules, 1986, as	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	amended subsequently, shall also be put on	
.**	the website of the company along with the	
	status of compliance of environmental	
	conditions and shall also be sent to the	
<u> </u>	respective Regional Office at Bhubaneswar.	

xiv)	The project proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the SPCB and may also be seen at website of the Ministry of Environment & Forest at http/www.envfor.nic.in. This shall be advertised within seven days from the date of issue of the clearance letter, at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same should be forwarded to the Regional office at Bhubaneswar.	Information to Public has been made through advertisement of the environmental clearance in two widely circulated daily newspapers i.e. "The New Indian Express" on 04-12-2012 & "The Samaja" on 05-12-2012, within seven days of receiving the clearance letter. The copy of the advertisement was submitted to the Ministry's Regional Office at Bhubaneswar vide our office letter no. AAP/E&F/786, dated 07-12-2012.
xv)	The authorities shall inform the regional office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of commencing the land development work.	Financial closure for Phase-1 (Smelter capacity of 0.36 MTPA and CPP of 1650 MW) of the Project is completed on 17 th September 2012 and Construction activities for Phase-I completed for 0.36 MTPA Smelter and 6x150 MW CPP and operating 360 pots out of 360 pots in Smleter and 6 units (6x150 MW) in CPP.
Sr.	EC Amendmnet Additional Conditions	Compliance Status
No.		
	The project proponent shall develop in-house facilities for treatment of Spent Pot Lining (SPL) generated in the Aluminium smelter. Meanwhile, Refractory part may be sent to CHWTSDF as per the provisions of Hazardous and Other Waste Amendment Rules, 2016.	We are exploring the mode of treatment & disposal of SPL in association with JNARDDC, Nagpur. However, at present the Carbon part is being supplied to M/s Green Energy Limited, Sambalpur for reprocessing and utilization, in this way the carbon part is completely recycled.
		The SPL refractory part generated is being stored inside the covered shed for disposal to CHW-TSDF. M/s Ramky Enviro Pvt. Ltd is establishing the facility for detoxification and disposal as per the protocol given by CPCB in its CHW-TSDF at kanchichuhan, Dist- Jajpur site. M/s Ramky is likely to lift the refractory part of SPL soon after fulfilling the terms & conditions specified in the Protocol.
ii)	The PP shall ensure 100% utilization of Fly ash generated.	Ash generated is being utilized by means of supplying to M/s Ultratech Cements, Jharsuguda, M/s ACC, Bargarh and M/s OCL, Rajgangpur for cement manufacturing. Also we are supplying Ash to the brick manufactures, using in own fly ash brick units and utilizing for development of low lying areas inside the Plant premises with the prior approval of SPCB, Odisha. The low-lying areas is being filled-up with Ash as per the

		Guideline for Reclamation Low Lying Areas and Abandoned Quarries with Ash of SPCB, Odisha. Besides, we are also exploring other modes/areas for more ash utilization. Please refer to Annexure-5 for ash utilization from Oct 18 to Mar 19.
iii)	All the measures proposed during the presentation and application shall be implemented.	We have Noted and will be implemented.
iv)	Sale of baked anodes; sale of bath material; and sale of molten metal is permitted following the provisions of Hazardous and Other Waste Management Rules, 2016, applicable if any.	
v)	The project proponent shall develop in-house facilities for treatment of SPL in 2 to 3 years.	We are in the process of technical discussion in JNARDDC, Nagpur for selection of technology and installation of equipment & machinaries for detoxification and disposal of SPL.
vi)	All the conditions prescribed in the environmental clearance letter No.J-11011/136/2009-IA-II(I) dated 29.11.2012 shall be strictly complied with.	It is being Complied.
vii)	The Project Proponent shall take fresh environment clearance in case of any change in the scope of the project.	

terraran perpanya makan rejake eskelegan, alebak eta di atealah d

engine and the augmentation will be a library to an automate

province the second of the second of the second of the second of

· 在一直要求的是由于一个大型的基础的。 在 1960年,

我就是我的我们的我们的,我们就被我们看到了这些被选择的。 化二十二烷基酚

经通货帐户 医性性病 经工程的 经未经 化苯基甲基 医皮肤

m All An All All March and Wash there gather And a regar

A Transport of the contract to the second section of the contract of the contr

raginara signa kini magazara (Danata) kan kaminan menandi,

(Authorized Signatory)

Encl: As above

MINISTRY OF ENVIRONMENT &FORESTS EASTERN REGIONAL OFFICE A/3, CHANDRASEKHARPUR, BHUBANESWAR- 751023

FORMAT FOR PROVIDING PARTICULARS ON GREENBELT /PLANTATION UNDER F(C) ACT 1980 AND E(P) ACT 1986.

1	a) Name of the Project	Aditya Aluminium (A Unit of Hindalco Industries Limited)
	b) Envt. /Forest Clearance Nos.	i. Env Clearance vide letter No: J-11011/136/2009-IA-I(I), Dated 29/11/2012 &J-11011/136/2009-IA.II (1), Dated 14 June 2013. ii. Forest Clearance vide letter No: 8-27/2009-FC, 10.02.2011
2	Location/ Block/ Sub-Divn./ Dist/ State	Aditya Aluminium (A Div. of Hindalco Industries Limited) At/Po- Lapanga, Dist- Sambalpur Pin - 768 212, Odisha6
3	Address for communication	Aditya Aluminium (A Div. of Hindalco Industries Limited) At/Po- Lapanga, Dist- Sambalpur Pin - 768 212, Odisha
4	Existing vegetation in the area/ region	At present several types of vegetation available in the area, however some of the names mentioned asfollows- Terminalia arjuna; Pongamia pinnata; Gmelina arboria; Anthocephallus cadamba; Dalbergia latifolia; Azadiracta indica; Albizzia Lebbeck; Delonix regia; Ailanthus exelsa, Casseasiamea; Cassia fistula, Butea monosperma, Madhuca indica etc
5	a) Species: (trees/shrubs/grasses/climbers)	Terminalia arjuna; Pongamia pinnata; Gmelina arboria; Anthocephallus cadamba; Dalbergia latifolia; Azadiracta indica; Albizzia Lebbeck; Delonix regia; Ailanthus exelsa, Casseasiamea; Cassia fistula, etc Butea monosperma, Madhuca indica etc trees species available.
	b) Major prevalent species of each type:	Anthocephallus cadambaTerminalia arjuna, Peltoferrumferrugenium, Gmelina arboria, AlberziaLebbeck, Delonix regiaetc are the prevalent species found. Butea monosperma, Madhuca indica etc
6	Land coverage by the project: a.Name and number of tree/species felled	1347.35 Ha 2002 no's of trees felled through OFDC, Sambalpur (CKL) Division.
	b.Name and number of plant species still available in the area c. By protecting the area will indigenous stock come up	Plant species and number will be counted after completion of all the project activities and will be submitted to your good office Nil
	d.Extent of greenbelt developed	537acres covered under greenbelt March 2019.
7	Plantations required to be carried o	
	a) Conditions of Environmental Clearance in Ha/Nos.	33% of total project area
	b) Conditions of Forest Act (c) Clearance in Ha/Nos.	25 % of total project area
	c. Voluntarily in Ha/Nos.	NA

8. Details of plantation

a) Total area available for plantation In each category

Greenbelt	Dumps	Back filled area	Road sides	Block plantation		
The 33% of the project area will be covered under greenbelt/green cover and the plant. The						
phase-I facilities completed and Phase-II construction work not started. Till date536. 15 acres of						
land has been covered under greenbelt and balance will be covered in phased manner.						

b) Plantation details (category wise &methodology used)

Year of plantation	Species Planted	Spacing	Height attained	Total area covered	Area still available
2010 & 2011	Terminalia arjuna; Pongamia pinnata;	2*2	30'-32'	14.7 Ha	Plantation is being done in phased
2012	Gmelina arboria;	3*3	22'-25'	38.2 Ha	manner.
2013	Anthocephallus	3*3	18'-20'	11.2 Ha	
2014	cadamba; Dalbergia	3*3	17'-18'	16.8 Ha	
2015	latifolia; Azadiracta	4*4	13'-15'	24.36 Ha	
2016	indica; Albizzia Lebbeck;	2*2	9'-12'	20.0 Ha	
2017	Delonix regia; Ailanthus	2*2	6'-8'	46.8 Ha	
2018	exelsa,Cassea siamea; Cassia fistula, etc	2*2	2'- 3'	45 Ha	

c) Survival of Plantation:

Total Plantation (No.)	3, 80,500
Survival (No.)	3,42,450
Survival rate	Approx 90%

9. Agency carrying out plantation and maintenance: NA

10. Financial details (year wise) plantation wise and item wise:

SI.	Year	Fund	Expenditure	Average cost of each
No.		allocated(Rs)	made(Rs)	surviving plant in Rs.
1	2010	81,62,000	81,62,000.00	245.00
2	2011			
3	2012	46,21,600	46,21,600.00	121.00
4	2013	13,62,500	13,62,500.00	121.00
5	2014	18,53,000	18,53,000.00	115.00
6	2015	18,65,000	18,65,000	109.00
7	2016	49,00,000	49,00,000	100.00
8	2017	68,00,000	68,00,000	71.00
9	2018	70,00,000	70,00,000	77.00

11. Inspection of plantation by field experts and their comments and follow up actions: Forest officials from Divisional Forest Office, Sambalpur and Forest Renge Office, Rengali arevisiting to our location at periodic intervals and giving their technical guidance from time to time. Joint Director/Director of Regional Office of MoEF&CC, Bhubaneswar also visit our plant site periodically.

12. Remarks/ any other information:

Indigenous species have been planted as per the Guideline of CPCB.

(Haley (Signature)

Report-II

PROFORMA FOR PROVIDING INFORMATION ON REHABILITATION

No. of villages affected : 11
 Families Affected : 1450

Families affected	SC	ST	ОТН	TOTAL
		m	-	1450

3. Compensation package offered per family:

State/ Centre norms	Project package
As per the R&R Policy 2006, Govt. of Odisha	As per the R&R Policy 2006 and 2013, Govt. of
	Odisha.
	Aditya Aluminium follows the RR Policy and
	subsequent Compensation Revision also.

4. Budget estimate for rehabilitation:

a) Total outlay

: 84.59 Crores

b) Amount paid/used

: 80.81 Crores

5. Employment details

a) Total employment to be provided

: 68

b) Employment given so far

: 59

6. Rehabilitation & Resettlement details : Total Displaced Persons Numbers - 433

a	No. of families rehabilitated				
i	Name of the Site	Aditya Alum	ninium		
ii	Families rehabilitated	SC	ST	OTH	Total
		08	387	18	413
b	Families yet to be rehabilitated				
ì	Name of the Site(s)	Aditya Alum	ninium		
ii	No. of families (Total - 433)	SC	ST	ОТН	Total
		00	19	1	20

7. Any other information

: Nil

(Signature)

(An Enviro Engineering Consulting Cell)

ISO 14001: 2004 OHSAS 18001 - 2007

Ref. Envlab/18/R-9177

STACK EMISSION MONITORING REPORT FOR OCTOBER-2018

L. Name of Industry

M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

2. Date of Sampling

: 26,10,2018

3. Sampling Location

: ST-7: Stack attached to ABF-1 - FTC-1

4. Name of sampling Instrument

Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

VCSPL Representative in presence of Aditya Aluminium Representative

6. Date of Analysis

: 29.10.2018 TO 30.10.2018

Parameters	Unit of		Emission Prescribe	Analysis Results
, at anothers	Measurement	Methodology	Standard (OSPCB)	ST-7
Stack Temperature	"C	IS 11255: Part 3 :1985 (Reaff 2008)		111,0
Velocity of Flue Gas	m/sec	IS 11255: Part 3:1985 (Reaff 2008)	4	9.76
Quantity of Gas Flow	Nm³/Hr	IS 11255; Part 3:1985 (Reaff 2008)	4	92550
Barometric Pressure	mm of 11g	1S 11255: Part 3 :1985 (Reaff 2008)	4(1)	742.0
Concentration of Particulate Matter as PM	mg/Nm³	1S 11255: Part 1:1985 (Reaff 2003)	50	7.6
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	256.2
Oxides of Nitrogen as NO _x	mg/Nm³	EPA Method 7E	-	52.0
Particulate Fluoride	mg/Nm³	Distillation followed by Ion Electrode method	-	0.16
Gascous Fluoride	mg/Nm³	Ion Electrode method		0.48
Total Fluoride as F	mg/Nm ³	Calculation		0.64
l'ar Fumes	mg/Nm ³	Extraction followed by Gas Chromatogrphy	-	ND ND
Poly Aromatic Hydrocarbon as PAHs	μg/Nm ³	Gas Chromatography	4.	ND

For Visiontek Consultance Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 ±2004 OHSAS 18001 12007

Ref.: Envlab/18/R-9176

Date: 03/11/2018

STACK EMISSION MONITORING REPORT FOR OCTOBER-2018

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

2. Date of Sampling

: 26.10.2018

3. Sampling Location

: ST-8: Stack attached to ABF II - FTC - 2

4. Name of sampling Instrument : Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

: VCSPL Representative in presence of Aditya Aluminium Representative

6. Date of Analysis

: 29.10.2018 TO 30.10.2018

Parameters	Unit of Measurement	Methodology	Emission Prescribe Standard	Analysis Results
		10011200	(OSPCB)	ST-8
Stack Temperature	0C	IS 11255; Part 3 :1985 (Reaff 2008)		110.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	10.08
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3:1985 (Reaff 2008)		57813.0
Barometric Pressure	mm of Hg	IS 11255; Part 3:1985 (Reaff 2008)	-	742.0
Concentration of Particulate Matter as PM	mg/Nm³	1S 11255; Part 1:1985 (Reaff 2003)	50	9.1
Sulphur dioxide as SO2	mg/Nm ³	EPA Method 6C	-	231.0
Oxides of Nitrogen as NOx	mg/Nm ³	EPA Method 7E	3	136
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method		0.16
Gaseous Fluoride	mg/Nm³	Ion Electrode method	1	0.42
Total Fluoride as F	mg/Nm³	Calculation		0.58
Tar Fumes	mg/Nm³	Extraction followed by Gas Chromatogrphy		ND
Poly Aromatic Tydrocarbon as PAHs	μg/Nm³	Gas Chromatography	9	ND

Note: ND: Not Detected.

For Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

350-9601 ; 2004 350-14001 ; 2004

Ref.: Emilab | 18 | R-9971

STACK EMISSION MONITORING REPORT FOR NOVEMBER 2018

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium): Lapanga

2. Date of Sampling

: 20.11.2018

3. Sampling Location

: ST-7: Stack attached to ABF-1 - FTC-1

4. Name of sampling Instrument

: Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

: VCSPL Representative in presence of Aditya Aluminium Representative

6. Date of Analysis

· 24.11.2018 TO 30.11.3018

	Unit of Measurement	Methodology	Emission Prescribe Standard	Amilysis Results
		and the same of th	(OSPCB)	\$37-7
Stack Temperature	°c	IS 11255; Part 3 : (985 (Reaff 2008)		112
Velocity of Flue Gas	n/sec	IS 11258: Part 3 :1985 (Reaff 2008)	-	5.8
Quantity of Gas Flow	Nm ⁷ /Hr	IS 11255; Part 3 ;1985 (Res/T 2008)	•	92688
Baromonie Pressure	mm of Hg	IS 11255; Part 3 :1985 (Reaff 2008)	4	742
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255; Part 1 ;1985 (RentF.2003)	50	K.2
Sulphur dioxide as SO ₂	mg/Niu ³	EPA Method 6C		256.2
Oxides of Nitrogen as NO.	mg/Nm²	EPA Method 7E		47
Particulare Fluorida	rng/Nm²	Distillation followed by lon Electrode method		0.18
Gaseous Flooride	rag/Nm ³	Ion Electrode method	-	0.48
Foral Fluoride as F	mg/Nm²	Calculation	1	0.66
Far Fumes	mg/Nm ¹	Extraction followed by Gas Chromatography		ND
Puly Aromatic Tydrocarbon as PAHs one: NO: Not Deported	ug/Nm³	Cas Chromatography	5	80

Note: NO: Not Detected.

For Visiontek Convinces Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

Res. Emilab/18/R-9772

Date: 04-12-15

STACK EMISSION MONITORING REPORT FOR NOVEMBER-2018

1. Name of Industry.

; M/s Hindalco Industries Ltd (Unit-Aditya Alaminium); Lapanga

2. Date of Sampling

: 20.11.2018

3. Sampling Location.

: ST-8: Stack attached to ABF II - FTC - 2

4. Name of sampling Instrument : Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

† VCSPL Representative in presence of Aditya Aluminium Representative

6. Date of Analysis

: 24.11.2018 TO 30.11.2018

Parameters	Unit of Measurement	Methodology	Emission Prescribe Standard	Amiysis Results
			(OSPCB)	ST-8
Stack Temperature	°C	IS 11255; Part 3:1985 (RealY2008)	6477	111
Velocity of Flue Gas	m/sec	IS 11255; Part 3 ;1985 (Reaff 2008)		10.13
Quantity of Gas Flow	Nm³/Hr	IS 11255; Part 3 ;1985 (Reaff 2008)		58056
Barometric Pressure	mm of Hg	1S 11255: Part 3 :1985 (Reaff 2008)		741
Concentration of Particulate Matter as PM	mg/Nm²	1S 11255; Part 1:1985 (Reaff 2003)	50	9.3
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C		239
Oxides of Nitrogen as NO,	mg/Nm ^t	EPA Method 76	3	119
Particulate Fluoride	mg/Nm³	Distillation followed- by Ion Electrode method		0.19
Gaseous Fluoride	mg/Nm²	Ion Electrode method		0.44
Total Fluoride us F	mg/Nm ²	Calculation	- 1	0.63
Far Funics	mg/Nm³	Extraction followed by Clas Chromatography		ND
Poly Aromatic Hydrocarbon as PAHs	μg/Nm³	Gas Chromatography		ND

Notes ND; Not Detected.

For Visiontek Consultancy Services Pet. Ltd.

DECO NABOR

ISO 9001: 2000

ISO 14001 : 2004 OHSAS 18001 : 2007

(An Enviro Engineering Consulting Cell)

STACK EMISSION MONITORING REPORT FOR DECEMBER-2018

Ref.:

Date: 31-12-18

Envlab/18/R-9953

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

2. Date of Sampling

: 21.12.2018

3. Sampling Location

: ST-7: Stack attached to ABF-1 - FTC-1

4. Name of sampling Instrument

: Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

VCSPL Representative in presence of Aditya Aluminium Representat

6. Date of Analysis

: 29.12.2018 TO 31.12.2018

	Unit of Measurement	Methodology	Emission Prescribe Standard (OSPCB)	Analysis Results ST-7
Stack Temperature	°C	IS 11255: Part 3:1985 (Reaff 2008)	-	106
Velocity of Flue Gas	m/sec	IS 11255: Part 3:1985 (Reaff 2008)	•	9.7
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	90919
Barometric Pressure	mm of Hg	IS 11255; Part 3 :1985 (Reaff 2008)	-	743
Concentration of Particulate Matter as PM	mg/Nm³	IS 11255: Part 1:1985 (Reaff 2003)	50	10.11
Sulphur dioxide as SO ₂	mg/Nm³	EPA Method 6C		215.69
Oxides of Nitrogen as NO _x	mg/Nm³	EPA Method 7E	4	65
Particulate Fluoride	mg/Nm³	Distillation followed by Ion Electrode method		0.16
Gaseous Fluoride	mg/Nm³	Ion Electrode method		0.51
Total Fluoride as F	mg/Nm ³	Calculation		0.67
Tar Fumes	mg/Nm³	Extraction followed by Gas Chromatogrphy	•	ND
Poly Aromatic Hydrocarbon as PAHs	μg/Nm³	Gas Chromatography	-	ND

Note: ND: Not Detected.

For Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001: 2004 OHSAS 18001 - 2007

Ref.:

STACK EMISSION MONITORING REPORT FOR DECEMBER 2018 31.12.18

Env/ab/18/R-9952

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

2. Date of Sampling

: 21.12.2018

3. Sampling Location

: ST-8: Stack attached to ABF II - FTC - 2

4. Name of sampling Instrument : Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

: VCSPL Representative in presence of Aditya Aluminium Representati

6. Date of Analysis

: 29.12.2018 TO 31.12.2018

Parameters	Unit of Measurement	Methodology	Emission Prescribe Standard	Analysis Results
			(OSPCB)	ST-8
Stack Temperature	°C	IS 11255: Part 3 :1985 (Reaff 2008)	-	105
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)		10.36
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)		58656
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	•	742
Concentration of Particulate Matter as PM	mg/Nm³	IS 11255: Part 1 :1985 (Reaff 2003)	50	8.91
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	40 - 4 6	251
Oxides of Nitrogen as NO _x	mg/Nm³	EPA Method 7E	-	129
Particulate Fluoride	mg/Nm³	Distillation followed by Ion Electrode method	-	0.15
Gaseous Fluoride	mg/Nm³	Ion Electrode method		0.49
Total Fluoride as F	mg/Nm³	Calculation	<u>-</u>	0.64
Tar Fumes	mg/Nm³	Extraction followed by Gas Chromatogrphy		ND
Poly Aromatic Hydrocarbon as PAHs	μg/Nm³	Gas Chromatography	-	ND

Note: ND: Not Detected.

Signet Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 - 2001 OHSAS 18001 - 2007

Ref. Envlate [191 R - 493

Date: 02/02/19

STACK EMISSION MONITORING REPORT FOR JANUARY-2019

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

2. Date of Sampling

: 21.01.2019

3. Sampling Location

: ST-7: Stack attached to ABF-I - FTC-1

4. Name of sampling Instrument

: Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

: VCSPL Representative in presence of Aditya Aluminium Representative

6. Date of Analysis

: 29.01.2019 TO 31.01.2019

	fluttive		Emission	Analysis Results	
Parameters	Unit of Methodology Measurement		Prescribe Standard (OSPCB)	ST-7	
Stack Temperature	oC.	IS 11255: Part 3 :1985 (Reaff 2008)	-	105.0	
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	9,4	
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	P	88751.0	
Harometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	744.0	
Concentration of Particulate Matter as PM	mg/Nm³	IS 11255: Part 1 :1985 (Reaff 2003)	50	9.6	
Sulphur dioxide as SO ₂	mg/Nm³	EPA Method 6C	-	198.69	
Oxides of Nitrogen as NO _x	mg/Nm³	EPA Method 7E	-	45.0	
Particulate Fluoride	mg/Nm³	Distillation followed by Ion Electrode method	-	0.13	
Gascous Fluoride	mg/Nm ³	Ion Electrode method	0	0.47	
Total Fluoride as F	mg/Nm ³	Calculation		0.60	
Tar Fumes	mg/Nm³	Extraction followed by Gas Chromatography	-	ND	
Poly Aromatic Hydrocarbon as PAHs	μg/Nm³	Gas Chromatography	-	ND	

Note: ND: Not Detected.

For Visioniek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO:14001 2004 OHSAS 18001 - 200

Ret. Enufab /19/R + 502

Date 02 /02 /19

STACK EMISSION MONITORING REPORT FOR JANUARY-2019

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

2. Date of Sampling

: 21.01.2019

3. Sampling Location

: ST-8: Stack attached to ABF-2 - FTC-2

4. Name of sampling Instrument

: Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

: VCSPL Representative in presence of Aditya Aluminium Representative

6. Date of Analysis

: 29.01.2019 TO 31.01.2019

Parameters	Unit of Measurement	Methodology	Emission Prescribe Standard	Analysis Results
			(OSPCB)	ST-8
Stack Temperature	0C	IS 11255; Part 3 (1985 (Reaff 2008)	-	102.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	9.81
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)		56062.0
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	+	743.0
Concentration of Particulate Matter as PM	mg/Nm³	IS 11255: Part 1 :1985 (Reaff 2003)	50	9.1
Sulphur dioxide as SO2	mg/Nm³	EPA Method 6C	-	206.0
Oxides of Nitrogen as NOx	mg/Nm³	EPA Method 7E	- 1	156.0
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.14
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.51
Total Fluoride as F	mg/Nm³	Calculation		0.65
Tar Fumes	mg/Nm³	Extraction followed by Gas Chromatogrphy	-	ND
Poly Aromatic Hydrocarbon as PAHs	μg/Nm³	Gas Chromatography		ND

Note: ND: Not Detected.

For Visiontel Consultancy Services Pvt. Ltd.

Visiontek Consultancy Services Pvt. Ltd. (An Enviro Engineering Consulting Cell)

180 (400) 2004 OHS AS 18603 : 2067

Envlab/19/R-1007

Date: 05.03.19

STACK EMISSION MONITORING REPORT FOR FEBRUARY-2019

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

2. Date of Sampling

: 14,02,2019

3. Sampling Location

ST-7: Stack attached to ABF-I - FTC-1

4. Name of sampling Instrument

: Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

: VCSPL Representative in presence of Aditya Aluminium Representative

6. Date of Analysis

19.02.2019 TO 22.02.2019

A	Unit of	42000045000	Emission	Analysis Results
Parameters	Measurement	Methodology	Prescribe Standard (OSPCB)	ST-7
Stack Temperature	"C:	IS 11255; Part 3 :1985 (RA 2008)		104.0
Velocity of Flue Gas	m/sec	1S 11255; Part 3 :1985 (RA 2008)	-	12,61
Quantity of Gas Flow	Nm ³ /Lir	1S 11255: Part 3 :1985 (RA 2008)	-	119607.0
Barometric Pressure	mm of Hg	IS 11255; Part 3:(1985 (RA 2008)		743.0
Concentration of Particulate Matter as PM	nig Nor	IS 11255; Part 3 :1985 (RA 2008)	50	8.32
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C		206.36
Oxides of Nitrogen as NO _x	mg/Nm³	EPA Method 7E	-	71.0
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.19
Gaseous Fluoride	mg/Nm²	Ion Electrode method	-	0.37
Total Fluoride as F	rug/Sm	Calculation	+	0.56
Tar Fumes	mg/Nu.*	Extraction followed by Gas Circonatography	-	ND
Poly Aromatic Hydrocarbon as PAHs	µg/Nm³	Gas Chromatography	*	ND

Note: ND: Not Detected.

For Visiontek Consultancy Services Pvt. Ltd.

LAMEY

(An Enviro Engineering Consulting Cell)

ISO 14001 2004 OHSAS 18001 - 7007

Ref. Emulab/19/R-1008

Date: 05.03-19

STACK EMISSION MONITORING REPORT FOR FEBRUARY-2019

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

2. Date of Sampling

: (4.03.2019)

3. Sampling Location

ST-8: Stack attached to ABF-2 - FTC-2

4. Name of sampling Instrument

: Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

: VCSPI, Representative in presence of Aditya Aluminium Representative

6. Date of Analysis

19.02.2019 TO 22.02.2019

Parameters	Unit of Measurement	Methodology	Emission Prescribe Standard	Analysis Results
	breasure incur		(OSPCB)	ST-8
Stack Temperature	90	IS 11255; Part 3 :1985 (RA 2008)	-	100.0
Velocity of Flue Gas	m/sec	IS 11255; Part 3 :1985 (RA 2008)	-	12,48
Quantity of Gas Flow	Nm ³ He	IS 11255; Part 3 (1985 (RA 2008)		71658.0
Barometric Pressure	mm + i la	IS 11255; Part 3:1985 (RA 2008)	8	743.0
Concentration of Particulate Matter as PM	mg/Nm '	(S 11285: Part 3:1985 (RA 2008)	50	10.52
Sulphur dioxide as SO ₂	mg/Nm ⁷	EPA Method 6C	3	198.0
Oxides of Nitrogen as NO _x	me/Mer*	EPA Method 715		138.0
Particulate Fluoride	mg/Nm [±]	Distillation followed by lon Electrode method	+	0.13
Gaseous Fluoride	mg/Nm	Ion Electrode method	-	0.45
Fotal Fluoride as F	1002/5410	Calculation	14/	0.58
Car Fumes	me Nai	Extraction followed by Gas Chromatography	31	ND
Poly Aromatic Hydrocarbon as PAHs	Min (A)	Gas Chromatography	-	ND

For Vision Consultang Services Pvt. Ltd.

Visiontek Consultancy Services Pvt. Ltd. (An Enviro Engineering Consulting Cell)

ISO 14001 : 2004

Date: 02/04/19

OHSAS 18001: 2007

Res: Envlab/19/R-01/1461

STACK EMISSION MONITORING REPORT FOR MARCH-2019

1. Name of Industry

; M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

2. Date of Sampling

: 20.03.2019

3. Sampling Location

ST-7: Stack attached to ABF-1 - FTC-1

4. Name of sampling Instrument

: Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

: VCSPL Representative in presence of Aditya Aluminium Representative

6. Date of Analysis

: 21,03,2019 TO 27,03,2019

			Emission	Analysis Results
	Unit of Measurement	Methodology	Prescribe Standard (OSPCB)	ST-7
Stack Temperature	°C	IS 11255; Part 3 :1985 (Reaff 2008)		118.0
Velocity of Flue Gas	m/sec	IS 11255; Part 3 :1985 (Realf 2008)	280	10.6
Quantity of Gas Flow	Nm³/Hr	18 11255: Part 3 :1985 (Reaff 2008)	-	100849
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	8.41	744.0
Concentration of Particulate Matter as PM	mg/Nm³	IS 11255; Part 1:1985 (Realf 2003)	50	8.8
Sulphur dioxide as SO ₂	mg/Nm³	EPA Method 6C	+1	• 236.8
Oxides of Nisrogen as NO _s	mg/Nm²	EPA Method 7E	72	56.8
Particulate Fluoride	mg/Nm³	Distillation followed by Ion Electrode method		0.18
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	LEA .	0.36
Total Fluoride as F	mg/Nm²	Calculation		0.54
Tar Fumes	mg/Nm ⁵	Extraction followed by Gas Chromatogrphy	8#7	ND
Poly Aromatic Hydrocarbon as PAHs	μg/Nm³	Gas Chromatography		ND

Note: ND: Not Detected.

Visiontek Consultancy Services Pvt. La.

(An Enviro Engineering Consulting Cell)

ISO 14001 - 2004 OHSAS 18001 - 7007

Ref.: Eaufab/19/R-1962

STACK EMISSION MONITORING REPORT FOR MARCH-2019

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

2. Date of Sampling

: 20.03.2019

3. Sampling Location

: ST-8: Stack attached to ABF II - FTC - 2

4. Name of sampling Instrument : Vayubodhan Stack Sampler VSS 2

Sample Collected by

: VCSPL Representative in presence of Aditya Aluminium Representative

6. Date of Analysis

: 21.03.2019 TO 27.03.2019

Parameters	Unit of Measurement	Methodology	Emission Prescribe Standard	Analysis Results
			(OSPCB)	ST-8
Stack Temperature	°C	IS 11255: Part 3 :1985 (Reaff 2008)	2	116.0
Velocity of Flue Gas	m/sec	1S 11255: Part 3 :1985 (Reaff 2008)	-	10.8
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	- 1	61151
Barometric Pressure	mm of Hg	IS 11255; Part 3 :1985 (Reaff 2008)	- 1	744.0
Concentration of Particulate Matter as PM	mg/Nm³	1S 11255; Part I :1985 (Reaff 2003)	50	9.74
Sulphur dioxide as SO ₂	mg/Nm³	EPA Method 6C	-	221.8
Oxides of Nitrogen as NO.	mg/Nm³	EPA Method 7E	-	126.0
Particulate Fluoride	mg/Nm³	Distillation followed by Ion Electrode method	-	0.15
Gaseous Fluoride	mg/Nm³	Ion Electrode method	-	0.48
Total Fluoride as F	mg/Nm³	Calculation		0.63
Tar Fumes	mg/Nm³	Extraction followed by Gas Chromatogrphy	-	ND
Poly Aromatic Hydrocarbon as PAHs	μg/Nm³	Gas Chromatography		ND

Note: ND: Not Detected.

For Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref. Envlab/18/R-01/9175

Date: 03/11/18

STACK EMISSION MONITORING REPORT FOR OCTOBER-2018

1. Name of Industry : M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

2. Date of Sampling : 27.10.2018

3. Sampling Location : ST-9: Stack attached to GTC-1 (Pot room)

4. Name of sampling Instrument : Vayubodhan Stack Sampler VSS 2

5. Sample Collected by : VCSPL Representative in presence of Aditya Aluminium Representative

6. Date of Analysis : 29.10.2018 TO 30.10.2018

Parameters	Unit of Measurement	Protocol	Emission Prescribe Standard (OSPCB)	Analysis Results
				ST-9
Stack Temperature	°C	IS 11255: Part 3 :1985 (Reaff 2008)		105.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3:1985 (Reaff 2008)	-	8.81
Quantity of Gas Flow	Nm³/Hr	IS 11255; Part 3 :1985 (Reaff 2008)	4	2134941.0
Barometric Pressure	mm of Hg	IS 11255; Part 3:1985 (Reaff 2008)		746.0
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255: Part 1:1985 (Reaff 2003)	50 .	8.1
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	1-	67.0
Oxides of Nitrogen as NOx	mg/Nm³	EPA Method 7E	12	39.0
Particulate Fluoride	mg/Nm³	Distillation followed by Ion Electrode method	-	0.24
Gaseous Fluoride	mg/Nm³	Ion Electrode method	-	0.43
Total Fluoride	mg/Nm ³	Calculation	2	0.67

For Visiontek Consultancy Services Pvt.Ltd.

(An Enviro Engineering Consulting Cell)

Envial [18/ R-9/74

Date: 085 11

STACK EMISSION MONITORING REPORT FOR OCTOBER-2018

J. Name of Industry

: M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Date of Sampling

: 27.10.2018

3. Sampling Location

: ST-10: Stack attached to GTC-2

4. Name of sampling Instrument: Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

: VCSPL Representative in presence of Aditya Aluminium Representative

6. Date of Analysis

: 29.10.2018 TO 30.10.2018

	500		E-t-t-t-	Analysis Results
Parameters	Unit of Measurement	Protocol	Emission Prescribe Standard (OSPCB)	ST-10
Stack Temperature	0C	IS 11255: Part 3 :1985 (Reaff 2008)	=	106.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3:1985 (Reaff 2008)	-	8.8
Quantity of Gas Flow	Nm3/Hr	1S 11255; Part 3 :1985 (Reaff 2008)	+	2198427.0
Barometric Pressure	mm of Hg	IS 11255; Part 3 :1985 (Reaff 2008)	75	745,0
Concentration of Particulate Matter as PM	mg/Nm3	IS 11255; Part 1:1985 (Reaff 2008)	1 50	6.9
Sulphur dioxide as SO2	mg/Nm3	EPA Method 6C		58.0
Oxides of Nitrogen as NOx	mg/Nm3	EPA Method 7E	14	46.0
Particulate Fluoride	mg/Nm3	Distillation followed by Ion Electrode method	-	0.24
Gaseous Fluoride	mg/Nm3	Ion Electrode method	J.A.	0.41
Total Fluoride	mg/Nm3	Calculation	-	0.65

Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref.: Earlab/18/ R-01/9773

Date: 04/12/18

STACK EMISSION MONITORING REPORT FOR NOVEMBER-2018

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

2. Date of Sampling

: 21.11.2018

3. Sampling Location

ST-9: Stack attached to GTC-1 (Pot room)

4. Name of sampling Instrument

: Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

: VCSPL Representative in presence of Aditya Aluminium Representative

6. Date of Analysis

: 24.11.2018 TO 30.11.2018

Parameters	Unit of Measurement	Protocol	Emission Prescribe Standard (OSPCB)	Analysis Results
Stack Temperature	°C	IS 11755, Park 2, 1005 (D. 202000)		ST-9
TALLET AND THE PARTY OF THE PAR		IS 11255: Part 3 :1985 (Reaff 2008)	7	111.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3:1985 (Reaff 2008)	-	8.9
Quantity of Gas Flow	Nm³/Hr	IS 11255; Part 3:1985 (Reaff 2008)	4	2197404.0
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	12	746.0
Concentration of Particulate Matter as PM	mg/Nm³	IS 11255: Part 1:1985 (Reaff 2003)	50	8.4
Sulphur dioxide as SO2	mg/Nm ³	EPA Method 6C		65.0
Oxides of Nitrogen as NOx	mg/Nm ³	EPA Method 7E		42.0
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method		0.21
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	1	0.44
Total Fluoride	mg/Nm ³	Calculation		0.65

For Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref. Envlab/ 18/R-01/9774

Date: 04/12/18

STACK EMISSION MONITORING REPORT FOR NOVEMBER-2018

1. Name of Industry : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Date of Sampling : 21.11.2018

3. Sampling Location : ST-10: Stack attached to GTC-2

4. Name of sampling Instrument: Vayubodhan Stack Sampler VSS 2

5. Sample Collected by : VCSPL Representative in presence of Aditya Aluminium Representative

6. Date of Analysis : 24.11.2018 TO 30.11.2018

Parameters	Unit of Measurement	Protocol	Emission Prescribe	Analysis Results
	Measurement	77.20	Standard (OSPCB)	ST-10
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	108.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3:1985 (Reaff 2008)		8.7
Quantity of Gas Flow	Nm³/Hr	18 11255: Part 3 :1985 (Reaff 2008)	-	2165966.4
Barometric Pressure	mm of Hg	IS 11255; Part 3 :1985 (Reaff 2008)	-	744.0
Concentration of Particulate Matter as PM	mg/Nm ³	IS 11255; Part 1 :1985 (Reaff 2003)	50	6.3
Sulphur dioxide as SO2	mg/Nm ³	EPA Method 6C	-	61.0
Oxides of Nitrogen as NOx	mg/Nm ³	EPA Method 7E	+	44.0
Particulate Fluoride	mg/Nm³	Distillation followed by Ion Electrode method		0.23
Gaseous Fluoride	mg/Nm³	Ion Electrode method	-	0.44
Total Fluoride	mg/Nm ³	Calculation		0.67

For Visiontek Consultancy Services Pvt. Ltd.

Ref .:

Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001: 2004 OHSAS 18001 - 2007

STACK EMISSION MONITORING REPORT FOR DECEMBER-2018 [mlab/18/R-9960 31.12.18

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

2. Date of Sampling

: 22.12.2018

3. Sampling Location

: ST-9: Stack attached to GTC-1 (Pot room)

Name of sampling Instrument : Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

: VCSPL Representative in presence of Aditya Aluminium Representati

6. Date of Analysis

: 29.12.2018 TO 31.12.2018

Parameters	Unit of Measurement	Protocol	Emission Prescribe Standard (OSPCB)	Analysis Results
				ST-9
Stack Temperature	°C	IS 11255: Part 3 :1985 (Reaff 2008)	-	105
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)		9.1
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	2195772
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)		746
Concentration of Particulate Matter as PM	mg/Nm³	IS 11255: Part 1 :1985 (Reaff 2003)	50	10.2
Sulphur dioxide as SO ₂	mg/Nm³	EPA Method 6C		57
Oxides of Nitrogen as NO _x	mg/Nm³	EPA Method 7E	-	46
Particulate Fluoride	mg/Nm³	Distillation followed by Ion Electrode method	-	0.18
Gaseous Fluoride	mg/Nm³	Ion Electrode method		0.46
Total Fluoride	mg/Nm ³	Calculation		0.64

For Visiontek Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001: 2007

Ref.: Envlab | 18 | R-9954

Date: 31 12 18

STACK EMISSION MONITORING REPORT FOR DECEMBER-2018

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Date of Sampling

: 22.12.2018

3. Sampling Location

: ST-10: Stack attached to GTC-2

Name of sampling Instrument : Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

: VCSPL Representative in presence of Aditya Aluminium Representative

6. Date of Analysis

: 29.12.2018 TO 31.12.2018

	Unit of		Emission	Analysis Results
Parameters	Measurement	Protocol	Prescribe Standard (OSPCB)	ST-10
Stack Temperature	°C	IS 11255: Part 3 :1985 (Reaff 2008)	-	106
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	9,0
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)		2163009
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	745
Concentration of Particulate Matter as PM	mg/Nm³	IS 11255: Part 1:1985 (Reaff 2003)	50	7.3
Sulphur dioxide as SO ₂	mg/Nm³	EPA Method 6C		64
Oxides of Nitrogen as NO _x	mg/Nm³	EPA Method 7E		49
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	•	0.18
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.53
Total Fluoride	mg/Nm ³	Calculation		0.71

For Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

(SO 14091: 2004 OFFS AS 18601 2607

Enulab/19/R-494 Ret.

Date: 02 | 03 / 19

STACK EMISSION MONITORING REPORT FOR JANUARY-2019

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

2. Date of Sampling

: 24.01.2019

3. Sampling Location

: ST-9: Stack attached to GTC-1 (Pot room)

Name of sampling Instrument : Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

: VCSPL Representative in presence of Aditya Aluminium Representative

6. Date of Analysis

: 29.01.2019 TO 31.01.2019

Parameters	Unit of Measurement	Protocol	Emission Prescribe Standard (OSPCB)	Analysis Results
				ST-9
Stack Temperature	°C	IS 11255; Part 3 :1985 (Reaff 2008)	4	109.0
Velocity of Flue Gas	m/sec	IS-11255; Part 3 :1985 (Reaff 2008)	4	8.8
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	2091431.0
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	4.	745.0
Concentration of Particulate Matter as PM	mg/Nm³	IS 11255: Part 1 :1985 (Reaff 2003)	50 *	9.5
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	61.0
Oxides of Nitrogen as NO _x	mg/Nm³	EPA Method 7E	-	52.0
Particulate Fluoride	mg/Nm³	Distillation followed by Ion Electrode method	1	0.14
Gaseous Fluoride	mg/Nm ³	Ion Electrode method		0.52
Total Fluoride	mg/Nm³	Calculation	Δ.	0.66

(An Enviro Engineering Consulting Cell)

ISO:14001 2004 OHSAS 18001 - 200

Ret. Enufab /19/R + 502

Date 02 /02 /19

STACK EMISSION MONITORING REPORT FOR JANUARY-2019

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

2. Date of Sampling

: 21.01.2019

3. Sampling Location

: ST-8: Stack attached to ABF-2 - FTC-2

4. Name of sampling Instrument

: Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

: VCSPL Representative in presence of Aditya Aluminium Representative

6. Date of Analysis

: 29.01.2019 TO 31.01.2019

Parameters	Unit of Measurement	Methodology	Emission Prescribe Standard	Analysis Results
			(OSPCB)	ST-8
Stack Temperature	0C	IS 11255; Part 3 (1985 (Reaff 2008)	-	102.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	9.81
Quantity of Gas Flow	Nm ³ /Hr	IS 11255: Part 3 :1985 (Reaff 2008)		56062.0
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	+	743.0
Concentration of Particulate Matter as PM	mg/Nm³	IS 11255: Part 1 :1985 (Reaff 2003)	50	9.1
Sulphur dioxide as SO2	mg/Nm³	EPA Method 6C	-	206.0
Oxides of Nitrogen as NOx	mg/Nm³	EPA Method 7E	- 1	156.0
Particulate Fluoride	mg/Nm ³	Distillation followed by Ion Electrode method	-	0.14
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	-	0.51
Total Fluoride as F	mg/Nm³	Calculation		0.65
Tar Fumes	mg/Nm³	Extraction followed by Gas Chromatogrphy	-	ND
Poly Aromatic Hydrocarbon as PAHs	μg/Nm³	Gas Chromatography		ND

Note: ND: Not Detected.

For Visiontel Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ESO 14001 - 2004 OHSAN 18001 - 3600

Ret: Grufab/19/R-503

Date:

STACK EMISSION MONITORING REPORT FOR JANUARY-2019

I. Name of Industry

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

2. Date of Sampling

: 24.01.2019

3. Sampling Location

: ST-10: Stack attached to GTC-2 (Pot room)

4. Name of sampling Instrument: Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

1 VCSPL Representative in presence of Aditya Aluminium

Representative

6. Date of Analysis

: 29.01.2019 TO 31.01.2019

Parameters	Unit of	2	Emission	Analysis Results
Tarameters	Measurement	Protocol	Prescribe Standard (OSPCB)	ST-10
Stack Temperature	⁶ C	IS 11255: Part 3 :1985 (Reaff 2008)	160	104.0
Velocity of Flue Gas	m/sec	IS 11255; Part 3 :1985 (Reaff 2008)		8.8
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	2122013.0
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	746.0
Concentration of Particulate Matter as PM	mg/Nm³	IS 11255; Part 1 :1985 (Reaff 2003)	50	7.6
Sulphur dioxide as SO ₂	mg/Nm³	EPA Method 6C	-	57.0
Oxides of Nitrogen as NO _x	mg/Nm³	EPA Method 7E	-	50.0
Particulate Fluoride	mg/Nm³	Distillation followed by Ion Electrode method	-	0.15
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	7	0.50
Total Fluoride	mg/Nm³	Calculation	4	0.65

For Visiontek Consul ices Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 - 2004 OHSAS 18001 - 2007

Date: 02/02/19

Ref. Englab fral R - 493

STACK EMISSION MONITORING REPORT FOR JANUARY-2019

1. Name of Industry : M

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

2. Date of Sampling

: 21.01.2019

3. Sampling Location

: ST-7: Stack attached to ABF-1 - FTC-1

4. Name of sampling Instrument

: Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

: VCSPL Representative in presence of Aditya Aluminium Representative

6. Date of Analysis

: 29.01.2019 TO 31.01.2019

	fluttive		Emission	Analysis Results
Parameters	Unit of Measurement	Methodology	Prescribe Standard (OSPCB)	ST-7
Stack Temperature	oC.	IS 11255: Part 3 :1985 (Reaff 2008)	-	105.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	-	9,4
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	P	88751.0
Harometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	744.0
Concentration of Particulate Matter as PM	mg/Nm³	IS 11255: Part 1 :1985 (Reaff 2003)	50	9.6
Sulphur dioxide as SO ₂	mg/Nm³	EPA Method 6C	-	198.69
Oxides of Nitrogen as NO _x	mg/Nm³	EPA Method 7E	-	45.0
Particulate Fluoride	mg/Nm³	Distillation followed by Ion Electrode method	-	0.13
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	0	0.47
Total Fluoride as F	mg/Nm ³	Calculation		0.60
Tar Fumes	mg/Nm³	Extraction followed by Gas Chromatography	-	ND
Poly Aromatic Hydrocarbon as PAHs	μg/Nm³	Gas Chromatography	-	ND

Note: ND: Not Detected.

For Visioniek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

(SO 14091: 2004 OFFS AS 18601 2607

Enulab/19/R-494 Ret.

Date: 02 03 / 19

STACK EMISSION MONITORING REPORT FOR JANUARY-2019

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

2. Date of Sampling

: 24.01.2019

3. Sampling Location

: ST-9: Stack attached to GTC-1 (Pot room)

Name of sampling Instrument : Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

: VCSPL Representative in presence of Aditya Aluminium Representative

6. Date of Analysis

: 29.01.2019 TO 31.01.2019

	Linit of			Analysis Results
Parameters	Measurement	Protocol	Emission Prescribe Standard (OSPCB)	ST-9
Stack Temperature	°C	IS 11255; Part 3 :1985 (Reaff 2008)	4	109.0
Velocity of Flue Gas	m/sec	IS-11255; Part 3 :1985 (Reaff 2008)	4	8.8
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3 :1985 (Reaff 2008)	-	2091431.0
Barometric Pressure	mm of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	4.	745.0
Concentration of Particulate Matter as PM	mg/Nm³	IS 11255: Part 1 :1985 (Reaff 2003)	50 *	9.5
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C	-	61.0
Oxides of Nitrogen as NO _x	mg/Nm³	EPA Method 7E	-	52.0
Particulate Fluoride	mg/Nm³	Distillation followed by Ion Electrode method	2	0.14
Gaseous Fluoride	mg/Nm ³	Ion Electrode method	9 11	0.52
Total Fluoride	mg/Nm³	Calculation	Δ.	0.66

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 - 2007

Envilablia /R-1009

2. Date of Sampling

Date: 05.03.19

STACK EMISSION MONITORING REPORT FOR FEBRUARY-2019

M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga 1. Name of Industry

: 14.02.2019 : ST-9; Stack attached to GTC-1 (Pot room) 3. Sampling Location

Vayubodhan Stack Sampler VSS 2 4. Name of sampling Instrument :

: VCSPL Representative in presence of Aditya Aluminium Representative 5. Sample Collected by

± 19.02.2019 TO 22.02.2019 6. Date of Analysis

				Analysis Results
Parameters	Unit of Measurement	Protocol	Emission Prescribe Standard (OSPCB)	ST-9
Stack Temperature	1	IS 11255; Part 3:1985 (RA 2008)	-	103,0
Velocity of Flue Gas	misec	IS 11255; Part 3 :1985 (RA 2008)	-	7,43
Quantity of Gas Flow	Nm Thr	IS 11255; Part 3 :1985 (RA 2008)	*	1798516.0
Barometric Pressure	nec Mg	IS 11255; Part 3 :1985 (RA 2008)	-	740.0
Concentration of Particulate Matter as PM	mg/Nm ⁵	IS 11255; Part (1985) (RA 2003)	50	4.61
Sulphur dioxide as SO ₂	northing?	EPA Method 6C	4	59.0
Oxides of Nitrogen as NO _x	1819/JSm ²	EPA Method 7E	-	50.0
Particulate Fluoride	mg/Nm ²	Distillation followed by Ion Electrode method		0.17
Gaseous Fluoride	mg/Nm ¹	Ion Electrode method	7	0.42
Total Fluoride	mo win	Calculation		0.59

For Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 . 2004 (MISAN 1800) 2007

Emulab /19 1R-1010

Date 05.03.19

STACK EMISSION MONITORING REPORT FOR FEBRUARY-2019

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

2. Date of Sampling

: 14.02.2019

3. Sampling Location

: ST-10: Stack attached to GTC-2 (Pot room)

4. Name of sampling Instrument : Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

: VCSPL Representative in presence of Aditya Aluminium Representative

6. Date of Analysis

19.02.2019 TO 22.02.2019

Parameters	Unit of Measurement	Protocol	Emission Prescribe	Analysis Results
	Tricatori Circuit		Standard (OSPCB)	ST-10
Stack Temperature	0(:	18 11255; Part 3 :1985 (RA 2008)	-	105.0
Velocity of Flue Gas	mbacc	1S 11255; Part 3 :1985 (RA 2008)	-	8.35
Quantity of Gas Flow	Nor (7 b)	IS 11255; Part 3:1985 (RA 2008)	-	1997307.0
Barometric Pressure	mm of Fig.	IS 11255; Part 3:1985 (RA 2008)	-	740.0
Concentration of Particulate Matter as PM	10) _c = 0)	IS 11255; Part 1:1985 (RA 2003)	50	7,17
Sulphur dioxide as SO ₂	me_"im	EPA Method 6C	4	62.0
Oxides of Nitrogen as NO _x	mg/Vm ^T	EPA Method 7E		55.0
Particulate Fluoride	mg Nai	Distillation followed by fon Electrode method	-	0.13
Gaseous Fluoride	may dun'	fon Electrode method	-	u.48
Total Fluoride	1000000	Calculation	2	0.61

For Visiontek Consultancy Services Pvt. Ltd.

Ref.:

Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 Offs AS 18001 : 2007

02/54

STACK EMISSION MONITORING REPORT FOR MARCH-2019

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit-Aditya Aluminium); Lapanga

2. Date of Sampling

: 20.03.2019

3. Sampling Location

: ST-9: Stack attached to GTC-1 (Pot room)

4. Name of sampling Instrument: Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

: VCSPL Representative in presence of Aditya Aluminium Representative

6, Date of Analysis

: 21.03.2019 TO 27.03.2019

				Analysis Results
Parameters	Unit of Measurement	Protocol	Emission Prescribe Standard (OSPCB)	ST-9
Stack Temperature	0C	IS 11255: Part 3 :1985 (Reaff 2008)	2	110.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3 :1985 (Reaff 2008)	*	8.2
Quantity of Gas Flow	Nm3/Ilr	IS 11255: Part 3 :1985 (Reaff 2008)	*	1985980
Barometric Pressure	mm of Hg	IS 11255: Part 3:1985 (Reaff 2008)	•	744.0
Concentration of Particulate Matter as PM	mg/Nm3	IS 11255: Part 1 :1985 (Reaff 2003)	50	6.5
Sulphur dioxide as SO2	mg/Nm3	EPA Method 6C	-	72.0
Oxides of Nitrogen as NOx	mg/Nm3	EPA Method 7E	-	48.0
Particulate Fluoride	mg/Nm3	Distillation followed by Ion Electrode method	-	0.21
Gaseous Fluoride	mg/Nm3	Ion Electrode method	2	0,44
Total Fluoride	mg/Nm3	Calculation	-	0.65

(An Enviro Engineering Consulting Cell)

TSO 14001 : 2004 OHSAS 18001 - 2007

Ret. Caulab/19/R-1960

Dette: 02/04/19

STACK EMISSION MONITORING REPORT FOR MARCH-2019

1. Name of Industry

: M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Date of Sampling

: 20.03.2019

3. Sampling Location

: ST-10; Stack attached to GTC-2

4. Name of sampling Instrument: Vayubodhan Stack Sampler VSS 2

5. Sample Collected by

: VCSPL Representative in presence of Aditya Aluminium Representative

6. Date of Analysis

: 21.03.2019 to 27.03.2019

Parameters	Unit of Measurement	Protocol	Emission Prescribe Standard (OSPCB)	Analysis Results ST-10
Stack Temperature	⁰ C	IS 11255: Part 3 :1985 (Reaff 2008)	-	108.0
Velocity of Flue Gas	m/sec	IS 11255: Part 3:1985 (Reaff 2008)	-	7.6
Quantity of Gas Flow	Nm³/Hr	IS 11255: Part 3:1985 (Reaff 2008)	-	1850327
Barometric Pressure	rum of Hg	IS 11255: Part 3 :1985 (Reaff 2008)	-	744.0
Concentration of Particulate Matter as PM	mg/Nm³	IS 11255: Part 1:1985 (Reaff 2003)	50	8.48
Sulphur dioxide as SO ₂	mg/Nm ³	EPA Method 6C		62.0
Oxides of Nitrogen as NOx	mg/Nm ³	EPA Method 7E		48.0
Particulate Fluoride	mg/Nm ³	Distillation followed by lon Electrode method	-	0.18
Gaseous Fluoride	mg/Nm³	Ion Electrode method		0.52
Total Fluoride	mg/Nm ³	Calculation	-	0.70

For Visiontek Consulting Services Pvt. Ltd.

																	Anr	exure-3
POTR	ROOM ONLIN	IE FUGITIVE I	MONITORING	(HF) REPORT	OCT '18 TO	MAR '19												

Oct-18	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	
Oct-18	01-10-18	02-10-18	03-10-18	04-10-18	05-10-18	06-10-18	07-10-18	08-10-18	09-10-18	10-10-18	11-10-18		13-10-18	14-10-18	15-10-18	16-10-18	17-10-18	18-10-18	19-10-18	20-10-18		22-10-18	23-10-18	24-10-18	25-10-18	26-10-18	27-10-18	28-10-18	29-10-18	30-10-18	31-10-18	Avg. in PPN
FUGITIVE EMISSION CH#1 (B001-B090) HF PPM	0.27	0.099	0.216	0.154	0.252	0.137	0.248	0.246	0.246	0.107	0.031	0.094	0.155	0.19	0.17	0.137	0.145	0.139	0.139	0.208	0.155	0.174	0.239	0.169	0.115	0.089	0.198	0.124	0.239	0.149	0.272	0.17
FUGITIVE EMISSION CH#2 (B091-B180) HF PPM	0.242	0.165	0.217	0.208	0.239	0.192	0.261	0.283	0.379	0.373	0.175	0.236	0.208	0.247	0.165	0.189	0.175	0.154	0.147	0.219	0.162	0.191	0.191	0.253	0.112	0.163	0.237	0.219	0.253	0.195	0.291	0.21
FUGITIVE EMISSION CH#3 (A091-A180) HF PPM	0.18	0.147	0.221	0.243	0.073	0.039	0.151	0.153	0.097	0.171	0.11	0.119	0.081	0.205	0.215	0.206	0.205	0.212	0.206	0.098	0.054	0.18	0.154	0.107	0.085	0.075	0.091	0.094	0.077	0.125	0.164	0.140
FUGITIVE EMISSION CH#4 (A001-A090) HF PPM	0.178	0.146	0.137	0.14	0.134	0.135	0.173	0.128	0.172	0.259	0.374	0.256	0.238	0.175	0.095	0.133	0.123	0.121	0.121	0.144	0.16	0.111	0.184	0.137	0.035	0.044	0.123	0.066	0.079	0.144	0.131	0.148
																														onthly Average		0.169
																													Mon	thly Average	mg/M3)	0.141
NOV'18	Thursday		Saturday			Tuesday					Sunday				Thursday			Sunday	Monday		Wednesday				Sunday			Wednesday				Avg. in PPM
	01-11-18	02-11-18	03-11-18	04-11-18	05-11-18	06-11-18	07-11-18	08-11-18	09-11-18	10-11-18	11-11-18	12-11-18	13-11-18	14-11-18	15-11-18		17-11-18	18-11-18	19-11-18		21-11-18	22-11-18	23-11-18	24-11-18	25-11-18	26-11-18	27-11-18	28-11-18	29-11-18	30-11-18		A*6
FUGITIVE EMISSION CH#1 (B001-B090) HF PPM	0.206	0.231	0.169	0.171	0.136	0.152	0.177	0.223	0.138	0.108	0.089	0.139	0.1	0.145	0.097	0.117	0.084	0.175	0.142	0.137	0.119	0.129	0.095	0.071	0.032	0.105	0.057	0.118	0.058	0.087		0.127
FUGITIVE EMISSION CH#2 (B091-B180) HF PPM	0.297	0.292	0.253	0.21	0.258	0.184	0.265	0.29	0.181	0.153	0.15	0.164	0.143	0.133	0.147	0.195	0.16	0.184	0.195	0.155	0.193	0.114	0.098	0.104	0.078	0.053	0.083	0.108	0.092	0.09		0.167
FUGITIVE EMISSION CH#3 (A091-A180) HF PPM	0.263	0.241	0.251	0.255	0.249	0.157	0.193	0.151	0.136	0.071	0.08	0.09	0.088	0.089	0.146	0.166	0.124	0.136	0.143	0.09	0.148	0.089	0.073	0.043	0.046	0.054	0.049	0.068	0.071	0.046		0.127
FUGITIVE EMISSION CH#4 (A001-A090) HF PPM	0.114	0.145	0.139	0.143	0.142	0.1	0.168	0.241	0.12	0.079	0.074	0.089	0.045	0.062	0.096	0.096	0.064	0.082	0.111	0.078	0.085	0.053	0.066	0.078	0.053	0.062	0.054	0.061	0.047	0.085		0.094
				1													1													onthly Average		0.129
																														thly Average		0.107
Dec-18	Saturday	Sunday	Monday				Friday	Saturday	Sunday	Monday	Tuesday	Wednesday		Friday	Saturday	Sunday	Monday		Wednesday		Friday	Saturday	Sunday	Monday	Tuesday			Friday	Saturday		Monday	Avg. in PPM
	01-12-18				05-12-18									14-12-18	15-12-18		17-12-18				21-12-18							28-12-18		30-12-18	31-12-18	<u> </u>
FUGITIVE EMISSION CH#1 (B001-B090) HF PPM	0.046	0.109	0.052	0.1	0.054	0.085	0.059	0.073	0.023	0.069	0.018	0.055	0.003	0.004	0.038	0.001	0	0	0.032	0.063	0.048	0.085	0.036	0.089	0.039	0.066	0.075	0.056	0.059	0.061	0.078	0.051
FUGITIVE EMISSION CH#2 (B091-B180) HF PPM	0.118	0.073	0.079	0.069	0.09	0.101	0.089	0.09	0.089	0.103	0.079	0.089	0.053	0.64	0.032	0.07	0	0.025	0.076	0.062	0.057	0.061	0.057	0.048	0.044	0.073	0.054	0.056	0.043	0.054	0.061	0.085
FUGITIVE EMISSION CH#3 (A091-A180) HF PPM	0.076	0.053	0.037	0.045	0.044	0.046	0.022	0.047	0.077	0.068	0.011	0.051	0.007	0.041	0.021	0.009	0	0	0.008	0.015	0.017	0.015	0.018	0.011	0.011	0.013	0.017	0.019	0.004	0.02	0.025	0.027
FUGITIVE EMISSION CH#4 (A001-A090) HF PPM	0.074	0.066	0.037	0.089	0.051	0.08	0.051	0.075	0.07	0.073	0.035	0.101	0.009	0.032	0.034	0.022	0	0	0.036	0.057	0.051	0.052	0.044	0.031	0.018	0.027	0.021	0.037	0.13	0.043	0.061	0.049
				1													1													onthly Averag		0.053
															-															thly Average		0.044
Jan-19	Tuesday		y Thursday	Friday	Saturday		Monday		Wednesday		Friday	Saturday	Sunday	Monday	Tuesday		Thursday	Friday	Saturday	Sunday	Monday		Wednesday		Friday	Saturday	Sunday	Monday		Wednesday		Avg. in PPM
	01-01-19				05-01-19								13-01-19	14-01-19	15-01-19		17-01-19	18-01-19			21-01-19					26-01-19	27-01-19	28-01-19		30-01-19	31-01-19	4
FUGITIVE EMISSION CH#1 (B001-B090) HF PPM	0.062	0.02	0.051	0.023	0.062	0.028	0.021	0.007	0.012	0.017	0.015	0.019	0.017	0.008	0.019	0.021	0	0	0.059	0.024	0.041	0.055	0.053	0.02 0.162	0.024	0.028	0.017	0.002	0.015	0.014	0.04	0.025
FUGITIVE EMISSION CH#2 (B091-B180) HF PPM FUGITIVE EMISSION CH#3 (A091-A180) HF PPM	0.0109	0.039	0.0259	0.043	0.038	0.033	0.045	0.041	0.036	0.032	0.032	0.039	0.004	0.082	0.065	0.074	0	0	0.091	0.072	0.051	0.093	0.133	0.162	0.045	0.028	0.075	0.052	0.055	0.017	0.078	0.064
FUGITIVE EMISSION CH#4 (A001-A090) HF PPM	0.0109	0.036	0.0259	0.029	0.028	0.032	0.024	0.014	0.036	0.032	0.032	0.028	0.022	0.011	0.058	0.036	0	0	0.027	0.024	0.031	0.063	0.086	0.059	0.105	0.002	0.024	0.013	0.017	0.017	0.024	0.034
FOGITIVE EMISSION CHW4 (A001-A090) HF PPW	0.036	0.019	0.02	0.025	0.043	0.033	0.027	0.019	0.029	0.024	0.026	0.036	0.043	0.028	0.058	0.049	- -	U	0.043	0.024	0.035	0.041	0.096	0.059	0.105	0.001	0.019	0.024		onthly Average		0.033
				1													1													thly Average		0.033
	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	141011	I Average	6/1413/	
Feb-19	01-02-19	02-02-19		04-02-19		06-02-19	07-02-19				11-02-19		13-02-19	14-02-19	15-02-19			18-02-19	19-02-19	20-02-19		22-02-19					27-02-19	28-02-19				Avg. in PPM
FUGITIVE EMISSION CH#1 (B001-B090) HF PPM	0.005	0.029	0.019	0.026	0.009	0.012	0.004	0.003	0.004	0.022	0.011	0.024	0.005	0.021	0.012	0.001	0.015	0.03	0.029	0.038	0.033	0.015	0.036	0.02	0.041	0.001	0.003	0.012				0.017
FUGITIVE EMISSION CH#2 (B091-B180) HF PPM	0.064	0.102	0.081	0.12	0.099	0.119	0.125	0.21	0.066	0.068	0.057	0.112	0.091	0.126	0.107	0.1	0.148	0.098	0.113	0.146	0.121	0.176	0.249	0.226	0.284	0.119	0.165	0.158				0.130
FUGITIVE EMISSION CH#3 (A091-A180) HF PPM	0.022	0.032	0.08	0.064	0.054	0.085	0.117	0.052	0.033	0.02	0.03	0.043	0.064	0.077	0.128	0.02	0.091	0.039	0.066	0.169	0.133	0.13	0.102	0.143	0.123	0.072	0.187	0.113				0.082
FUGITIVE EMISSION CH#4 (A001-A090) HF PPM	0.02	0.071	0.034	0.063	0.027	0.046	0.059	0.091	0.04	0.043	0.035	0.039	0.03	0.036	0.03	0.031	0.054	0.069	0.038	0.033	0.051	0.022	0.071	0.113	0.096	0.18	0.084	0.151				0.059
	•																												Mo	onthly Average	e(ppm)	0.072
																													Mon	thly Average	mg/M3)	0.060
Mar-19	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Avg. in PPM
	01-03-19	02-03-19	03-03-19	04-03-19	05-03-19	06-03-19	07-03-19	08-03-19	09-03-19	10-03-19	11-03-19	12-03-19	13-03-19	14-03-19	15-03-19	16-03-19	17-03-19	18-03-19	19-03-19	20-03-19	21-03-19	22-03-19	23-03-19	24-03-19	25-03-19	26-03-19	27-03-19	28-03-19	29-03-19	30-03-19	31-03-19	Avg. in PPIVI
FUGITIVE EMISSION CH#1 (B001-B090) HF PPM	0.009	0.009	0	0.01	0.016	0.011	0.004	0.007	0.001	0.003	0.005	0.001	0.001	0.001	0	0	0.001	0	0.004	0.014	0.001	0	0.004	0.002	0.001	0	0.0028	0.002	0	0	0	0.004
FUGITIVE EMISSION CH#2 (B091-B180) HF PPM	0.092	0.092	0.148	0.163	0.244	0.214	0.143	0.145	0.131	0.227	0.297	0.209	0.268	0.29	0.284	0.287	0.169	0.077	0.213	0.233	0.248	0.214	0.155	0.211	0.173	0.13	0.17	0.2	0.142	0.053	0.046	0.18
FUGITIVE EMISSION CH#3 (A091-A180) HF PPM	0.092	0.092	0.096	0.179	0.207	0.182	0.139	0.076	0.135	0.144	0.125	0.177	0.311	0.141	0.241	0.189	0.113	0.041	0.191	0.138	0.299	0.121	0.1	0.075	0.042	0.126	0.076	0.181	0.156	0.114	0.081	0.14
FUGITIVE EMISSION CH#4 (A001-A090) HF PPM	0.078	0.078	0.155	0.073	0.159	0.194	0.106	0.089	0.057	0.111	0.093	0.135	0.113	0.126	0.148	0.117	0.148	0.069	0.109	0.114	0.139	0.106	0.094	0.101	0.043	0.068	0.075	0.081	0.138	0.074	0.093	0.106
																														onthly Average		0.108
																													Mon	thly Average	(nea)	0.090

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref. Enulals /19/R-0489

Date: 08/04/19

FORAGE ANALYSIS REPORT

1.	Name of Industry	4	M/s Hindalco Industries Ltd, (Unit- Aditya Aluminium); Lapanga
2,	Date of Sampling	:	10.12.2018 TO 11.12.2018
3,	Nature of Sample	:	Vegetation Sample
4.	Sampling Locations	:	Thelkoli; Lapanga; Gurupali; Jangala; Bhadarpali; Bamloi; Tilaimal; Gumkarama; Ghichamura; Plant site.
5.	Sample collected by	2	VCSPL Representative
6.	Date of Analysis	1	12.12.2018 TO 18.12.2018

SI. No.	Date of Sampling	Name of the Location	Type of Species	Method of Analysis	Results (ppm)
1	10.12.2018	Thelkoli	Deisted Leaf (Colonius Malasses)		Fluoride
-		3.1.2.5.3.7.11.	Brinjal leaf (Solanum Melongena)	AOAC 975.04	1.2
2	10.12.2018	Lapanga	Tomato Leaf (Solanum lycopersicum)	AQAC 975,04	0.92
3	10,12.2018	Gurupali	Onion leaf (Allium Sepa)	AOAC 975.04	0.88
4	10.12.2018	Jangala	Flat Lima Beans leaf (Phaseolus Vulgaris)	AOAC 975.04	1.4
5	10,12,2018	Bhadarpali	Kosala Saga (Amaranthus Leaves)	AOAC 975.04	1.6
6	11.12.2018	Bomaloi	Charoli leaf (Buchanania Ianzan)	AOAC 975.04	1.4
7	11.12.2018	Tileimal	Flat Lima Beans leaf (Phaseolus Vulgaris)	AOAC 975.04	0.71
8	11.12.2018	Gumkarma	Brinjal leaf (Solanum Melongena)	AOAC 975.04	1.8
9	11.12,2018	Ghichamura	Cabbage (Brassica Oleracea)	AOAC 975.04	1.4
10	11.12.2018	Plant site	Bamboo leaf (Bambusa Vulgaris)	AOAC 975.04	1.6

For Vistantek Consultante Services Private Limited

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref. . Enufalo/19/R-0488

Date: 08/04/19

FORAGE ANALYSIS REPORT

L	Name of Industry	0	M/s Hindalco Industries Ltd, (Unit- Aditya Aluminium); Lapanga
2.	Date of Sampling	:	04.03.2019 TO 05.03.2019
3.	Nature of Sample	1	Vegetation Sample
4.	Sampling Locations	;	Thelkoli; Lapanga; Gurupali; Jangala; Bhadarpali; Bamloi; Tilaimal; Gumkarama; Ghichamura; Plant site.
5.	Sample collected by	1	VCSPL Representative in Presence of Aditya Aluminum Representative
6.	Date of Analysis	1	06.03.2019 TO 11.03.2019

Sl. Date of No. Sampling		pling Location Type of Species		Method of Analysis	Results (ppm)
1	04.03.2019	Thelkoli	Delated last/Calana Africa	1 200 200 200	Fluoride
2		12 12 12 12 12 12 12 12 12 12 12 12 12 1	Brinjal leaf (Solanum Melongena)	AOAC 975.04	1.6
-	04.03.2019	Lapanga	Tomato Leaf (Solanum lycopersicum)	AOAC 975.04	1.1
3	04.03.2019	Gurupali	Onion leaf (Allium Sepa)	AOAC 975.04	0.7
4	04.03.2019	Jangala	Flat Lima Beans leaf (Phaseolus Vulgaris)	AOAC 975.04	1.2
5	04.03.2019	Bhadarpali	Kosala Saga (Amaranthus Leaves)	AOAC 975.04	1.6
6	05.03,2019	Bomaloi	Charoli leaf (Buchanania lanzan)	AOAC 975.04	1.4
7	05.03.2019	Tileimal	Flat Lima Beans leaf (Phaseolus Vulgaris)	AOAC 975.04	1.2
8	05.03,2019	Gumkarma	Brinjal leaf (Solanum Melongena)	AOAC 975.04	
9	05.03.2019	Ghichamura	Cabbage (Brassica Oleracea)	AOAC 975.04	1.1
10	05.03,2019	Plant site	Bamboo leaf (Bambusa Vulgaris)	AOAC 975.04	0.88

For Visiontek Consultance Services Private Limited

NAME OF THE INDUSTRY:- ADITYA ALUMINIUM

STATUS OF UTILIZATION OF COAL ASH (FLY ASH AND BOTTOM ASH), For the Month of:-Oct 18 to March-2019

				The state of the s															
SI. N	o. Mon	enth	Year	Coal Consumption (MT)	Power Installed Capacity (MWH)	Power Generated (MWH)	Qunatity of Fly Ash generated (MT)	Quantity of Bottom Ash Generated (MT)	Total Ash Generated (MT)	Disposal Method	Brick Manufacturing (MT)	Supplied to cement industries (M/s Ultratech, M/s ACC & M/s OCL) in (MT)	Mine Void Filling (MT)	Utilization in Embankment/ Dyke Raising (MT)	Road Making (MT)	Low Lying area filling/land development (MT)	Through HCSD to Ash Pond		Agriculture/Hortic ulture Sector (MT)
7	Oct':	t'18	2018	317018	900	650.28	116386.61	4849.44	121236.1	Dry ash is being supplied to Cement Plants, fly ash Bricks unit and in low lying area development and remaining ash disposed through HCSD system to ash pond.	14.938	67730.65	0	0	0	18863.79	34627	0	0
8	Nov'	v'18	2018	299161	900	605.37	108099.18	4504.13	112603.3	Dry ash is being supplied to Cement Plants, fly ash Bricks unit and in low lying area development and remaining ash disposed through HCSD system to ash pond.	46.34	74238.06	0	0	0	17536.17	20782.74	0	0
9	Dec':	:'18	2018	365189	900	623.2	116871.36	4869.64	121741.0	Dry ash is being supplied to Cement Plants, ash brick making, used in low lying area development and remaining ash disposed through HCSD system to ash pond.	59.052	89713.97	0	0	0	16282.43	15685.55	0	0
10	Jan-:	-19	2019	345857	900	644.19	124459.20	5185.80	129645.0	Dry ash is being supplied to Cement Plants, ash brick making, used in low lying area development and remaining ash disposed through HCSD system to ash pond.	32.06	79068.05	0	0	0	17937.00	32607.80	0	0
11	Feb-	-19	2019	300077	900	573.33	106499.67	4437.49	110937.2	Dry ash is being supplied to Cement Plants, ash brick making, used in low lying area development and remaining ash disposed through HCSD system to ash pond.	36.26	78740.57	0	0	0	19599.18	12561.19	0	0
12	Mar-	r-19	2019	334635	900	638.39	122337.20	5097.38	127434.6	Dry ash is being supplied to Cement Plants, ash brick making, used in low lying area development and remaining ash disposed through HCSD system to ash pond.	106	86665.63	0	0	0	22326.83	18336.14	0	0
	Т	Total		1961937			694653.22	28943.88	723597.10		294.65	476156.93	0	0	0	112545.40	134600.09	0.00	0.00

(An Enviro Engineering Consulting Cell)

180 14001 2004 OHSAS 18001 - 2007

Ref. Envlab/19/R-0486

FLY ASH ANALYSIS REPORT

1. Name of Industry

: M/s Hindalco Industries Limited

Sampling Location

(Unit- Aditya Aluminium), Lapanga. : FA-01: CPP Fly Ash Silo

3. Date of Sampling

: 19.12.2018

4. Date of Analysis

: 20.12.2018 TO 26.12.2018

5. Sample Collected By

: VCSPL Representative.

Sl. No.	Parameters	Unit	Analysis Results		
A. Chemic	al Analysis		FA-01		
1	Na ₂ O	%	0.21		
2	MgO	%	0.94		
3	3 Al ₂ O ₃		23.2		
4	SiO ₂	%	54.2		
5	P ₂ O ₅	%	0.022		
6	SO ₃	%	1.8		
7	K ₂ O	%	0.81		
8	CaO	%	4.2		
9	TiO ₂	%	T+44		
10	MnO	0/0	0.18		
11	Fe ₂ O ₃	%	9.2		
B. Heavy N	Ietals Analysis		7.2		
1	Hg	%	< 0.001		
2	As	%	< 0.001		
3	РЬ	%	0.018		
4	Cr	%	< 0.002		
5	V	%	< 0.001		
6	Fe	%	4.6		
7	Co	%	< 0.001		
8	Cu	. %	0.064		
9	Ni	%	0.094		
10	Zn	%	0.056		
11	Sr	%	44		
12	Ba	%	< 0.001		

For Visioniek Consultance Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Rep. Forwhal 19 / R-0487

Date: 08/04/19

FLY ASH ANALYSIS REPORT

1. Name of Industry : M/s Hindalco Industries Limited

(Unit- Aditya Aluminium), Lapanga.

2. Sampling Location

: BA-01: CPP Bottom Ash Silo

3. Date of Sampling

: 19.12.2018

4. Date of Analysis

: 20.12.2018 TO 26.12.2018

5. Sample Collected By

; VCSPL Representative in presence of Aditya Aluminium Representative.

Sl. No.	Parameters	Unit	Analysis Results		
31. 140.	rarameters	L/HII	BA-01		
A. Cher	nical Analysis				
1	Na ₂ O	%	0.24		
2	MgO	%	1.8		
3	Al_2O_3	%	25.6		
4	SiO ₂	%	58.0		
5	P_2O_5	%	0.018		
6	SO_3	%	1.6		
7	K ₂ O	%	0.89		
8	CaO	%	3.6		
9	TiO ₂	%			
10	MnO	%	0.18		
11	Fe ₂ O ₃	%	6.9		
B. Heav	y Metals Analysis		11		
1	Hg	%	< 0.001		
2	As	%	< 0.001		
3	Ph	%	0.018		
4	Cr	%	< 0.002		
5	V	%	< 0.001		
6	Fe	%	5.6		
7	Co	- %	< 0.001		
8	Си	0/0	0.026		
9	Ni	%	0.092		
10	Zn	%	0.068		
11	Sr	%			
12	Ba	%	< 0.001		

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref.: Envlab/19/R-0474

Date 02/04/19

GROUND WATER QUALITY ANALYSIS REPORT-DEC 2018

1. Name of Industry : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga.

Sampling location : GW-1: Lapanga Village; GW-2: Pandlol Village; GW-3: Bamloi Village;

GW-4: Tilaimal Village; GW-5: Thelkoloi Village; GW-6: Ghichamura Village

GW-7: Gumkarama Village; GW-8: Chaltikra Village,

3. Date of sampling : 10.12.2018

4. Date of analysis : 11.12.2018 to 18.12.2018
5. Sample collected by : VCSPL Representative

SI.		Testing		Standard				Analysi	s Result			
No.	Parameter	Methods	Unit	as per IS - 10500:2012	GW-1	GW-2	GW-3	GW-4	GW-5	GW-6	GW-7	GW-8
1	pH Value	APELA 4500H B		6.5-8,5	7,7	7.4	7.6	6.9	6.8	7.2	7.4	7.1
2	Colour	APHA 2120 B, C	Hazen	5.	<1.0	2.0	2.0	2.0	<1.0	3.0	2.0	2.0
3	Tuste	APHA 2160 €	(4)	Agreeable	Agreeable	Agreeable	Agrecable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeabl
4	Odone	APHA 2150 B		Agrecable	Agreeable	Agreeabl						
3	Conductivity	APHA2510-B	jis/cin	-	178.0	142.6	139,6	146.2	182.8	188.8	170,2	168 (1
6	Turbidity	APHA 2130 B	NTU	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	€1,0	<1.0
7	Total Dissolved Solids	APHA 2540 C	mg/l	500	226.0	186.0	190.0	188.0	206.0	186.0	210.0	192.0
8	Total Hardness (as CaCO ₃)	APHA 2340 €	mg/l	200	66.0	60.0	56.0	48.0	68.0	52.0	62.0	56.0
7	Total Alkalimiy	APHA 2320 B	mu/l	200	52,0	50.8	51.2	52.0	56.0	48.8	52,8	54.0
10	Culcium (as Ca.)	APHA 3500Ca B	Гщи	-75	18.8	16,6	14.2	12.8	13.8	15.6	16.8	17.1
II	Magnesium (as Mg)	APHA 3500Mg B	mg/l	30	4.6	5.8	5.2	4.2	5.9	3.8	5.1	5.6
12	Residual, free Chiorine	APHA 4500CL B	mg/i	0.2	ND	ND	ND	ND	ND	Nb	ND -	ND
13:	Boron (as B)	APHA 4500B, B	mg/I	0.5	< 0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01
14	Chiloride (as CL)	APHA 4500CT B	mgd	250	20.2	21.8	22.2	26.0	24.0	22.0	18.0	20,0
15	Sulphate (as SO ₂)	APHA 4500 SQ. 2 E	mg/l	200	6.2	5.6	5.8	6.6	6.2	5.8	5.6	6.1
16	Flooride (as F)	APHA 4500F C	_01g/I	1.0	0.22	0.26	0.28	0.31	0.34	0.29	0.25	0.32
17	Nitrate (as NO)	APELA 4500 NO. E	Typm	45	1.8	1.6	2.1	2.4	2.2	1.5	1.4	1.6
18.	Sudium as Na	APHA3500-Na	Togetti	-	32.8	11.2	11.6	10.8	112	12.4	12.2	113
19	Potassium as K.	APHA 3500-K	mg/T	142	1.4	1.6	1.8	1.2	1.7	0.68	1.4	1.4
20	Phenohe Compounds (as C ₆ H ₂ OH)	APHA 5530 B,D	Tagm	0.001	<0.001	<0.001	<0.001	<0:001	< 0.001	<0.001	<0.001	<0.001
21	Cyanide (as CN)	APHA 4500 CN C,D	mg/l	0.05	ND.	ND	ND	ND.	ND	ND	ND	ND
22	Amonic Detergents (as MBAS)	APITA 5540 C	mg/j	0.2	<0.2	+:0.2	<0.2	40.2	-0.2	-0,2	rs0.2	<0.2
23	Cadmium (as Cd)	APHA 3111 B.C	mg/l	0,003	< 0.001	<0.001	<0.001	< 0.001	< 0.001	-20.001	<0.001	<0.001
24	Arsenic (as As)	APHA 3114 B	mg/l	0.01	<0.001	< 0.001	<0.0001	<0.001	<0.001	<0.001	< 0.001	<0.001
25	Copper (as Cu)	APHA 3111 B.C	my/l	0.05	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	=0,601	< 0.001	< 0.001
20	Lead (as Ph)	APHA 3111 B,C	mg/T	0.01	100,0>	-0.001	<0.001	<0.001	<0.001	100.01	-0.001	<0.001
27	Manganese (as Mn)	APHA 3500Mn B	mg/I	0.1	<0.001	< 0.001	<0.001	< 0.001	< 0.001	<8.901	100.0	<0.001
28	Iron (as Fe)	APHA 3500Fe. B	mg/l	0.3	0.26	0.24	0.26	0.21	0.18	0.16	0.22	0.24
29	Chromium (as Cr)	APHA 3500Cr B	mg/I	0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	≤0.05	< 0.05	=0,05
30	Selenium (as Se)	APHA 3114 B	my/l	0.01	< 0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	< 0.001	=0.001
31	Zinc (as Zn)	APHA 3111 B,C	Tgm	5	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
32	Aluminium as(Al)	APHA 3500 ALB	mjg/Ŧ	0,03	<0.001	-0.001	< 0.001	<0.001	< 0,001	~0.00i	≈9/.08 I	<0.001
33	Mercury (as Hg)	APHA 3500 Hg	mg/l	0.001	<0.001	-:0.00.1	<0.001	< 0.001	< 0.001	100.00	<0.001	-0.001
34	Mineral Oil	APHA 5220 B	mg/l	0.5	<0.001	<0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	≥0.001
35	Pesticides.	APHA 6630 B,C	mg/l	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
36.	E.Celi	APHA 9221-F	MPN/ 100 ml	Shall not be detectable in any 100 mi sample	Absent	Absent						
37	Total Coliforns	APHA922)-B	MPN/ 100 ml	Shall not be detectable in any 100 ml sample	Absent	Absent	Abseni	Abseni	Absent	Absent	Absent	Absent

Nate: CL: Columbiess, AL: Agreeable, U/O: Unobjectionable, ND: Not Detected.

For Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref.: Enwholo/19/R-0479

Date: 08/04/19

GROUND WATER QUALITY ANALYSIS REPORT-DEC 2018

1. Name of Industry : M/s Hindalco Industries Limited (Unit-Aditya Aluminium), Sambaipur

2. Sampling location : GW-1:Ash Pond area (Bore Well)

3. Date of sampling : 10.12.2018

Date of analysis : 11.12.2018 TO 18.12.2018
 Sample collected by : VCSPL Representative

SL		200.00	Standard as	2 7 1 1 2 7 1	Analysis Results
No.	Parameter	Unit	per IS - 10500:2012	Testing Method	GW-1
1	pH Value		6.5-8.5	APHA 4500 H ⁺ B	7.6
2.	Turbidity	NTU	5	APHA 2130B	1.8
3.	Conductivity	μs/em	-	APHA 2510 B	312.8
4.	Total Hardness(as CaCO ₁)	mg/l	200	APHA 2340 C	26,0
5.	Iron (as Fe)	mg/l	0,3	APHA 3500 Fe B	0.18
6.	Chloride (as CI)	mg/l	250	APHA 4500 CF B	42.0
7.	Dissolved Solids	mg/l	500	APHA 2540 C	156.0
8.	Calcium (as Ca)	mg/l	75	APHA 3500 Ca B	28.0
9.	Magnesium (as Mg)	mg/l	30	APHA 3500 Mg B	11.2
10.	Copper (as Cu)	mg/l	0.05	APHA 3111Cu B	< 0.001
11.	Sodium (as Na)	mg/l	4	APHA 3500Na B	<0.001
12,	Potassium (as K)	mg/l	-	APHA 3500 K B	< 0.001
13.	Manganese (as Mn)	mg/l	0.1	APHA 3111 B	< 0.005
14	Sulphate (as SO ₄)	mg/l	200	APHA 4500 SO ₄ ² E	4.8
15,	Nitrate (as NO ₃)	mg/l	45	APHA 4500 NO ₃ B	0.42
16.	Fluoride (as F)	mg/l	1.0	APHA 4500 F D	0.38
17.	Phenolic Compounds (as C ₆ H ₅ OH)	mg/l	0.001	APHA 5530 C	100.0>
18.	Mercury (as Hg)	mg/l	100.0	APHA 3112B	< 0.001
19.	Cadmium (as Cd)	mg/I	0.003	APHA 3111 B	< 0.001
20	Selenium (as Sc)	mg/l	0.01	APHA 3114 B	<0.001
21.	Arsenic (as As)	mg/l	0.01	APHA 3114 B	< 0.001
22.	Cyanide (as CN)	mg/I	0.05	APHA 4500 CN C.D	ND
23.	Lead (as Pb)	mg/l	0.01	APHA 3111 B	< 0.001
24	Zine (as Zn)	mg/l	5.0	APHA 3111 B	< 0.005
25.	Chromium (as Cr)	mg/l	0.05	APHA 3500 Cr B	< 0.005
26.	Alkalinity	mg/I	200	APHA 2320 B	36.6
27_	Aluminium as(Al)	mg/l	0.03	APHA 3500 ALB	< 0.001
28.	Boron (as B)	mg/l	0.5	APHA 4500 B	< 0.001

Note: ND: Not Detected ,BDL (Below detection limit)

For Visiontek Consultancy Services Pvt.Ltd

WITANG

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref.: Forwald 19 | R-0481

Date: 08/04/19

GROUND WATER QUALITY ANALYSIS REPORT-DEC 2018

1. Name of Industry

M/s Hindalco Industries Limited (Unit-Aditya Aluminium), Sambalpur

2. Sampling location

GW-3: Ash Pond area Bore well

3. Date of sampling

10.12.2018

4. Date of analysis

11.12.2018 TO 18.12.2018

5. Sample collected by

VCSPL Representative

SI. No.	Parameter	Unit	Standard as per IS -	Testing Method	Analysis Results
140.			10500:2012	Section of Management	GW-3
Ţ,	pH Value	**	6.5-8.5	APHA 4500 H B	7.8
2.	Turbidity	NTU	5	APHA 2130B	<1.0
3.	Conductivity	μs/cm		APHA 2510 B	278.8
4.	Total Hardness (as CaCO ₃)	mg/l	200	APHA 2340 C	14.0
5.	Iron (as Fe)	mg/l	0.3	APHA 3500 Fe B	0.24
6.	Chloride (as Cl)	mg/I	250	APHA 4500 CT B	36.0
7.	Dissolved Solids	mg/l	500	APHA 2540 C	118.0
8.	Calcium (as Ca)	mg/l	75	APHA 3500 Ca B	8.8
9.	Magnesium (as Mg)	mg/l	30	APHA 3500 Mg B	2.6
10.	Copper (as Cu)	mg/l	0.05	APHA 3111Cu B	BDL
11.	Sodium (as Na)	mg/l	wite:	APHA 3500Na B	BDL
12,	Potassium (as K)	mg/l		APHA 3500 K B	BDL
13.	Manganese (as Mn)	mg/I	0.1	APHA 3111 B	BDL
14	Sulphate (as SO ₄)	mg/l	200	APHA 4500 SO ₄ ² -E	3.6
15.	Nitrate (as NO ₃)	mg/l	45	APHA 4500 NO ₃ B	0.42
16,	Fluoride (as F)	mg/l	1.0	APHA 4500 F D	0.46
17.	Phenolic Compounds (as C ₆ H ₅ OH)	mg/I	0.001	APHA 5530 C	BDL
18.	Mercury (as Hg)	mg/l	0.001	APHA 3112B	BDL
19.	Cadmium (as Cd)	mg/l	0.003	APHA 3111 B	BDL
20	Selenium (as Se)	mg/l	0.01	APHA 3114 B	BDL
21.	Arsenic (as As)	mg/i	0.01	APHA 3114 B	BDL
22.	Cyanide (as CN)	mg/l	0.05	APHA 4500 CN C.D	BDL
23.	Lead (as Pb)	mg/I	0.01	APHA 3111 B	BDL
24.	Zinc (as Zn)	mg/l	5.0	APHA 3111 B	BDL
25.	Chromium (as Cr)	mg/l	0.05	APHA 3500 Cr B	BDL
26.	Alkalinity	mg/1 -	200	APHA 2320 B	40.0
27.	Aluminium as(Al)	mg/l	0.03	APHA 3500 ALB	BDL
28.	Boron (as B)	mg/l	0.5	APHA 4500 B	BDL

Note: ND: Not Detected, BDL (Below detection limit)

For Visionte Consultancy Services Pvt.Ltd

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref. Emulalo /19/R-0482

Date: 08/04/19

GROUND WATER QUALITY ANALYSIS REPORT-DEC 2018

1. Name of Industry

M/s Hindalco Industries Limited (Unit-Aditya Aluminium), Sambalpur

2. Sampling location

GW-4: Ash Pond area Bore well

Date of sampling

10.12.2018

4. Date of analysis

11.12.2018 TO 18.12.2018

5. Sample collected by

VCSPL Representative

SI.	Parameter	Unit	Standard as per IS -	Therefore Bridge of	Analysis Results
No.	Tarancies	Citt	10500:2012	Testing Method	GW-4
1:	pH Value		6.5-8.5	APHA 4500 H ⁺ B	7.12
2,	Turbidity	NTU	5	APHA 2130B	1.2
3.	Conductivity	μs/cm	-	APHA 2510 B	326.0
4.	Total Hardness (as CaCO ₃)	mg/l	200	APHA 2340 C	18.0
5.	Iron (as Fe)	mg/l	0.3	APHA 3500 Fe B	0.21
6.	Chloride (as Cl)	mg/l	250	APHA 4500 CI B	42.0
7.	Dissolved Solids	mg/l	500	APHA 2540 C	104.0
8.	Calcium (as Ca)	mg/1	75	APHA 3500 Ca B	8.6
9,	Magnesium (as Mg)	mg/l	30	APHA 3500 Mg B	1.8
10.	Copper (as Cu)	mg/l	0.05	APHA 3111Cu B	BDL
11.	Sodium (as Na)	mg/l	46	APHA 3500Na B	BDL
12.	Potassium (as K)	mg/l	24	APHA 3500 K B	BDL.
13.	Manganese (as Mn)	mg/l	0.1	APHA 3111 B	BDL
14	Sulphate (as SO ₄)	mg/l	200	APHA 4500 SO ₄ E	3.6
15.	Nitrate (as NO ₃)	mg/I	45	APHA 4500 NO ₃ B	0.26
16.	Fluoride (as F)	mg/f	1.0	APHA 4500 F D	0.18
17.	Phenolic Compounds (as C ₆ H ₅ OH)	mg/l	0.001	APHA 5530 C	BDL
18.	Mercury (as Hg)	mg/l	0.001	APHA 3112B	BDL
19.	Cadmium (as Cd)	mg/l	0.003	APHA 3111 B	BDL
20	Selenium (as Se)	mg/l	0.01	APHA 3114 B	BDL
21.	Arsenic (as As)	mg/l	0.01	APHA 3114 B-	BDL
22.	Cyanide (as CN)	mg/l	0.05	APHA 4500 CN C.D	BDL
23.	Lead (as Pb)	mg/I	0.01	APHA 3111 B	BDL
24.	Zinc (as Zn)	mg/l	5.0	APHA 3111 B	BDL
25.	Chromium (as Cr)	mg/l	0.05	APHA 3500 Cr B	BDL
26.	Alkalinity	mg/I	200	APHA 2320 B	36.0
27_	Aluminium as(Al)	mg/l	0.03	APHA 3500 Al B	BDL,
28.	Boron (as B)	mg/l	0.5	APHA 4500 B	BDL.

Note: ND: Not Detected, BDL (Below detection limit)

For Visiontek Consultancy Services Pvt.Ltd

SA W OF

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref.: Envlab/19/R-0475

GROUND WATER QUALITY ANALYSIS REPORT-MARCH 2019

1. Name of Industry

M/s Hindalco Industries Limited (Unit-Aditya Aluminium), Sambalpur

2. Sampling location

GW-I:Ash Pond area (Bore Well)

Date of sampling
 Date of sampling

14.03,2019 15.03,2019 TO 22.03,2019

Date of analysis
 Sample collected by

VCSPL Representative

SI, No.	Parameter	hice.	Standard as per		Analysis Result
51. (NO.	Parameter	Unit	IS -10500:2012	Testing Method	GW-I
1,	pH Value	**	6,5-8,5	APHA 4500 H ⁺ B	7.61
2.	Turbidity	NTU	5	APHA 2130B	1.0
3.	Conductivity	µs/cm	44	APHA 2510 B	274,0
4.	Total Hardness (as CaCO ₃)	mg/l	200	APHA 2340 C	16.2
5	Iron (as Fe)	mg/l	0.3	APHA 3500 Fe B	00.18
6.	Chloride (as Cl.)	mg/I	250	APHA 4500 CT B	40,2
7.	Dissolved Solids	mg/l	500	APHA 2540.C	164.0
8.	Calcium (as Ca)	mg/I	75	APHA 3500 CaB	28.2
9,	Magnesium (as Mg)	mo/l	30	APHA 3500 Mg B	12,6
10.	Copper (as Cu)	mg/l	0.05	APHA 3111Cu B	< 0.001
11.	Sodium (as Na)	mg/I	-	APHA 3500Na B	< 0.001
12.	Potassium (as K)	mg/I	4	APHA 3500 K B	< 0.001
13.	Manganese (as Mn)	mg/l	0.1	APHA 3111 B	< 0.005
14	Sulphate (as SO ₄)	mg/I	200	APHA 4500 SO ₄ , E.	5.4
15.	Nitrate (as NO ₃)	mg/l	45	APHA 4500 NO ₃ B	0.43
16.	Fluoride (as F)	mg/l	1.0	APHA 4500 F-D	0.42
17,	Phenolic Compounds (as C ₆ H ₅ OH)	mg/I	0.001	APHA 5530 C	<0.001
18.	Mercury (as Hg)	mg/l	0.001	АРИА 3112В	< 0.001
19.	Cadmium (as Cd)	mg/l	0.003	APHA 3111 B	< 0.001
20	Selenium (as Se)	mg/l	0.01	APHA 3114 B	< 0.001
21.	Arsenic (as As)	mg/I	0.01	APHA 3114 B	≤0.001
22.	Cyanide (as CN)	mg/l	0.05	APHA 4500 CN C,D	ND
23.	Lead (as Pb)	mg/l	10.0	APHA 3111 B	< 0.001
24.	Zinc (as Zn)	mg/l	5.0	APHA 3111 B	< 0.005
25.	Chromium (as Cr)	mg/l	0.05	APHA 3500 Cr B	< 0.005
26.	Alkalinity	mg/l	200	APHA 2320 B	48.0
27.	Aluminium as(Al)	mg/I	0.03	APHA 3500 ALB	< 0.001

0.5

28. Boron (as B)

Note: ND: Not Detected

For Visionak Consultance Services Pvt.Ltd

< 0.001

APHA 4500 B

mg/l

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref. Lowlals /19/R-0477

Date 08/04/19

GROUND WATER QUALITY ANALYSIS REPORT-MARCH 2019

1. Name of Industry

t M/s Hindalco Industries Limited (Unit-Aditya Aluminium), Sambalpur

2. Sampling location

GW-3: Ash Pond area Bore well

3. Date of sampling

14.03.2019

4. Date of analysis

15.03.2019 TO 22.03.2019

5. Sample collected by

VCSPL Representative

SI. No.	Parameter	Unit	Standard as per	Testing Method	Analysis Results
NO.		1.100	IS -10500:2012	1.00.00	GW-3
1.	pH Value	**	6.5-8.5	APHA 4500 H° B	7.36
2.	Turbidity	NTU	5	APHA 2130B	<1.0
3.	Conductivity	μs/cm		APHA 2510 B	286.0
4,	Total Hardness (as CaCO ₃)	mg/l	200	APHA 2340 C	20.0
5.	Iron (as Fe)	mg/l	0.3	APHA 3500 Fe B	0.26
6	Chloride (as C1)	mg/l	250	APHA 4500 CT B	32.8
7.	Dissolved Solids	mg/l	500	APHA 2540 C	118.0
8.	Calcium (as Ca)	mg/l	75	APHA 3500 CaB	24.0
0	Magnesium (as Mg)	mg/l	30	APHA 3500 Mg B	11.6
10.	Copper (as Cu)	mg/l	0.05	APHA 3111Cu B	BDL
11.	Sodium (as Na)	mg/l	44	APHA 3500Na B	BDL
12.	Potassium (as K)	mg/l		APHA 3500 K B	BDI.
13.	Manganese (as Mn)	mg/l	0.1	APHA 3111 B	BDL.
14	Sulphate (as SO ₄)	mg/l	200	APHA 4500 SO ₄ 2-E	4.2
15.	Nitrate (as NO ₃)	mg/l	45	APHA 4500 NO _x B	0.38
16.	Fluoride (as F)	mg/l	1.0	APHA 4500 F D	0.41
17.	Phenolic Compounds (as C ₆ H ₅ OH)	mg/l	0.001	APHA 5530 C	BDI.
18.	Mercury (as Hg)	mg/I	0.001	APHA 3112B	BDL
19.	Cadmium (as Cd)	mg/l	0.003	APHA 3111 B	BDL
20	Selenium (as Se)	ing/I	0.01	APHA 3114 B	BDL
21.	Arsenic (as As)	mg/I	0.01	APHA 3114 B	BDL
22,	Cyanide (as CN)	mg/I	0,05	APHA 4500 CN C.D	BDL
23.	Lead (as Pb)	mg/l	0.01	APHA 3111 B	BDL
24.:	Zinc (as Zn)	mg/l	5.0	APHA 3111 B	BDL
25.	Chromium (as-Cr)	mg/l	.0.05	APHA 3500 Cr B	BDL
26.	Alkalinity	mg/l	200	APHA 2320 B	38.0
27.	Aluminium as(Al)	mg/l	0.03	APHA 3500 ALB	BDL
28.	Boron (as B)	mg/l	0.5	APHA 4500 B	BDL

Note: ND: Not Detected, BDL (Below detection limit)

For Visionitek Consultancy Services Pvt.Ltd

(An Enviro Engineering Consulting Cell)

48O 14001 2004 OFISAS 18001 : 2007

Ref.: Enwlab/19/R-0478

Daile: 08/04/19

GROUND WATER QUALITY ANALYSIS REPORT-MARCH 2019

1. Name of Industry

M/s Hindalco Industries Limited (Unit-Aditya Aluminium), Sambalpur

Sampling location

GW-4: Ash Pond area Bore well (Bamaloi)

3. Date of sampling

14.03.2019

Date of analysis
 Sample collected by

15.03.2019 TO 22.03.2019 VCSPL Representative

SI.	Parameter	Unit	Standard as per	Testing Method	Analysis Results
No.	T III IIII CIC		IS -10500:2012	reating interned	GW-4
I.	pH Value	-	6.5-8.5	APHA 4500 H ⁺ B	7.19
2.	Turbidity	NTU	5	APHA 2130B	<1.0
3.	Conductivity	μs/cm	-2	APHA 2510 B	308.0
4.	Total Hardness (as CaCO ₃)	mg/l	200	APHA 2340 C	22.0
5.	Iron (as Fe)	mg/l	0.3	APHA 3500 Fe B	0.28
6.	Chloride (as Cl)	mg/I	250	APHA 4500 Cl' B	41.0
7.	Dissolved Solids	mg/l	500	APHA 2540 C	126,0
8.	Calcium (as Ca.)	mg/l	75	APHA 3500 Ca B	11.2
9.	Magnesium (as Mg)	mg/l	30	APHA 3500 Mg B	7.8
10.	Copper (as Cu)	mg/I	0.05	APHA 3111Cu B	BDL
11.	Sodium (as Na)	mg/l	***	APHA 3500Na B	BDL
12.	Potassium (as K)	mg/l	44	APHA 3500 K B	BDL
13.	Manganese (as Mn)	mg/l	0.1	APHA 3111 B	BDL
14	Sulphate (as SO ₄)	mg/l	200	APHA 4500 SO ₄ ² E	3.8
15.	Nitrate (as NO ₃)	mg/l	45	APHA 4500 NO ₃ B	0.26
16.	Fluoride (as F)	mg/l	1.0	APHA 4500 F D	0.22
17.	Phenolic Compounds (as C ₀ H ₂ OH)	mg/l	0.001	APHA 5530 C	BDL
18.	Mercury (as Hg)	mg/l	0.001	APHA 3112B	BDL
19.	Cadmium (as Cd)	mg/l	0.003	APHA 3111 B	BDL
20	Selenium (as Se)	mg/l	0.01	APHA 3114 B	BDL
21,	Arsenic (as As)	mg/l	0.01	APHA 3114 B	BDL
22,	Cyanide (as CN)	mg/I	0.05	APHA 4500 CN C,D	BDL
23.	Lead (as Pb)	mg/l	0.01	APHA 3111 B	BDL
24.	Zinc (as Zn)	mg/l	5.0	APHA 3111 B	BDL
25.	Chromium (as Cr)	mg/l	0.05	APHA 3500 Cr B	BDL
26.	Alkalinity	mg/l	200	APHA 2320 B	38.0
27.	Aluminium as(Al)	mg/l	0.03	APHA 3500 ALB	BDL
28.	Boron (as B)	mg/l	0.5	APHA 4500 B	BDL

Note: ND: Not Detected, BDL (Below detection limit)

For Visiontel Consultancy Services Pvt.Ltd

ACTION PLAN FOR ACHIEVING33% GREEN BELT DEVELOPMENT

Besides the bio-aesthetic value, the objective of greenbelt development is to reduce the effects of pollutants, arresting movement of dust. A composition of fast growing tall, medium, small trees will make the greenbelt functionally viable.

Land description:

	Area in Hectare	Area in Acre
Total area:	1347.35	3327.95
Greenbelt area	444.62	1098.21
Total area covered so far	217.04	537
Remaining area for green belt development	227.58	562

Year	Area (Ha)	Area (Acres)	No of sapling to be
			planted
2019-20	40	98.8	50000
2020-21	45	111.2	1,12,000
2021-22	45	111.2	1,12,000
2022-23	45	111.2	1,12,000
2023-24	52.58	129.9	1,30,000
Total	272.58		5,16,000

Selection of species:

Species which have proven ability to withstand the factory premises & suggested by the Divisional Forest Office, Sambalpur. A guideline for developing greenbelt by Central Pollution Control Board has also been considered. The fast growing species are:

1.	Albizzialebbeck	(Siris)
2.	Azadirachtaindica	(Neem)
3.	Dalbergiasissoo	(Shisham)
4.	Pongamiapinnata	(Karanj)
5.	Peltophorrumferrugineum	(Radhachuda)
6.	Delonixregia	(Gulmohar)
7.	Samaneasaman	(Badachakunda)
8.	Casiaseamia	(Rani chakunda)
9.	Bauhinia sp.	(kanchana)
10	. Tecomagaudichaudi	(Tecoma)
11. Thevetianerifolia (Kaniara)		
12. Nerium oleander (Karabira)		
13	. Ceasalpineapuchirima	(ceasalpinea

COMPLIANCE TO CREP GUIDELINES FOR SMELTER

Compliance Status up to March 2019

Sr.	Particulars	Compliance
No.	rai ticulai s	Compliance
1	Environmental clearance for new smelters to be given by MoEF only with pre-baked technology	Smelter design is based on pre-baked technology only.
2	Fluoride emissions should be limited to 0.8 kg/ton of aluminium production and dry	Fluoride emissions is being controlled by installing GTC & FTC below 0.8 kg/ton of
3	scrubbing of fluorides Fluoride consumption in the smelter should be limited to 10 kg/ton of aluminium produced	aluminium metal produced. Fluoride consumption (as F) is 9.02 kg/ton of aluminium production in FY 18-19.
4	The fluoride in forage should be limited to Average of 12 consecutive months - 40 ppm Average of 2 consecutive months - 60 ppm One month - 80 ppm Regular monitoring data to be submitted to SPCB and CPCB.	Forage fluoride is being monitored on quarterly basis as a part of post project monitoring activities. The monitored data is being regularly submitted to SPCB and CPCB. (Please Ref: Annexure-4)
5	The average life of the pots should be 2500 days. The possibility of using the SPL in cement or steel industry after recovery of aluminium fluoride should be explored.	The plant is designed for longer life of pots. SPL generated is being supplied (carbon part) to authorised reprocessors. The trial has been completed for disposal of Refractory part of SPL and we understand that Protocol has been issued to M/s Ramky for safe disposal in secured landfill area. M/s Ramky is establishing its facility for treatment and disposal of SPL Refractory part in its CHW-TSDF. Till that time we have stored it under covered shed.
6	The SPL should be disposed in secured landfill.	The spent pot lining generated from the smelter is having two parts. Carbon part is being supplied to M/s Green Energy Limited, Sambalpur for reprocessing and utilization, in this way the carbon part is completely recycled. Refractory part will be disposed to CHW-TSDF.
7	Achieving particulate matter limit of 50 mg/Nm3 in anode baking furnace	It is being Complied with.

COMPLIANCE TO CREP GUIDELINES FOR CPP

Compliance Status up to March 2019

Sr.	Conditions	Compliance
No. 1	Implementation of Environmental Standards (emission & effluent) in non- compliant* Power Plants (31 & 27) - Submission of action plan: June 30, 2003 - Placement of order for Pollution of control equipment: September, 2003 - Installation & commission: December 31, 2005	Not Applicable
2	For existing thermal power plants, a feasibility study shall be carried out by Central Electricity Authority (CEA) to examine possibility to reduce the particulate matter emissions to 100 mg/Nm3. The studies shall also suggest the road map to meet 100 mg/Nm3. The studies shall also suggest the road map to meet 100 mg/Nm3 wherever found feasible. CEA shall submit the report by March 2004.	Not Applicable
3	New / expansion power projects to be accorded environmental clearance on or after1.4.1.2003 shall meet the limit of 100 mg/Nm3 for particulate matter.	Complied. SPM emission well below stipulated limit of 50 mg/Nm3
4	Development of SO ₂ & NO _X emission standards for coal based plants by December 2003. - New/ expansion power projects shall meet the limit of SO ₂ & NO _X w.e.f. 1.1.2005. - Existing power plants shall meet the limit of SO2 & NOX w.e.f.1.1.2006.	Standard for SO ₂ & NOx has been published by MOEF.
5	Install/activate opacity meters/ continuous monitoring system in all the units by December 31, 2004 with proper calibration system.	Continuous monitoring system installed in the stacks attached to Power Plant for monitoring of PM, SO ₂ & NOx.
6	Development of guidelines/ standards for mercury and other toxic heavy metals emissions by December 2003.	Standard for Hg emission has been published by MOEF&CC.
7	Review of stack height requirement and guidelines for power plants based on micro meteorological data by June 2003	Guideline has been published for stack height by MOEFCC in this regard.
8	Implementation of use of beneficiated coal as per GOI Notification: Power plants will sign fuel supply agreement (FSA) to meet the requirement as per the matrix prepared by CEA for compliance of the notification as short term measure. Options/mechanism for setting up of coal washeries as a long term measure	Not Applicable

Annexure-10

	Annexure-1		
	* Coal India will up its own washery * Sate Electricity Board to set up its own washery * Coal India to ask private entrepreneurs to set up washeries for CIL and taking washing charges * SEBs to select a private entrepreneur to set up a washery near pit- head installation of coal beneficiation plant		
9	Power plants will indicate their requirement of abandoned coal mines for ash disposal & Coal India/MOC shall provide the list of abandoned mines by June 2003 to CEA.	Not Applicable	
10	Power plants will provide dry ash to the users outside the premises or uninterrupted access to the users within six months.	It is being Complied with.	
11	Power Plants should provide dry fly ash free of cost to the users	Dry fly ash is being provided to the users free of cost.	
12	State P.W.Ds/ construction & development agencies shall also adhere to the specifications/Schedules of CPWD for ash based products utilization MoEF will take up the matter with State Governments.	Not Applicable	
13 (i)	New plants to be accorded environmental clearance on or after 1.04.2003 shall adopt dry fly ash extraction or dry disposal system or Medium (35-40%) ash concentration slurry disposal system or Lean phase with hundred percent ash waste recirculation system depending upon site specific environmental situation.	It has been installed as part of the Ash Handling Package.	
13 (ii)	Existing plants shall adopt any of the systems mentioned in 13(i)by December 2004	Implemented	
14	Fly ash Mission shall prepare guidelines/manuals for fly ash utilization by March 2004.	Noted	
15	New plants shall promote adoption of clean coal and clean power generation technologies * Units will submit bank guarantee to respective SPCB	Noted	

POINT-WISE COMPLIANCE TO THE POINTS RAISED DURING PUBLIC HEARING OF ADITYA ALUMINIUM

SI.	POINTS RAISED	COMPLIANCE STATUS
No.		
1	The Project Proponent should provide employment to the locals on priority basis.	The industry has already provided employment to the locals based on the eligibility in the ongoing projects and they are committed to do so in the proposed expansion project.
2	The Industry should establish an ITI training centre to train the young people in technical field so as to enable them for getting suitable employment in the plant.	The industry has proposed to upgrade the existing ITI at Rengali to facilitate the training programme for the project affected people for the technical jobs.
3	The Industry should carry out massive plantation in the vacant spaces of the surrounding villages, R.R colony etc. Trees which are not under the purview of the core plant area are to be protected and minimum 25% of the project area to be made green cover.	The industry has already planted 3, 80,500 saplings inside the factory premises till FY 18-19. Also, the industry has started plantation in the vacant spaces of the surrounding R.R. Colony and have distributed saplings to the villagers in the plant surrounding villages.
4	The Industry should inform the Public about the air pollution control measures to be adopted in the proposed plant for control of air pollution and also proactive measures to be taken by the company for control of rise in ambient temperature. Pollution measurement machines to be installed in every villages and pollution control committees to be formed to regulate the pollution.	The industry has installed ESPs, Bag filters etc to control air pollution. Greenbelt development and selecting the best environment friendly technology & equipment's for Smelter and Power plants are some of the proactive measures taken by the Company. Online ambient air quality monitoring stations are being installed inside the plant area for information on real time information on different pollutants.
5	The Project Proponent should inform the public about the peripheral developmental works to be carried out in future.	Peripheral developmental works are being carried out in consultation with the Gram Panchayats and villagers as per the CSR guideline.
6	The industry should make necessary arrangements for provision of drinking water in the affected area.	The industry has been supplying drinking water through tankers, into the project affected villages in coordination with RWSS, BDO and Sarpanch of every Gram Panchayats
7	The industry should make necessary arrangement to provide round the clock doctors for better medical service in the Lapanga area.	The industry has been very actively contributing the greater causes of Health provided 10 maternity beds to Rengali PHC, Conducted Pulse Polio facilitation in coordination with CHC Laida for 4634 nos of children, Adolescent healthcare and Nutrition programs conducted in the villages. First Aid centre has facility to local areas for free treatment by reputed doctors is

	The Industry should make alternate	on. Provided free treatment facility to 745 nos of local people with free treatment, medicine and consultation. The industry is getting water from the Hirakud
8	arrangement to source water instead of deep bore wells in & around the project area.	Reservoir to meets the all the requirements of the Industry.
9	The industry should give financial support to grow small scale industries in the localities.	The industry has assured to give support to grow the livelihood of the villagers as per their CSR policy. However, many training programs have been conducted for self-employment such as Vegetable farming, Phenol making, Hand wash making, Tailoring, Plantation & various social/health awareness programs, saving programs, to the 63 nos of SHGs adopted by Industry.
10	The industry should pay financial support for each local traditional festival to villagers. Cremation ground should be provided in each village. Alternate Football ground to be provided to Bomaloi villagers as the company is occupying the existing football ground.	We are already providing financial support for each local Traditional festival to the villagers. We have already constructed one football ground at Bomaloi. We conduct football tournaments at different villages every year as a part of promoting Rural sports. The football grounds are maintained every year by industry. Two Cremation grounds have been constructed last year.
11	The industry should provide community toilets at the surrounding affected villages. Special care to be taken for physical handicapped persons in the affected areas	We have already provided Toilets to each house in village pitapali & community toilets in village Bomaloi & Tileimal. Physically challenged people are continuously supported by the company.

Expense incurred under Enterprise Social Commitment till March 2019:

SI.	Description	Amount Spent (In	Remarks
Nos.		Crores)	
1	G D Birla Medical Research and Education Foundation for	20.25	
	School at Kurki		
2	Land taken on Lease from IDCO for School at Kurki	9.10	
3	Sponsorship of Kalinga Lancers in Indian Hockey league Fy15, Fy16 & Fy17	4.50	
4	CSR expenses in & around Aditya Aluminium including Hirakud areas in FY17	7.61	
5	Sponsorship for Asian Athletic Championship 2017	0.50	
6	CSR expenses in & around Aditya Aluminium including Hirakud	4.65	
	areas during April 18 to Sept 18		
	Total Expense	46.61	_

Aditya Aluminium intends to continue with the following activities under Enterprise Social Commitment like:-

- a) Infrastructure development in villages around the Project area.
- b) Drinking Water supply facilities.
- c) Green cover development in collaboration with State Govt. departments.
- d) Football play ground or mini stadium in Bomaloi village, as stated in the minutes of Public consultation held before environmental clearance.
- e) Free distribution of school books & bags to children.
- f) Constructing Toilets for girls in schools/villages.
- g) Scholarship to poor, talented students in the schools.
- h) Providing Ash brick manufacturing machines to unemployed youth in the villages and one time assistance to establish the Unit.
- Contributing to the development of Railway infrastructures in consultation with the railway authorities (e.g., ROB).
- j) Implementation of skill development programmes and providing necessary infrastructure to existing ITI,
 Polytechnic colleges.
- k) Development of Schools in the State of Odisha.

The remaining 5% amount for Phase-1 capacity (i.e., Smelter of 0.36 MTPA and CPP of 900 MW) is proposed to be spent over a period of 39 years from the year 2017.

CSR INITIATIVES FY-2018-19

UNIT: ADITYA ALUMINIUM

Our Key Focus Areas of CSR

Reaching ...

- Villages 18
- Population 22000
- Blocks 2
- District Sambalpur

Expenses Status of Aditya Aluminium CSR

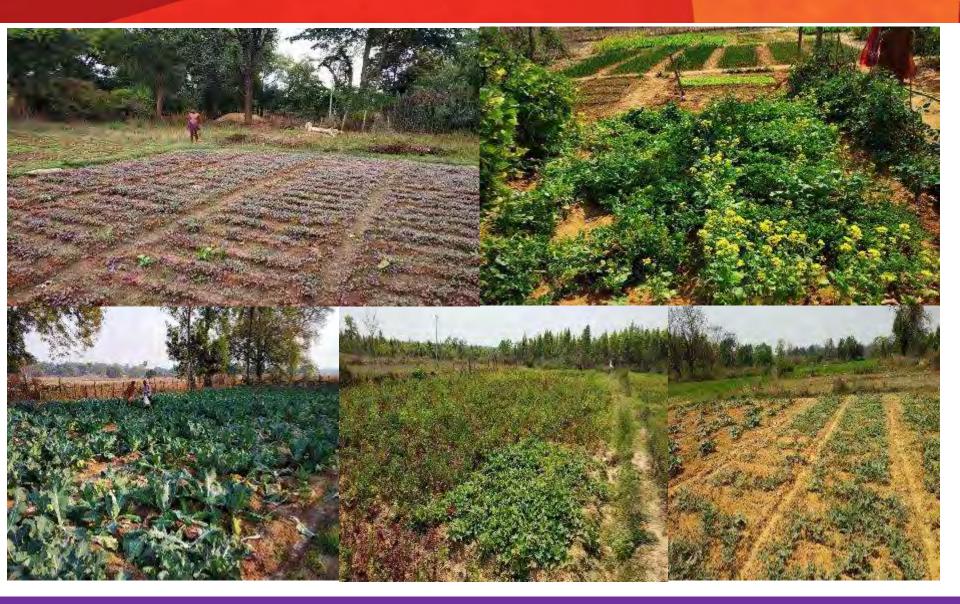
Aditya Aluminium CSR Expenses Dash Board FY-2005 - 2018

SI. No	Year	Total CSR Expenses (Rs in lakhs)	Remarks
1	2015-16	626	Completed
2	2016-17	236	Completed
3	2017-18	325	Completed
4	2018-19	284	Completed
Grand Total		1471	

Expenditure for the year 2018-19

	EXPENDITURE		
YEAR	From APRIL to MAR (2018-19)		
Plan CSR Project Activities	Total Expenses (in Lakhs)	Beneficiaries	
Education	8.06	6251	
Health	21.92	20691	
Livelihood	106.36	42210	
Infrastructure	75.63	36054	
Social Causes	71.85	39259	
TOTAL	284.311	144465	

WOMEN EMPOWERMENT HIGHLIGHTS


Dt-26-01.2019

RURAL HEALTH INITIATIVES

RURAL EDUCATION: Healthy baby competition and mother child health care at Pondaloi RR colony, Pulse polio program, and SHG meeting held in villages.

SUSTAINABLE AGRICULTURE HIGHLIGHTS

<u>Sustainable Livelihood:</u> Improved seed distribution to farmers and their cultivation in the promoting Sustainable agriculture near about 660 nos of farmers benefitted out of the seed distribution.

SUSTAINABLE ENVIRONMENT HIGHLIGHTS

RURAL EDUCATION HIGHLIGHTS

RURAL EDUCATION: Annual sports organized in Lananga Govt. High school (Dt-19.01.2019)

RURAL EDUCATION HIGHLIGHTS

RURAL EDUCATION: Blankets distribution to 330 nos of Ashram girl students, sweets distribution to 1800 school students on Republic day, School vehicle provision to Gopkani village students and Free Coaching to 40 students

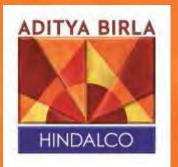
SHG MEETING & PRODUCT DISPLAY HIGHLIGHTS

ANIMAL HUSBANDRY HIGHLIGHTS

ANIMAL HUSBANDRY- There are 300 cattle and Birds vaccinated and treated in Animal Health camp at Lapanga and Jangla

ANIMAL HUSBANDRY HIGHLIGHTS

RURAL SPORTS HIGHLIGHTS



RURAL INFRASTRUCTURE HIGHLIGHTS

Thank You.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref. Emulab/19/R-0466

Date: 08/04/19

AMBIENT AIR QUALITY MONITORING REPORT

Name of Industry

M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Sampling Location

Monitoring Station No.- AAQMS-1 (Gumkarama)

3. Monitoring Instruments

RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

4. Sample collected by

: VCSPL Representative.

							PARAMET	ERS					-
Date	PM _{te} (μg/m ³)	PM _{2.5} (µg/m ²)	SO ₂ (μg/m ³)	NO _x (µg/m ³)	Ο ₃ (μg/m ³)	CO (mg/m³)	NH ₃ (μg/m ³)	C ₆ H ₆ (µg/m ³)	BaP (ng/m³)	Ni (ng/m³)	Pb (µg/m³)	As	F
02,10,2018		20.8	5.8	12.4	<4.0	0.46	-20.0	<0.001	<0.002	<0.01	<0.001	(ng/m ³) <0.001	(µg/m
05.10.2018		21.4	5,6	12,6	<4.0	0.48	<20:0	<0.001	<0.002	<0:01	<0.001	<0.001	<0.01
09.10.2018		22.6	5.2	13.4	<4.0	0.52	<20.0	< 0.001	< 0.002	<0.01	< 0.001	<0.001	<0.01
12.10,2018		25.4	5.4	13.8	<4.0	0.51	<20.0	<0.001	< 0.002	<0.01	<0.001	270,00	<0.01
16.10,2019	52.8	26.2	5.1	-11.8	-010	0.51	<20.0	<0.001	<0.002	<0.01	<0.001	< 0.001	<0.01
19.10.2018	57.4	27:2	5.8	11.2	<4.0	0.46	<20.0	< 0.001	<0.002	<0.01	<0.001	<0.001	<0.01
23,10,2018	38.4	28,4	6.0	10.8	<4.0	0.44	<20.0	<0.001	< 0.002	< 0.01	< 0.001	<0.001	<0.01
26.10.2018	60.2	29.6	6.1	10.6	<4.0	0.42	<20.0	< 0.001	< 0.002	<0.01	< 0.001	<0.001	<0.01
30.10.2018	51.2	28,4	6.2	11.1	<4.0	0.41	<20.0	<0.001	< 0.002	< 0.01	< 0.001	< 0.001	
02.11,2018	56.8	28.6	5.9	11/2	<4.0	0.39	<20.0	<0.001	<0.002	<0.01		1000	<0.01
06.11.2018	52.8	24:8	5.8	10,2	<4.0	0.40	<20.0	100.0>	<0.002	<0.01	<0.001	< 0.001	<0.01
09.11.2018	50.8	25.6	6.1	10.4	<4.0	0.41	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
13.11,2018	48.8	26.8	6.2	11.8	<4.0	0.42	<20.0	<0.001			≤0.001	<0.001	<0.01
16.11.2018	52.6	24.8	6.4	11.2	<4.0	0.44	<20.0	<0.001	<0.002	< 0.01	< 0.001	<0.001	<0.07
20,11,2018	56.4	27.2	5.2	12.4	<4.0	0.46	<20.0	<0.001	-	<0.01	<0.001	<0.001	< 0.01
23,11,2018	55.8	28.8	5,6	12.6	<4.0	0.47	<20.0	<0.001	<0.002	<0.01	<0.001	< 0.001	<0.01
27.11.2018	54.7	29.6	5.7	12.8	<4.0.	0.48	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	< 0.01
30.11.2018	56.8	30.2	5.2	12.7	<4.0	0.49	<20.0	<0.001	< 0.002	<0.01	<0.001	<0.001	<0.01
04.12.2018	56.6	29.4	6.1	11.4	<4.0	0.51	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
07,12,2018	60.2	28.4	6.4	11.2	<4.0	0.52	<20.0	<0.001	<0.002	<0.01	100.0>	<0.001	<0.01
11.12.2018	52,8	27.6	6.2	TLE	<4.0	0.55	<20.0	< 0.001	<0.002	<0.01	<0.001	< 0.001	<0.01
14.12,2018	53.4	28.8	5.8	10.8	<4.0	0.56	<20.0	<0.001	<0.002	< 0.01	<0.001	<0.001	< 0.01
18.12.2018	58.2	29.1	5.1	10.2	<4.0	0.51	<20.0	<0.001	<0.002		< 0.001	< 0.001	< 0.01
21.12.2018	56.8	30.2	6.4	10.6	<4.0	0.52	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	< 0.01
25,12,2018	56.2	20.4	62	11.4	<4.0	0.48	<20.0	<0.001		< 0.01	<0.001	<0.001	<0.01
28.12.2018	57.4	29.8	6.8	11.2	<4.0	0.52		-	<0.002	<0.01	<0.001	<0.001	<0.01
NAAQ	100	60	80	80	100		<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
Standard	120		00	00	1100	4	400	05	01	20	1.0	06	-
Average	55.62	27.17	5.82	11.59	<4.0	0.47	<20.0	<0.001	<0.002	<0.01	< 0.001	<0.001	< 0.01
Testing method	Gravimente	Gravimetric NO _X < 9 µg/n	finproved West and Geake method	Modified Jacob & Hackheises (Na- Arsenite)	Chemical Method	NDIK Spectroscop y	Indo phenol blue method	Absorption & Desorption followed by GC munbysis	Solvent extraction followed by Gas Chromangra phy malysis	AAS method after campling	AAS method after sampling	AA5 method after sampling	Zirconnon SPADNS Method

BDL Values: SO₂< 4 μg/m³, NO₂< 9 μg/m³, O₃<4 μg/m³, Ni<0.01 ng/m³, As<0.001 ng/m³, C₂H₂<0.001 μg/m³, BaP<0.002 ng/m³, Pb<0.001 μg/m³, P><0.01 μg/m³, CO><0.1 mg/m³

For Visionies Consultancy Services Pvt. Ltd.

Committed For Hetter Environment

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2604 OHSAS 18001 : 2007

Ref. Emvlal/19/R-0467

Date: 08/04/19

AMBIENT AIR QUALITY MONITORING REPORT

1. Name of Industry

M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Sampling Location

Monitoring Station No.- AAQMS-2 (Ghichamura)

3. Monitoring Instruments

RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

4. Sample collected by

VCSPL Representative

							PARAMET	ERS					
Date	PM ₁₀ (µg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO _λ (μg/m ³)	Ο ₃ (μg/m ³)	CO (mg/m³)	NH ₃ (μg/m ³)	C ₆ H ₆ (µg/m ³)	BaP (ng/m³)	Ni (ng/m³)	Ph (μg/m³)	As (ing/m³)	F (μg/m ³
02,10.2018	60.8	29.6	<4.0	11.2	<4.0	0.16	<20.0	<0.001	< 0.002	<0.01	<0.001	<0.001	<0.01
05.10.2018	60.2	29.5	<4.0	11.8	54.0	0.15	<20.0	<0.001	< 0.002	<0.01	<0.001	<0.001	< 0.01
09.10.2018	59.2	28.6	<4.6	12.6	<4.0	0.12	<20.0	< 0.001	< 0.002	<0.01	< 0.001	<0.001	<0.01
12.10.2018	59.6	28.2	<4.0	13.2	<4.0	0.14	<20.0	< 0.001	<0.002	<0.01	< 0.001	<0.001	< 0.01
16.10.2018	58.8	26.8	4.6	13.4	<4.0	0.14	<20.0	< 0.001	< 0.002	<0.01	<0.001	<0.001	<0.01
19.10.2018	58.2	25.5	4.8	12.8	<4.0	0.12	<20.0	< 0.001	<0.002	<0.01	<0.001	<0.001	-
23.10.2018	56.8	25.2	4.2	12.2	<4.0	0.13	<20.0	<0.001	< 0.002	<0.01	<0.001	<0.001	<0.01
26.10.2018	55.6	24.8	5.1	11.7	<4.0	0.14	<20.0	< 0.001	< 0.002	<0.01	<0.001	< 0.001	<0.01
30.10.2018	55.4	23.8	5.6	11.2	<4.0	0.11	<20.0	<0.001	<0.002	<0.01	<0.001	75707-0	-
02.11.2018	54.8	23.2	5.8	11.8	<4.0	0.11	<20.0	<0.001	< 0.002	<0.01	<0.001	<0.001	< 0.01
06.11,2018	54.2	22.4	5.2	11.6	<4.0	0.12	<20.0	<0.001	<0.002	<0.01	< 0.001		<0.01
09.11.2018	53.8	22.8	5.2	10.8	<4.0	0.10	<20.0	< 0.001	<0.002	<0.01	7.77.75.75	<0.001	<0.01
13.11.2018	52.8	23.7	3.4	13.6	<4.0	0.13	<20.0	<0.001	<0.002	<0.03	<0.001	<0.001	<0.01
16.11.2018	52.6	23.6	5.1	14.2	<4.0	0.13	<20.0	<0.001	< 0.002	<0.01	<0.001	0.10	< 0.01
20.11.2018	51.8	24.9	5.9	14.8	<4.0	0.16	<20.0	< 0.001	< 0.002	<0.01	<0.001	< 0.001	<0.01
23.11.2018	50.8	24.5	6.1	13.6	<4.0	0.16	<20.0	< 0.001	<0.002	<0.01	-	The second section is	<0.01
27.11.2018	50.6	25.6	6.4	13.2	<4.0	0.17	<20.0	< 0.001	<0.002	<0.01	<0.001	<0.001	<0.01
30.11.2018	51.2	25.2	6.6	14.1	\$4.0	0.18	<20.0	<0.001	<0.002	<0.01	< 0.001	<0.001	10.07
04.12.2018	50.2	26.1	5.8	14.4	<4.0	0.18	<20.0	<0.001	< 0.002	<0.01	<0.001	<0.001	< 0.01
07.12.2018	56.2	26.4	5.2	15.2	<4.0	0.19	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
11.12.2018	56.7	28.2	5.4	15.6	<4.0	0.21	<20.0	< 0.001	< 0.002	<0.01	<0.001	< 0.001	<0.01
14.12.2018	55.4	26.9	6.2	14.9	<4.0	0.16	<20.0	< 0.001	<0.002	10.0>	<0.001	<0.001	<0.01
18.12.2018	55.8	26.6	6.1	14.8	<4.0	0.16	<20.0	< 0.001	< 0.002	<0.01	< 0.001	100.0>	<0.01
21.12.2018	54.9	27.2	<4.0	14.2	<4.0	0.17	<20.0	<0.001	<0.002	< 0.01	<0.001	<0.001	<0.01
25.12.2018	54,6:	27.8	<4.0	161	<4.0	0.18	<20.0	< 0.001	<0.002	< 0.01	< 0.001	<0.001	<0.01
28.12.2018	53.8	28.2	5.6	13.9	<4.0	0.19	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	06	- Agrical
Quarterly Average	55,2	26.0	5.5	13.3	<4.0	0.2	<20.0	<0.001	< 0.002	< 0.01	<0.001	<0.001	<0.01
Testing method	Gravametric	Gravimetri ¢	Improved West and Gaefse method	Modified Jacub & Hothheiser (Na- Arsenite)	Chemical Method	NOIR Spectroscop.	indo phenol hine method	Absorption & Description followed by GC analysis	Solvent extraction followed by Gas Chromatogr apby analysis	AAS method after sampling	AAS method after sampling	AAN method after sampling	Zirconium SPADNS Method

BDL Values: SO: 4 µg/m², NO: 9 µg/m², O: 4 µg/m², Ni<0.01 ng/m², As< 0.001 ng/m², C₀H₀<0.001 µg/m², BaP<0.002 ng/m², Pb<0.001 µg/m², F<0.01µg/m² CO-<0.1 mg/m²

For Visigniek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref. Envlab/19/R-0468

Date: 08/04/19

AMBIENT AIR QUALITY MONITORING REPORT

1. Name of Industry

M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Sampling Location

Monitoring Station No.- AAQMS-3 (Tileimal)

3. Monitoring Instruments

RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

4. Sample collected by

VCSPL Representative

						1	PARAMETE	RS					
Date	PM ₁₀ (μg/m ³)	PM _{2.5} (µg/m ³)	SO ₂ (µg/m ³)	NO _x (μg/m ³)	Ο ₃ (μg/m ³)	CO (mg/m³)	NН ₃ (µg/m ³)	C ₆ H ₄ (μg/m ³)	BaP (ug/m³)	Ni (ng/m²)	Ph (µg/m³)	As (ng/m³)	F (µg/n
02.10.2018	40.6	16.8	4.9	10.8	<4.0	0.24	<20.0	<0.001	< 0.002	<0.01	< 0.001	<0.001	<0.0
05.10.2018	40.8	17.4	5.1	11.2	<4.0	0.26	<20.0	< 0.001	<0.002	<0.01	<0.001	<0.001	-
09.10.2018	41.2	17.2	5.6	11.6	<4.0	0.28	<20.0	< 0.001	< 0.002	<0.01	<0.001	<0.001	<0.0
12.10,2018	41.8	18.2	5.2	12.4	<4.0	0.28	<20.0	< 0.001	<0.002	< 0.01	<0.001	<0.001	0-100
16.10.2018	42.2	18.8	5.4	12.6	<4.0	0.31	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	< 0.01
19.10.2018	40.8	19.2	5.6	13.4	<4.0	0.34	<20.0	<0.001	<0.002	<0.01	<0.001	< 0.001	<0.01
23,10,2018	40.2	19.6	4.8	13.6	<4.0	0.36	<20.0	<0.001	<0.002	<0.01	<0.001	-	< 0.01
26.10.2018	39.6	19.2	4.2	14.1	<4.0	0.36	<20.0	<0.001	<0.002	<0.01	-	<0.001	>0.01
30.10.2018	38.8	18.6	4.6	14.6	<4.0	0.41	<20.0	<0.001	<0.002	<0.01	< 0.001	< 0.001	<0.01
02.11.2018	40.1	18.4	5.1	13.9	<4.0	0.38	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
06.11.2018	41.8	17.8	5.2	13.2	<4.0	0.39	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
09.11.2018	41.2	17.6	4.6	14.2	<4.0	0.36	<20.0	<0.001	-		<0.001	< 0.001	<0.01
13.11.2018	42.2	1.6.8	5.8	15.6	\$4.0	0.38	<20.0	<0.001	<0.002	< 0.01	<0.001	<0.001	<0.01
16.11.2018	42.7	16.2	5.4	15.8	<4.0	0.35	<20.0	<0.001	<0.002	< 0.01	<0.001	< 0.001	<0.01
20.11,2018	43.6	15.9	5.6	12,9	<4.0	0.34	<20.0	<0.001		<0.01	<0.001	<0.001	< 0.01
23.11.2018	43.4	15.6	6.1	13.4	<4.0	0.32	<20.0	1000	< 0.002	<0.01	< 0.001	< 0.001	< 0.01
27.11.2018	45.2	14.8	6.6	13.2	<4.0	0.31	2000	< 0.001	<0.002	<0.01	<0.001	<0.001	<0.01
30.11.2018	45.8	14.6	5.9	13.1	<4.0	0.29	<20.0	<0.001	<0.002	< 0.01	<0.001	< 0.001	<0.01
04.12.2018	44.8	13.9	5.8	12.8	<4.0	0.28	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
07.12.2018	44.2	13.6	5.6	12.6	<4.0			100.0>	< 0.002	<0.01	<0.001	<0.001	< 0.01
11,12,2018	42.8	15.4	4.8	11.8	<4.0	0.32	<20.0	<0.00.0	<0.002	<0.01	<0.001	<0.001	<0.01
14.12.2018	41.9	15.6	4.6	13.2	<4.0	0.34	<20.0	100.0>	<0.002	<0.01	<0;061	<0.001	<0.01
18.12.2018	40.6	14.9	4.4	13.6	<4.0		<20.0	<0.001	<0.002	-0.01	-0,001	<0.001	< 0.01
21.12.2018	41.2	14.6	4.8	11.2	<4.0	0.30	<20.0	<0.001	< 0.002	<0.01	<0.001	< 0.001	< 0.01
25.12.2048	41.8	15.2	5.2	10.8	<4.0		<20.0	<0.001	< 0.002	<0.01	<0.001	<0.001	< 0.01
28.12.2018	42.1	14.8	5.6	10.6	<4.0	0.26	<20.0	<0.001	< 0.002	<0.01	<0.001	<0.001	<0.01
NAAQ Standard	100	60	80	80	100	4	<20.0 400	≈0.001 05	<0.002	<0.01 20	1.0	<0.001	<0.01
Quarterly Average	42.0	16.6	5.3	12.9	<4.0	0.3	<20.0	<0.001	< 0.002	<0.01	< 0.001	< 0.001	< 0.01
Testing method	Gravimetric	Gravimetric NO ₂ < 9 µg/n	Improved West and Grake method	Modified Jacob & Hochheiser (Na- Arsenite)	Chronical Method	NDIR Spectroscop	Inda phenol blue method	Absorption & Description followed by GC analysis	Solvent extraction followed by Gas Chromatogra phy malysis	AAS method after sampling	AAS meshod after sampling	AAS method after sampling	Zirconio m SPADNS Methad

BDI, Values: SO₂< 4 µg/m², NO₂< 9 µg/m², O₃< 4 µg/m², Ni<0.01 ng/m², As< 0.001 ng/m², C₃H₂<0.001 µg/m², BaP<0.002 ng/m², Pb<0.001 µg/m², F<0.01 µg/m² CO<0.1 mg/m²

For Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OBSAS 18601 : 2007

Kef. Envlato /19/ R-0469

Date: 08/04/19

AMBIENT AIR QUALITY MONITORING REPORT

Name of Industry

: M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Sampling Location

Monitoring Station No.- AAQMS-4 (Bomaloi)

3. Monitoring Instruments

RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

4. Sample collected by

: VCSPL Representative

	-	-				V	PARAMET	ERS					
Dare	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO ₃ (µg/m ³)	O ₃ (µg/m ³)	CO (mg/m³)	NH ₃ (µg/m ³)	C _s H _s (µg/m ³)	BaP (ng/m³)	NI (ng/m³)	Pb (μg/m³)	As (ng/m³)	F
02.10.2018	The second second second	29,6	6.6	10.8	<4.0	0.26	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	(µg/m²
05.10,2018		29.2	6.8	11.6	<4.0	0.25	<20.0	< 0.001	< 0.002	<0.01	< 0.001	<0.001	<0.01
09.10.2018	56.2	28.8	7.1	11.2	<4.0	0.24	<20.0	<0.001	< 0.002	<0.01	<0.001	<0.001	-
12.10.2018	58.2	28.2	7.2	12.4	<4.0	0.21	<20.0	< 0.001	< 0.002	<0.01	<0.001		< 0.01
16,10.2018	58.4	27.6	7.4	12.6	<4.0	0.22	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
19.10.2018	56.2	27.2	6.9	12.8	<4.0	0.23	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
23,10,2018	52.8	26.8	7.0	13.2	<4.0	0.24	<20.0	<0.001	<0.002	<0.01	<0.001		< 0.01
26.10.2018	52.6	26.2	7.2	11.9	<4.0	0.26	<20.0	<0.001	< 0.002	<0.01	-	<0.001	<0.01
30,10,2018	51.8	25.8	7.4	11.4	<4.0	0.31	<20.0	<0.001	<0.002	100000	<0.001	<0.001	< 0.01
02.11.2018	50.8	25.4	6.6	10.6	<4.0	0.32	<20:0	<0.001	<0.002	<0.01	< 0.001	< 0.001	<0.01
06.11.2018	58.8	24.8	6.8	10.2	<4.0	0.36	<20.0	<0.001		<0.01	<0.001	<0,001	<0.01
09.11.2018	58.2	23.6	6.8	11,2	<4.0	0.28	<20.0	<0.001	<0.002	<0.01	< 0.001	< 0.001	<0.01
13.11.2018	56.4	23:4	7.5	116	<4.0	0.29	<20.0	<0.001	< 0.002	<0.01	< 0.001	< 0.001	< 0.01
16.11.2018	55.8	22.8	7.6	12.1	<4.0	0.30	<20.0	-	<0.002	< 0.01	< 0.001	<0.001	<0.01
20.11.2018	56.1	21.8	6.9	12.4	<4.0	0.32	<20.0	<0.001	<0.002	< 0.01	<0.001	< 0.001	<0.01
23.11.2018	57.2	30.6	7.0	12.6	<4.0	0.34	<20.0	100.0>	< 0.002	< 0.01	< 0.001	< 0.001	<0.01
27.11.2018	60.2	31.2	6.8	12.8	<4.0	0.36	<20.0	<0.001	<0.002	<0.01	< 0.001	< 0.001	<0.01
30.11.2018	61.2	31.8	6.6	13.2	<4.0	0.38	<20.0	< 0.001	< 0.002	< 0.01	<0,001	< 0.001	<0.01
04.12.2018	61.8	30.2	6.4	11.9	<4.0	0.41	<20.0	<0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
07.12.2018	59.2	29.6	6.6	12.6	<4.0	0.39	<20.0	<0.001	< 0.002	<0.01	<0.007	< 0.001	< 0.01
11.12.2018	59.6	29.8	6.5	12.4	<4.0	0.32	-	< 0.001	< 0.002	<0.01	<0.001	< 0.001	< 0.01
14.12.2018	62.4	28.4	6.1	11.6	<4.0	0.36	<20.0	<0.001	< 0.002	<0.01	<0,001	< 0.001	<0.01
18.12.2018	62.8	26.8	6.2	13.2	<4.0	0.36	<20.0	<0.001	<0.002	<0.01	< 0.001	<0.001	<0.01
21.12.2018	60.8	26.2	7.1	13.8	<4.0	0.34	<20.0	< 0.001	< 0.002	10.0>	<0.001	<0.001	<0.01
25.12.2018	61.4	25.2	6.9	12.9	<4.0	0.32	<20.0	< 0.001	<0.002	< 0.01	<0.001	<0.001	< 0.01
28.06.2018	61.2	20.7	6.6	12.6	<4.0	0.32	<20.0	<0.001	< 0.002	< 0.01	< 0.001	< 0.001	< 0.01
NAAQ Standard	100	60	80	80	100	4	<20.0 400	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
Quarterly Average	57.8	27.0	6.9	12,1	<4.0	0.3	<20.0	< 0.001	<0.002	<0.01	<0.001	<0.001	<0.01
Testing method	Gravimutric	Gravimetrie	Improved West and Gaelor method	Modified Jacob & Hochheiser (Na- Arsenite)	Chemical Method	NDIR Spectroscop Y	Indo phenot bine method	Absorption & Desorption followed by GC analysis	Solvent extraction followed by Gas Chromatogra phy analysis	AAS method after sampling	AAS method after sampling	AAS method after sampling	Zareonium SPADNS Method

BDL Values: SO: < 4 μg/m², NO; < 9 μg/m², O; < 4 μg/m², Ni<0.01 ng/m², As< 0.001 ng/m², C₆H₀<0.001 μg/m², BaP<0.002 ng/m², Pb<0.001 μg/m², F<0.01 μg/m², Co<0.1 mg/m²

For Visioniek Consultantes Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

(SO 1400) : 2004 OHSAS 18001 - 2007

Ret. Famalo 19/R-0470

Date 08/04/19

AMBIENT AIR QUALITY MONITORING REPORT

1. Name of Industry

M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Sampling Location

Monitoring Station No.- AAQMS-5 (Kapulas)

3. Monitoring Instruments

RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

4. Sample collected by

VCSPL Representative

							PARAMETI	ers	_				
Date	PM ₍₀ (μg/m ²)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO, (μg/m³)	Ο ₃ (μg/m ³)	CO (mg/m³)	NH ₃ (µg/m ³)	C ₆ H ₆ (µg/m ³)	BaP (ng/m³)	Ni (ng/m³)	Ph (μg/m³)	As (ng/m³)	F (ng/m
02.10.2018	42.8	21.2	5.2	10.2	< 4.0	0.21	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	<0.0
05.10.2018	44.6	21.8	5.6	10.6	< 4.0	0.22	<20.0	< 0.001	< 0.002	< 0.01	<0.001	<0.001	<0.0
09.10.2018	43.2	22.2	6.1	11.2	< 4.0	0.26	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	<0.001	< 0.0
12.10.2018	43.8	24.2	6.4	11.8	< 4.0	0.24	<20.0	< 0.001	<0.002	<0.01	< 0.001	< 0.001	<0.01
16.10.2018	43.6	26.1	6.6	12.1	<4.0	0.31	<20.0	< 0.001	< 0.002	< 0.01	<0.001	< 0.001	<0.01
19.10.2018	42.8	26.2	7.1	12,6	< 4.0	0.29	<20.0	< 0.001	< 0.002	<0.01	< 0.001	< 0.001	<0.0
23.10.2018	42.6	26.8	7.2	12.8	< 4.0	0.26	<20.0	<0.001	< 0.002	< 0.01	<0.001	< 0.001	<0.01
26.10.2018	41.8	27.1	7.4	13.2	< 4.0	0.22	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	<0.01
30.10.2018	40.2	27.2	8.1	13.6	< 4.0	0.21	<20.0	< 0.001	< 0.002	<0.01	<0.001	< 0.001	<0.01
02.11.2018	40.8	27.8	8.2	13.4	≪4.0	0.20	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	<0.01
06.11.2018	41.2	25.6	6.4	12.8	< 4.0	0.22	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	<0.01
09.11.2018	41.4	25.8	6.6	12.4	< 4.0	0.24	<20.0	<0.001	< 0.002	< 0.01	< 0.001	<0.001	<0.01
13.11.2018	40.8	25.9	6.8	11.6	< 4.0	0.25	<20.0	<0.001	< 0.002	<0.01	<0.001	<0.001	< 0.01
16.11.2018	40.2	26.1	6.9	11.8	< 4.0	0.22	<20.0	< 0.001	<0.002	<0.01	<0.001	<0.001	< 0.01
20.11.2018	40.6	26.8	7.0	12.4	< 4.0	0.21	<20.0	<0.001	< 0.002	<0.01	<0.001	<0.001	< 0.01
23,11.2018	40.8	127.4	7.1	12.2	< 4.0	0.18	<20.0	<0.001	< 0.002	<0.01	< 0.001	<0.001	<0.01
27,11,2018	41.2	27.8	7.1	13.2	< 4.0	0.16	<20.0	< 0.001	< 0.002	<0.01	<0.001	<0.001	<0.01
30,11,2018	42.2	26.9	7.2	13.6	< 4.0	0.20	<20.0	<0.001	< 0.002	<0.01	<0.001	<0.001	<0.01
04.12.2018	42.6	26.2	6.8	11.8	< 4.0	0.18	<20.0	< 0.001	<0.002	< 0.01	<0.001	<0.001	<0.01
07.12.2018	42.8	26.4	6.9	12.4	< 4.0	0.21	<20.0	<0.001	< 0.002	<0.01	<0.001	<0.001	<0.01
11.12.2018	42.9	23.8	6.6	12.5	< 4.0	0.22	<20.0	<0.001	<0.002	<0.01	< 0.001	<0.001	<0.01
14.12.2018	43.2	23.2	6.5	12.6	< 4.0	0.24	<20.0	< 0.001	<0.002	<0.01	<0.001	<0.001	<0.01
18.12.2018	43.1	22,8	6.2	11.2	< 4.0	0.26	<20.0	< 0.001	< 0.002	<0.01	< 0.001	<0.001	<0.01
21.12.2018	43.0	22.9	5.8	11.6	< 4.0	0.25	<20.0	< 0.001	< 0.002	< 0.01	<0.001	< 0.001	<0.01
25.12.2018	40.8	21.8	5.2	10.8	< 4.0	0.22	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	<0.001	<0.01
28.12.2018	4[2	24.2	5.4	10.6	< 4.0	0.24	<20.0	<0.001	< 0.002	< 0.01	<0.001	<0.001	<0.01
NAAQ Standard	100	60	80	80	100	4	400	0.5	01	20	1.0	06	44
Quarterly Average	42.1	25.2	6.6	12.1	<4.0	0.2	<20.0	<0.001	<0.002	< 0.01	< 0.001	<0.001	<0.01
Testing method	Genvimentie	Gravimetric	Improved West and Gealer method	Modified Jacob & Hochheiser (Na- Arsenite)	Chemical Method	NDIR Speciroscop 3	Indo pérsol bler method	Absorption & Description followed by GC analysis	Solvent extraction followed by Gas Chromatogra phy analysis	AAS method after sampling	AAS method after sampling	AAS method after sampling	Zirconiu SPADN Methoc

BDL Values: SO₂< 4 μg/m³, NO₃< 9 μg/m³, O₃<4 μg/m³, Ni<0.01 ng/m³, As<0.001 ng/m³, C₆H₆<0.001 μg/m³, BaP<0.002 ng/m³, Pb<0.001 μg/m³, F<0.01μg/m³ CO<0.1 mg/m³

For Visioniek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

TSO 14001 2004 OHS AS 18001 2007

Ref. En Wal 19 R-0471

Date: 08/04/19

AMBIENT AIR QUALITY MONITORING REPORT

1. Name of Industry : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Sampling Location : Monitoring Station No.- AAQMS-6 (Phulchanghal)

Monitoring Instruments
 RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

4. Sample collected by : VCSPL Representative

							PARAMET	ERS					
Date	PM ₁₀ (μg/m ³)	PM _{2.5} (µg/m ²)	SO ₂ (μg/m ³)	NO _x (μg/m ³)	O ₃ (µg/m ³)	CO (mg/m³)	NH ₃ (µg/m ³)	C_6H_6 $(\mu g/m^3)$	BaP (ng/m ³)	Ni (ng/m ³)	Pb (μg/m³)	As (ng/m³)	F
02.10.2018	51.6	31.8	4.6	8.8	<4.0	0.18	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	(μg/m <0.0
05,10,2018	51.2	32.8	4.8	8.6	<4.0	0.19	<20.0	< 0.001	< 0.002	<0.01	< 0.001	<0.001	<0.01
09.10,2018	52.4	36.8	5.2	8.8	<4.0	0.21	<20.0	< 0.001	< 0.002	<0.01	<0.001	< 0.001	<0.01
12.10.2018	52.8	36.2	5.4	8.9	<4.0	0.22	<20.0	< 0.001	< 0.002	<0.01	< 0.001	<0.001	<0.01
16.10.2018	53.2	36.4	5.6	9.6	<4.0	0.20	<20.0	< 0.001	< 0.002	10.0>	<0.001	<0.001	<0.01
19.10,2018	53.8	35.8	4.8	9.8	<4.0	0.20	<20.0	< 0.001	< 0.002	<0.01	<0.001	< 0.001	<0.01
23.10.2018	55.6	35.2	5.1	10.8	<4.0	0.19	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
26.10.2018	55.2	34,9	5.6	10.2	<4.0	0.16	<20.0	< 0.001	<0.002	<0.01	<0.001	<0.001	<0.01
30.10.2018	55.7	34.8	5.2	11.2	<4.0	0.16	<20.0	< 0.001	<0.002	<0.01	<0.001	<0.001	< 0.01
02.11.2018	54.8	33.6	5.2	11.8	<4.0	0.17	<20.0	<0.001	< 0.002	<0.01	< 0.001	< 0.001	<0.01
06.11.2018	54.2	33.4	5.1	12.4	<4.0	0.18	<20.0	<0.001	< 0.002	<0.01	<0.001	<0.001	<0.01
09.11.2018	52.8	32.8	5.0	12.6	<4.0	0.18	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	
13,11,2018	52.6	32.6	4.9	12.8	<4.0	0.17	<20.0	< 0.001	<0.002	<0.01	<0.001	<0.001	< 0.01
16.11.2018	51.8	32.8	4.8	10.4	<4.0	0.16	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
20.11.2018	50.6	31.8	4.6	10.8	<4.0	0.15	<20.0	<0.001	< 0.002	<0.01	<0.001	<0.001	
23.11.2018	50.8	31.9	4.4	8.9	<4.0	0.14	<20.0	< 0.001	<0.002	<0.01	<0.001	The second second second	<0.01
27.11.2018	51.4	31.9	4.8	9.6	<4.0	0:12	<20.0	<0.001	< 0.002	10.0>	<0.001	<0.001	<0.01
30.11.2018	51.6	30.6	5.1	9.8	<4.0	0.16	<20.0	< 0.001	<0.002	< 0.01	< 0.001	<0.001	10,0>
04.12.2018	52.8	30.2	5.2	9.6	<4.0	0.18	<20.0	< 0.001	<0.002	<0.01	<0.001	<0.001	<0.01
07.12.2018	52.6	30.8	5.6	9.2	<4.0	0.21	<20.0	< 0.001	<0.002	<0.01	<0.001	<0.001	<0.01
11.12.2018	53.7	31.2	4.9	10.8	<4.0	0.19	<20.0	< 0.001	< 0.002	<0.01	<0.001	<0.001	<0.01
14.12.2018	53.2	32.8	4.6	10.2	<4.0	0.19	<20.0	< 0.001	< 0.002	<0.01	<0.001	< 0.001	<0.01
18.12,2018	53.8	34.6	4.1	11.2	<4.0	0.18	<20.0	< 0.001	<0.002	<0.01	<0.001	<0.001	<0.01
21.12.2018	51.2	35.8	4.0	11.6	<4.0	0.16	<20.0	< 0.001	<0.002	<0.01	<0.001		
25.12.2018	50.6	35.2	4.4	10.9	<4.0	0.15	<20.0	<0.001	<0.002	<0.01	-	<0.001	<0.01
28,12,2048	50.8	37.8	4.6	10.8	<4.0	0.14	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	<0.001	<0.001	<0.01
Quarterly Average	52.7	33.6	4.9	10.4	<4.0	0.2	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	< 0.01
Testing method DL Values: S	Gravimetric	Gravimetric	Improved West and Gaeke method	Modified Jacob & Hochheiser (Na-Arsenite)	Chemical Method	NDIR Spectroscop	Indo phenol blue method	Absorption & Description followed by GC analysis	Solvent extraction followed by Gas Chromatogra phy analysis	AAS method after sampling	AAS method after sampling	AAS method after sampling	Zircomun SPADNS Method

BDL Values: SO₂< 4 µg/m³, NO₂< 9 µg/m³, O₃<4 µg/m³, Ni<0.01 ng/m³, As< 0.001 ng/m³, C₆H₆<0.001 µg/m³, BaP<0.002 ng/m³, Pb<0.001 µg/m³, F<0.01µg/m³ CO<0.1 mg/m³

For Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 9001 : 2008

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref. Enulab/19/R-0472

Date: 08/04/19

AMBIENT AIR QUALITY MONITORING REPORT

1. Name of Industry : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Sampling Location : Monitoring Station No.- AAQMS-7 (Khadiapali)

Monitoring Instruments : RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

4. Sample collected by : VCSPL Representative

	-	1 000	-				PARAMET	ERS					
Date	PM ₁₀ (µg/m ³)	PM _{3,5} (µg/m ³)	SO ₂ (µg/m ³)	NO _x (ag/m ³)	O ₃ (µg/m ³)	CO (mg/m³)	NH ₃ (µg/m ³)	С ₄ Н ₄ (µg/m ³)	BaP (ng/m³)	Ni (ng/m³)	Pb	As	F
02.10.2018		26.8	4.6	9.6	<4.0	0.19	<20.0	<0.001	<0.002	<0.01	(µg/m ³)	(ng/m²)	(µg/m
05,10,2018	7777	26.9	4.8	9.8	<4.0	0.18	<20.0	< 0.001	< 0.002	<0.01	100.00	< 0.001	< 0.0
09.10.2018		27.4	5.1	10.2	<4.0	0.16	<20.0	<0.001	< 0.002	<0.01	<0.001	<0.001	<0.0
12.10.2018	40.2	27.8	5.2	10.8	<4.0	0.16	<20.0	<0.001	< 0.002	-	<0.001	< 0.001	< 0.01
16.10.2018	2.71	29.2	5.6	11.2	<4.0	0.15	<20.0	<0.001	<0.002	<0.01	<0.001	< 0.001	< 0.01
19.10.2018	200	29.3	5.8	11.6	<4.0	0.12	<20.0	< 0.001	<0.002	< 0.01	< 0.001	<0.001	<0.01
23.10.2018	42.4	30.6	6.1	12.4	<4.0	0.11	<20.0	< 0.001	< 0.002	<0.01	< 0.001	< 0.001	< 0.01
26,10,2018	43.8	31.2	6.2	12.8	<4.0	0.14	<20.0	<0.001	<0.002		<0.001	< 0.001	<0.01
30.10.2018	44.6	31.4	6.8	11.2	<4.0	0.13	<20.0	< 0.001		<0.01	< 0.001	< 0.001	< 0.01
02.11.2018	45.2	32.8	6.9	11.0	<4.0	0.11	<20.0	< 0.001	<0.002	< 0.01	<0.001	< 0.001	< 0.01
06.11.2018	45.8	32.6	7.1	10.8	<4.0	0.12	<20.0	1000000	<0.002	<0.01	<0.001	< 0.001	<0.01
09.11.2018	46.2	33.8	4.9	10.2	<4.0	0.12		<0.001	< 0.002	< 0.01	< 0.001	< 0.001	<0.01
13.11.2018	44.8	34.5	4.2	71.1	<4.0	0.12	<20.0	<0.001	<0.002	< 0.01	<0.001	<0.001	<0.01
16.11.2018	44.7	34.8	5,6	11.6	<4.0	0.15	<20.0	<0.001	< 0.002	< 0.01	<0.001	<0.001	< 0.01
20.11,2018	44.2	36.2	5.2	12.4	<4.0	0.15	and the second second second	<0.001	< 0.002	10.0>	< 0.001	< 0.001	< 0.01
23,11,2018	43.8	36.6	51	12.8	<4.0	The state of the s	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	<0.0)
27.11.2018	43.2	37.2	4.8	12.9	<4.0	0.16	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	< 0.001	<0.01
30.11.2018	42.9	37.8	4.9	11.4	<4.0	0.18	<20.0	< 0.001	<0.002	< 0.01	<0.001	< 0.001	< 0.01
04.12.2018	42.6	36.9	5.2	11.8	<4.0	0.19	<20.0	<0.001	<0.002	< 0.01	< 0.001	<0.001	< 0.01
07.12.2018	41.8	37.2	5.2	11.6	<4.0	0.19	<20.0	< 0.001	< 0.002	<0.01	< 0.001	100.0>	<0.07
11,12,2018	40.8	38.8	5.8	11.2	<4.0	0.19	<20.0	<0.001	< 0.002	<0.01	<0.001	< 0.001	<0.01
14.12.2018	40.2	40.2	6.2	10.7	<4.0	0.15	<20.0	< 0.001	< 0.002	<0.01	< 0.001	< 0.001	< 0.01
18.12,2018	40.1	40:8	6.1	10.2	<4.0	0.13	<20.0	<0.001	< 0.002	<0.01	< 0.001	<0.001	<0.01
21.12.2018	41.1	41.2	6.3	10.6	<4.0	0.16	<20.0	< 0.001	< 0.002	< 0.01	< 0.001	<0.001	<0.0
25.12.2018	41.2	39.6	6.4	10.8	<4.0	0.10	<20.0	< 0.001	< 0.002	<0.01	<0.001	< 0.001	<0.01
28.12.2018	42.8	39.8	5.7	11.8	<4.0	0.13	<20.0	<0.001	<0.002	<0.01	<0.001	< 0.001	<0.01
NAAQ Standard	100	60	80	80	100	4	<20.0 400	<0.001	<0.002	<0.01	<0.001	<0.001	<0,01
Quarterly Average	42.8	34.3	5.6	11.3	<4.0	6.1	<20.0	<0.001	<0.002	<0.01	<0.001	<0.001	≤0.01
Testing method	Gravimense	Gravlmetric NOv< 9 ug/n	Improved West and Gacke method	Modified Jucob & Hochhoiser (Na- Arsenite)	Chemical Method	NDIR Spectroscop S	Inde phenol blue method	Absorption & Desorption followed by GC analysis	Solvent extraction followed by Gas Chromatogra phy mulysis	AAS method after sampling	AAS method after sampling	AAS method after sampling	Zirconium SPADNS Method

BDL Values: SO < 4 μg/m³, NO_N< 9 μg/m³, O_N<4 μg/m³, Ni<0.01 ng/m³, As< 0.001 ng/m³, C₆H₆<0.001 μg/m³, BaP<0.002 ng/m³, Pb<0.001 μg/m³, F<0.01μg/m³CO<0.1 mg/m³

For Visiontek Consultance Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 9001: 2008

18O 14001 ; 2004 DHSAS 18001 : 2007

Res. Envlab/19/R-0473

Date: 08/04/19

AMBIENT AIR QUALITY MONITORING REPORT

1. Name of Industry : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

3. Monitoring Instruments ; RDS(APM 460 BL), FPS(APM 550) Envirotech, CO Monitor, VOC Sampler

Sample collected by CSPL Representative

							PARAMET	ERS					
Date	PM _m (µg/m ³)	PM _{2.5} (µg/m ³)	SO ₂ (μg/m ³)	NO _x (µg/m ³)	Ο ₃ (μg/m ³)	CO (mg/m³)	NH ₃ (µg/m ³)	C_6H_6 $(\mu g/m^3)$	BaP (ng/m³)	Ni (ng/m³)	Ph (ng/m³)	As (ng/m ³)	F
02.10.2018	45.6	31.2	6.1	12.4	6.9	0.44	25.8	< 0.001	< 0.002	< 0.01	<0.001	<0.001	(µg/m² <0.01
05.10.2018	41.2	32.8	6.4	12.6	6.6	0.41	25.6	< 0.00.1	<0.002	<0.01	<0.001	100.02	<0.01
09.10.2018	46.8	31.1	6.8	12.8	7.1	0.44	24.8	< 0.001	< 0.002	< 0.01	<0.001	<0.001	<0.01
12,10,2018	50.8	29.6	6.9	13.2	7.2	0.42	24.2	<0.001	<0.002	<0.01	100.0>	<0.001	<0.01
16.10.2018	41.2	29.8	7.1	13.8	7.6	0.43	23.8	<0.001	< 0.002	< 0.01	< 0.001	< 0.001	<0.01
19.10.2018	42.8	292	7.4	14.1	7.1	0.46	23.7	< 0.001	<0.002	<0.01	< 0.001	<0.001	< 0.01
23.10.2018	43.2	28.4	6.2	12.8	6.8	0.45	22.8	< 0.001	<0.002	< 0.01	<0.001	<0.001	<0.01
26.10.2018	43.8	27.8	6.5	12.6	6.6	0.44	21.9	< 0.001	< 0.002	<0.01	< 0.001	<0.001	<0.01
30.10.2018	44.4	26.8	5.8	13:0	6.5	0.41	21.2	< 0.001	< 0.002	<0.01	< 0.001	< 0.001	<0.01
02.11.2018	45.4	25.2	5.9	13.2	6.4	0.42	22:4	<0.001	< 0.002	<0.01	<0.001	100.0>	<0.01
06,11,2018	46.2	25.8	6.1	13.4	7.2	0.41	23.4	<0.001	< 0.002	<0.01	<0.007	< 0.001	
09.11.2018	45.8	26.7	6.2	12.4	7.4	0.39	23.8	<0.001	< 0.002	<0.01	<0.001	<0.001	<0.01
13.11.2018	44.8	26.4	7.4	12.2	7.6	0.38	23.2	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
16.11.2018	42.8	25.8	7.6	13.8	7.8	0.40	25.8	<0.001	<0.002	<0.01	<0.001	The second second	<0.01
20.11.2018	40.8	22.4	7.8	14.1	6.9	0.42	25.6	<0.001	<0.002	<0.01	-	<0.001	<0.01
23.11.2018	44.2	21.8	6.8	14.2	6.6	0.44	24.8	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
27,11.2018	43.2	24.7	6.9	14.6	6.5	0.45	24.2	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
30.11.2018	41.8	23.8	6.6	14.1	6.8	0.46	23.1	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
04.12.2018	40.6	23.2	6.5	15.1	6.4	0.48	23.4	<0.001	<0.002	< 0.01	<0.001	<0.001	<0.01
07.12.2018	41.2	22.8	7.0	15.2	6.3	0.51	22.8	< 0.001	<0.002	<0.01	<0.001	< 0.001	< 0.01
11.12.2018	42.1	22.6	7.1	14.4	6.2	0.52	22.6	< 0.001	<0.002	<0.01	<0.001	<0.001	<0.01
14.12.2018	42.8	30.8	7.2	13.6	7.4	0.46	21.8	< 0.001	<0.002	<0.01		<0.001	<0.01
18.12,2018	43.8	30.2	7.4	13.2	7.6	0.48	21.6	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
21.12.2018	44.2	29.2	7.6	11.8	7.8	0.49	20.8	<0.001	<0.002	< 0.01	<0.001	<0.001	<0.01
25.12.2018	45.8	29.8	6.9	12.8	7.4	0.52	21.8	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
28.12.2618	40.8	31.2	6.8	12.2	7.1	0.54	22.8	<0.001	<0.002	<0.01	<0.001	<0.001	<0.01
NAAQ Standard	100	60	80	80	100	4	400	05	01	20	1.0	<0.001	<0.61
Quarterly Average	43.7	27.3	6.8	13.4	<4.0	0,4	<20.0	<0.001	< 0.002	<0.01	< 0.001	<0.001	<0.01
Testing method	Gravimetric	Gravinuetrie	intproved West and Grake method	Modified Jacob & Hochheiser (Na- Arsenite)	Chemical Method	NDIR Spectroscop y	Indo phenol blue method	Absorption & Description followed by GC analysis	Solvent extraction followed by Gas Chromatogra phy analysis	AAS method after sumpling	AAS method after sampling	AAS method after sampling	Zirconnu SPADNS Method

BDL Values: SO₃<4 µg/m³, NO₈<9 µg/m³, O₃<4 µg/m³, Ni<0.01 ng/m³, As<0.001 ng/m³, C₆H₆<0.001 µg/m³, BaP<0.002 ng/m³, Pb<0.001 µg/m³, F<0.01µg/m³ CO<0.1 mg/m³

For Visiontek Consultung Services Pvt. Ltd.

130 9007 : 2008

ISO 14001 - 2004 OHSAS 18001 - 2007

(An Enviro Engineering Consulting Cell)

Ref. Envlab/19/R-0483

Date: 08/04/19

SURFACE WATER QUALITY ANALYSIS REPORT-DEC 2018

1. Name of Industry

M/sHindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Sampling location

SW-1: Hirakud Reservoir; SW-2: Lapanga Pond;

SW-3:Matwadinadi -U/S, SW-4:Bamloi Pond; SW-5: Bhedan river

Date of sampling :

10.12.2019 11.12.2019 to 18.12.2019

Date of analysis
 Sample collected by

VCSPL Representative

SI, No	Parameter	Testing Methods	Unit	Standards as per 15-2296:1992			Analysis Re	sults	
		1 - 2 - Sec - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	7,000	Class - 'C'	SW-1	SW-2	SW-3	SW-4	SW s
1	pH Value	APHA 4500H*B	900	6.0-9.0	7.26	7.31	7.38	7.41	7.4
2	Colour	APHA 2120 B, C	Hazen	300	CL	CL	CL	CL	CL
3	Taste	APHA 2160 C	200		AL	AL	AL	AL	AL
4	Odour	APHA 2150 B	17	-	U/O	U/O	U/O	0/0	UAD
5	Conductivity	APHA2510-B	as/cm	**	118.2	126.8	135.8	146.2	154.8
-6	Turbidity	APHA 2130 B	NTU	160	3.6	4.1	3.8	3.2	3.4
7	Total Dissolved Solids	APHA 2540 C	mg/l	1500	118.0	126.0	132.0	116.0	128.0
8	Total Flandness (as CaCO ₃)	APHA 2340 C	mg/l	-	42.0	48.0	52.0	40.0	50.0
9.	Total Alkalimity	APHA 2320 B.	mg/L	***	38.2	41.2	44.0	45.2	46.0
10	Calcium (as Ca.)	APHA 3500Ca B	mg/l	+-	18.6	19.2	21.2	24.2	28.0
11_	Magnesium (as Mg)	APHA 3500Mg B	mg/l	-	10.2	11.4	16.2	8.81	19.6
12	Residual, free Chlorine	APHA 4500Cl, B	ing/l-	4-	ND	ND	ND	ND	ND
13	Boron (as B)	APHA 4500B, B	mg/l	***	<0.01	<0.01	< 0.01	-0.01	<0.0
14	Chloride (as Cl.)	APHA 4500Cl B	mg/l	600	26.0	24.0	22.0	20.0	24.0
15	Sulphate (as SO ₄)	APHA 4500 SQ ₁ ² E	mg/I	400	6.8	7.1	7.4	7.46	7.6
16	Fluoride (as F)	APHA 4500F C	mg/l	1.5	0.12	0:16	0.18	0,21	0.19
17	Nitrate (as NO ₃)	APHA 4500 NO ₃ E	mg/l	50	1.4	1.26	1.18	1.24	13
18	Sodium as Na	APHA3500-Na	mg/I		8.4	9.2	9.6	8.8	9.1
19	Potassium as K	APHA 3500-K	mg/l	14	1.2	1.8	2.6	1.6	1.8
20	Phenolic Compounds (as C ₀ H ₃ OH)	APHA 5530 B,D	mg/l	0.005	<0.001	<0.001	<0;001	<0.001	⊴0,00
21	Cyanide (as CN)	APHA 4500 CN C,D	mg/I	0.05	ND	ND	' ND	ND	ND
22	Anionic Detergents (as MBAS)	APHA 5540 C	mg/T	1.0	<0.2	<0.2	≤0,2	<0.2	<0,2
23	Cadmium (as Cd)	APHA 3111 B,C	mg/l	0.01	≈0.001	<0.001	<0.801	<0.001	<0.00
24	Arsenic (as As)	APHA-3114 B	mg/l	0.2	<0.001	<0.001	<0.001	<0,001	<0.00
25	Copper (as Cu)	APHA 3111 B,C	mg/I	1.5	<0.05	< 0.05	<0.05	< 0.05	<0.0:
26	Lead (as Pb)	APHA 3111 B,C	mg/L	0.1	<0.001	<0.001	< 0.001	20,001	-30.00
27	Manganese (as Mn)	APEIA 3500Mn B	mg/l	-00	< 0.005	< 0.005	< 0.005	< 0.005	<0.00
28	Iron (as Fe)	APHA 3500Fe, B	mg/l	0.5	0.21	0.24	0.26	0.18	0.22
29	Chromium (as Cr ²⁶)	APHA 3500Cr B	mg/I	0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05
30	Selenium (as Se)	APHA 3114 B	mg/i	0.05	<0.001	< 0.001	< 0.001	<0,001	< 0.00
31	Zinc (as Zh)	APHA 3311 B,C	mg/l	15	< 0.05	< 0.05	<0.05	<0.05	-0.05
32	Aluminium as(A1)	APHA 3500ALB	mg/l	-40	<0.001	<0.001	<0.001	< 0.001	< 0.00
33	Mercury (as Hg)	APHA 3500 Hg	mg/l		<0.001	<0.001	< 0.001	≤0.001	< 0.00
34	Mineral Oil	APHA 5220 B	mg/l		<0.001	±0,001	<0.001	< 0.001	<0:00
35	Pesticides	APHA 6630 B.C	mg/l	-	Absent	Absent	Absent	Absent	Abser
36	E.Coli	APHA 9221-F	MPN/ 100 ml	H	Absent	Absent	Absent	Absent	Absen
37	Total Coliforms	APHA9221-B	MPN/ 100 ml	5000	# 400.0	380.0	600.0	-400:0	380.0

Note: CL:Colourless, AL:Agreeable, U/O:Unobjectionable, ND: Not detected.

For Vision of Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref.: Egulalo /19/R-0484

SURFACE WATER QUALITY ANALYSIS REPORT-DEC 2018

1. Name of Industry : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

Sampling location : SW-6: Bhedan river near Katikela; SW-7: Matwadinadi-D/S;

SW-8: Hirakud reservoir near Gurupali village: SW-9: Salepali village:

SW-10: Sanamal

3. Date of sampling : 10.12.2019

Date of analysis
 11.12.2019 to 18.12.2019
 Sample collected by
 VCSPL Representative

SL	Description	Total or A factors	466	Standards as per	_	Am	dysis Result	S	_
No.	Parameter	Testing Methods	Unit	IS-2296:1992 Class = 'C'	SW-6	SW-7	SW-8	SW-9	SW-10
1	pH Value	APHA 4500H°B	RP.	6.0-9.0	7.4	6.9	7.2	7.4	7.2
2	Colour	APHA 2120 B, C	Hazen	300	CL	CL	CL	CL	CL.
3	Taste	APHA 2160 C	+	-	AL	AL	AL	AL.	AL
4	Odour	APHA 2150 B	-	7	U/O	U/O	U/O	U/O	170
5	Conductivity	APHA2510-B	μs/cm	-	118,2	146.0	148.0	139.6	145.2
Ð	Turbidity	APHA 2130 B	NTU		2.1	2.2	3.1	2.8	2.6
7	Total Dissolved Solids	APHA 2540 C	mg/l	1500	126.0	134.0	140.0	130.0	142.0
8	Total Hardness (as CaCO ₃)	APHA 2340 C	mg/l	+	50.6	58.2	56.0	51.2	52.0
41	Total Alkalinity	APHA 2320 B	mg/t		42.0	48.0	45.0	52.0	50.0
10	Calcium (as Ca.)	APHA 3500Ca B	mg/l	-	21.8	26.8	24.8	22.2	28.0
11	Magnesium (as Mg)	APHA 3500Mg B	mg/I		16.8	15.2	15.6	14.8	17.4
12:	Residual, free Chlorine	APHA 4500CI, B	mg/I		ND	ND.	ND	ND	ND
13	Boron (as B)	APHA 4500B, B	mg/l	-	<0.01	< 0.01	< 0.01	<0.01	<0.01
14	Chloride (as CL)	APHA 4500Cl B	mg/l	600	26.0	28.0	22.0	20.0	22.0
15	Sulphate (as SO ₁)	APHA 4500 SO ₄ 2 E	mg/l	400	6.8	7.2	6.6	6.2	6.0
16	Fluoride (as F)	APHA 4500F C	mg/l	1,5	0.24	0.26	0.28	0.22	0.24
11	Nitrate (as NO ₁)	APHA 4500 NO; E	mg/l	50	2.6	2.4	2.2	2.1	2.1
18	Sodium as Na	APHA 3500-K	mg/l	+	8.6	9.2	8.4	8.6	8.2
- 19	Potassium as K	APHA3500-Na	mg/l	-	2.6	2.2	2.1	1.8	2.4
.20	Phenolic Compounds (as C _c H ₂ OH)	APHA 5530 B.D	mg/l	0.005	<0.001	<0.001	< 0.001	<0.001	<0.001
21	Cyanide (as CN)	APHA 4500 CN C.D	mg/f	0.05	ND	ND:	ND	ND	ND
.22	Amonic Detergents (as MBAS)	APHA 5540 C	mg/l	1.0	<0.2	<0.2	<0.2	<0.2	<0.2
23	Cadmium (as Cd)	APHA 3111 B,C	mg/l	0.01	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
24	Arsenic (as As)	APHA 3114 B	mg/l	0.2	< 0.001	<0.001	< 0.001	< 0.001	<0.001
25	Copper (as Cu)	APHA 3111 B,C	mg/l	1,5	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
26	Lead (as Ph)	APHA 3111 B,C	mg/l	. 0.1	<0.001	<0.001	<0.001	<0.001	<0.001
27	Manganese (as Mn)	APHA 3500Mn B	mg/l	***	< 0.005	< 0.005	< 0.005	<0.005	< 0.005
28	hon (as Fe)	APHA 3500Fe, B	mg/l	0.5	0.21	0.22	0.24	0.26	0.18
29	Chromium (as Cr*)	APHA 3500Cr B	mg/l	0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05
30	Selegium (as Se)	APHA 3114 B	mg/l	0.05	<0.001	<0.001	<0.001	<0.001	< 0.001
31	Zine (as Zn)	APHA 3111 B,C	mg/l	15	< 0.05	< 0.05	<0.05	<0.05	<0.05
32	Aluminium as(Al)	APHA 3500ALB	mg/l	4	< 0.001	< 0.001	<0.001	<0.001	<0.001
33	Mercury (as Hg)	APHA 3500 Hg.	mg/l		<0.001	<0.001	<0.001	<0.001	<0.001
3.4	Mineral Oil	APHA 5220 B	mg/l	-	< 0.001	<0.001	< 0.001	<0.001	< 0.001
35	Pesticides	APHA 6630 B,C	mg/l	-	Absent	Absent	Absent	Absent	Absent
36	E Coli	APHA 9221-F	MPN/ 100 ml	_	Absent	Absent	Absent	Absent	Absent
37	Total Coliforms	APHA9221-B	MPN/ 100 mJ	5000	520.0	440.0	460,0	410.0	600,0

Note: CL: Colourless, AL: Agreeable, U/O: Unobjectionable, ND: Not detected

For Visiontel Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref.: Envlab/19/R-0474

Date 02/04/19

GROUND WATER QUALITY ANALYSIS REPORT-DEC 2018

1. Name of Industry : M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga.

Sampling location : GW-1: Lapanga Village; GW-2: Pandlol Village; GW-3: Bamloi Village;

GW-4: Tilaimal Village; GW-5: Thelkoloi Village; GW-6: Ghichamura Village

GW-7: Gumkarama Village; GW-8: Chaltikra Village,

3. Date of sampling : 10.12.2018

4. Date of analysis : 11.12.2018 to 18.12.2018
5. Sample collected by : VCSPL Representative

SI.		Testing		Standard				Analysi	s Result			
No.	Parameter	Methods	Unit	as per IS - 10500:2012	GW-1	GW-2	GW-3	GW-4	GW-5	GW-6	GW-7	GW-8
1	pH Value	APELA 4500H B		6.5-8,5	7,7	7.4	7.6	6.9	6.8	7.2	7.4	7.1
2	Colour	APHA 2120 B, C	Hazen	5.	<1.0	2.0	2.0	2.0	<1.0	3.0	2.0	2.0
3	Tuste	APHA 2160 €	(4)	Agreeable	Agreeable	Agreeable	Agrecable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeabl
4	Odone	APHA 2150 B		Agrecable	Agreeable	Agreeabl						
3	Conductivity	APHA2510-B	jis/cin	-	178.0	142.6	139,6	146.2	182.8	188.8	170,2	168 (1
6	Turbidity	APHA 2130 B	NTU	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	€1,0	<1.0
7	Total Dissolved Solids	APHA 2540 C	mg/l	500	226.0	186.0	190.0	188.0	206.0	186.0	210.0	192.0
8	Total Hardness (as CaCO ₃)	APHA 2340 €	mg/l	200	66.0	60.0	56.0	48.0	68.0	52.0	62.0	56.0
7	Total Alkalimiy	APHA 2320 B	mu/l	200	52,0	50.8	51.2	52.0	56.0	48.8	52,8	54.0
10	Culcium (as Ca.)	APHA 3500Ca B	Гщи	-75	18.8	16,6	14.2	12.8	13.8	15.6	16.8	17.1
II	Magnesium (as Mg)	APHA 3500Mg B	mg/l	30	4.6	5.8	5.2	4.2	5.9	3.8	5.1	5.6
12	Residual, free Chiorine	APHA 4500CL B	mg/i	0.2	ND	ND	ND	ND	ND	Nb	ND -	ND
13:	Boron (as B)	APHA 4500B, B	mg/I	0.5	< 0.01	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01
14	Chiloride (as CL)	APHA 4500CT B	mgd	250	20.2	21.8	22.2	26.0	24.0	22.0	18.0	20,0
15	Sulphate (as SO ₂)	APHA 4500 SQ. 2 E	mg/l	200	6.2	5.6	5.8	6.6	6.2	5.8	5.6	6.1
16	Flooride (as F)	APHA 4500F C	Jung/I	1.0	0.22	0.26	0.28	0.31	0.34	0.29	0.25	0.32
17	Nitrate (as NO)	APELA 4500 NO. E	Typm	45	1.8	1.6	2.1	2.4	2.2	1.5	1.4	1.6
18.	Sudium as Na	APHA3500-Na	Togetti	-	32.8	11.2	11.6	10.8	112	12.4	12.2	113
19	Potassium as K.	APHA 3500-K	mg/T	142	1.4	1.6	1.8	1.2	1.7	0.68	1.4	1.4
20	Phenohe Compounds (as C ₆ H ₂ OH)	APHA 5530 B,D	Tagm	0.001	<0.001	<0.001	<0.001	<0:001	< 0.001	<0.001	<0.001	<0.001
21	Cyanide (as CN)	APHA 4500 CN C,D	mg/l	0.05	ND.	ND	ND	ND.	ND	ND	ND	ND
22	Amonic Detergents (as MBAS)	APITA 5540 C	mg/j	0.2	<0.2	+:0.2	<0.2	40.2	-0.2	-0,2	rs0.2	<0.2
23	Cadmium (as Cd)	APHA 3111 B.C	mg/l	0,003	< 0.001	<0.001	<0.001	< 0.001	< 0.001	-20.001	<0.001	<0.001
24	Arsenic (as As)	APHA 3114 B	mg/l	0.01	<0.001	< 0.001	<0.0001	<0.001	<0.001	<0.001	< 0.001	<0.001
25	Copper (as Cu)	APHA 3111 B.C	my/l	0.05	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	=0,601	< 0.001	< 0.001
20	Lead (as Ph)	APHA 3111 B,C	mg/T	0.01	100,0>	-0.001	<0.001	<0.001	<0.001	100.01	-0.001	<0.001
27	Manganese (as Mn)	APHA 3500Mn B	mg/I	0.1	<0.001	< 0.001	<0.001	< 0.001	< 0.001	<8.901	100.0	<0.001
28	Iron (as Fe)	APHA 3500Fe. B	mg/l	0.3	0.26	0.24	0.26	0.21	0.18	0.16	0.22	0.24
29	Chromium (as Cr)	APHA 3500Cr B	mg/I	0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	≤0.05	< 0.05	=0,05
30	Selenium (as Se)	APHA 3114 B	my/l	0.01	< 0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	< 0.001	=0.001
31	Zinc (as Zn)	APHA 3111 B,C	Tgm	5	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
32	Aluminium as(Al)	APHA 3500 ALB	mjg/Ŧ	0,03	<0.001	-0.001	< 0.001	<0.001	< 0,001	~0.00i	≈9/.08 I	<0.001
33	Mercury (as Hg)	APHA 3500 Hg	mg/l	0.001	<0.001	-:0.00.1	<0.001	< 0.001	< 0.001	100.00	<0.001	-0.001
34	Mineral Oil	APHA 5220 B	mg/l	0.5	<0.001	<0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	≥0.001
35	Pesticides.	APHA 6630 B,C	mg/l	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
36.	E.Celi	APHA 9221-F	MPN/ 100 ml	Shall not be detectable in any 100 mi sample	Absent	Absent						
37	Total Coliforns	APHA922)-B	MPN/ 100 ml	Shall not be detectable in any 100 ml sample	Absent	Absent	Abseni	Abseni	Absent	Absent	Absent	Absent

Nate: CL: Columbiess, AL: Agreeable, U/O: Unobjectionable, ND: Not Detected.

For Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO-14001 2004 OHSAS 18001 : 2007

Ref. Emulals/19/R-0490

SOIL QUALITY ANALYSIS REPORT

Name of Industry

M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Date of Sampling 12.12.2018

Sampling Location

S-1: Project Site; S-2: Thelkoloi; S-3: Ghichamura; S-4: Lapanga;

S-5: Bamloi;S-6: Tileimal; S-7: Jangala; S-8: Gurupali; S-9: Gumkaran

S-10: Bhadarpali.

4. Date of Analysis 13.12.2018 TO 20.12.2018

Sample Collected By

VCSPL Representative

SI.No.	Parameters	S-1	S-2	S-3	S-4	S-5	S-6	S-7	S-8	S-9	S-10
3141704	p ¹¹	6.26	5.89	5.94	5.68	5.72	5.81	5 RR	5.68	6.14	5,72
1	Conductivity	118.8	102.8	8.801	124.2	116.0	112.0	121.0	110.8 Sandy	106.6 Sandy	104.2 Clay
3	Soil Texture	Loamy	Clay Loamy	Clay Loumy	Sandy Edainy	Sandy Loamy	Clay Loamy	Sandy Loamy	Loumy	Louny	Loamy
4	Sand	35.2	18.8	30.8	36.2	TRR	19.6	28.8	30.8	40.2	21.8
5	Silt	12.6	20,8	18.6	19.4	14:6	12.8	11.8	19.2	20.6	18.2
6	Clav	42.8	58.2	46.0	41.2	42.0	40.8	41.2	44.2	48.0	54.2
7	Bulk Density (µm/cc)	1.26	1.28	1,34	1.38	1.41	1.38	1:42	1.26	1.31	1.36
-8	Exchangeable Calcium as Ca (%)	35.2	34.0	40.8	36.0	40.0	36.0	35.8	40.2	41,8	38,6
9	Exchangeable Magnesium as Mg (%)	48.1	50.3	50.8	31.2	51.8	52,4	53.6	54.8	60.8	54,2
10.	Available Sodium as Na(%)	0.012	0.018	0.016	0.021	0.022	0.021	0.022	0.026	810,0	0.022
11	Available Potassium as K (%)	0.048	0.044	0.046	0.041	0.039	0.038	0.040	0.841	0.044	0.042
12	Available phosphorous as P (%)	0.018	0.022	0.021	0.021	0.020	0.016	0.018	0.014	0.016	0.014
13	Available Nitrogen as N (%)	0.16	0.18	0.21	0.19	0:22	.0.24	0.22	0.28	0.16	0.18
14	Organic Mange (%)	2.8	3.2	3.4	2.8	1.2	3.6	3.4	3,2	2.9	3.0
15	Organic Carbon (%)	1,42	1,51	1,52	1.6	1.48	1.5	(.8	1.84	1.84	1.96
10	Water soluble Chlorides as C1 (%)	0.22	0.24	0.21	0.22	0.26	0.18	0.19	0.17	0.21	0.22
17	Water soluble Sulphates as SO ₄ (%)	0.12	0.14	0.16	0.14	0.12	D.10	0.11	★ 0.11	0.12	0.10
18	Sodium Absorption Ratio (%)	0.154	0.151	0.146	0.144	D 142	0.154	0.156	0.146	0.148	0.15
19	Aluminum as Al (%)	0.0001	800000	0.00005	0.00008	0,00009	0.00004	0.00006	0.00002	0.00002	0.000
-20	Total Iron as Fc (%)	0.091	0.036	0.044	0.072	0.068	0.046	0.058	0.039	0.026	0:03
21	Manganese as Mn (%)	0.008	0.0014	0.0021	0,0026	0.0012	0.0018	0,0022	0.0018	0.0014	0.001
22	Horon as B (%)	0.00012	0.00017	0.00019	0.00026	0.00022	0,00024	0.00028	0.00026	0.00016	0.000
23	Zinc as Zn (%)	0.00028	0.00026	0.00026	0,00021	81000.0	0.00016	0.00014	0.00012	0.00011	0.000
24	SiO ₁ (%).	5.2	5.8	6,2	6.4	5,6	6,8	6,4	5.8	6.6	3.9
25	Fe ₂ O ₃ (%)	0.061	0.038	0.038	0.026	0.024	0.018	0.024	0.028	0.031	0.02
76	CaO (%)	26.2	25,4	25.2	25.8	26.0	24.8	30.6	31.8	32.2	28.6
29	MgO (%)	22.0	23.4	22.8	2),8	20.8	21,2	28,6	34,2	26.6 0.00038	D.000
28	Al ₂ O ₃ (%)	0,00002	0.00008	0.00032	0.00048	0.00037	0.0042	0.00032	0.00026	0.0196	0.021
29	FeO (%)	0.046	0.0128	0.042	0.018	0.029	-		-	0.0014	0.00
ÜE.	MnO (%)	0.0052	0.0016	0.8012	0,0021	0.0044	0.001	0.0012	0.0012		-
31	K ₂ O (%)	0.0512	0.0411	0.0418	0,0196	0.0512	0,0418	0.0092	0.0518	0.0448	0.05
12	P ₂ O ₁ (%)	0.0084	0.0076	0.0084	0.0082	0.0086	0.0081	0.0092	0.0114	17,00,10	02.370
33	Fluoride as F (%)	0.0014	0,00032	0.00028	0.00032	0.00038	0.000+1	D.00028	0.00026	0.00024	0.000

ND: Not Detected.

Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref.: Egulab/19/R-0491

NOISE MONITORING REPORT

1. Name of Industry

:M/s Hindalco Industries Ltd (Unit- Aditya Aluminium); Lapanga

2. Monitored By

: VCSPL representative

Daytime Noise monitoring results (Noise Level in dB (A)) March-2019

TIME (6.00AM to 10.00PM)	N1:Gumkarma (07.03.2019)	N2:Ghichamura (07.03.2019)	N3:Bomaloi (09.03.2019)	N4: Fileimal (09.03.2019)	N5:Thefkoli (11.03.2019)	N6:Lapanga (11.03.2019)	N7: Lapanga Railway Station (14.03.2019)	N8:Jangala (14.03.2019)
06.00am	52.2	51.0	50.8	46.0	42.0	46.0	40.0	41.0
07.00am	54.0	52.0	51.0	46.6	44.0	47.0	41.0	43.0
08.00am	55.0	53.0	51.6	47,0	45.0	48.0	42.0	54.0
09.00am	56.0	56.0	52.0	48.8	48.0	50.0	41.0	56.0
10.00am	58.0	58.0	52.6	49.2	50.0	50,6	42.2	58.0
11,00am	58.0	57.0	55.0	50.6	51.0	51.0	43.0	60.0
12,00 noon	59.0	58.0	55.8	51.2	53.0	51.8	43.0	61.0
01.00pm	56.0	56.0	57.0	52.0	54.0	52.0	43.1	62.0
02.00pm	55.0	57.0	58.8	52.2	52.2	53.0	44.0	61.2
03.00pm	54.0	52.0	57.2	50.8	51.1	51.8	43.0	44,0
04.00pm	52.0	51.0	51.6	48.2	50.2	50.6	42.8	46.0
05.00pm	50.0	50.0	50.8	45.1	50.0	47.8	42.2	48.0
06.00pm	48.0	49.0	50.6	49.0	41.2	44.2	41.9	49.0
07.00pm	42.0	48.0	48.0	46.0	40.0	42.1	41,6	45.0
08.00pm	41.0	44.0	46.0	45.0	39.8	40.0	40.6	44.0
09.00pm	42.0	41.0	44.0	44.0	36.2	36.8	40.2	43.0
Average	52.01	52,06	52.05	48.23	46.73	47.67	41.98	50.95
Standard as per CPCB	75							

Night time Noi	ise monitoring results (Noise Level i	n dB (A)) March-19
----------------	--------------------------	---------------	--------------------

Nigh	t time Noise mon	itoring results (Noi	se Level in dB (/	i)) March-19				
TIME (10.00PM to 6.00AM)	N1: Gumkarma (07.03.2019)	N2:Ghichamura (07.03.2019)	N3:Bomaloi (09.03.2019)	N4: Tileimal (09.03.2019)	N5:Thelkoli (11.03.2019)	N6:Lapanga (11,03,2019)	N7:Lapauga Railway Station (14.03,2019)	N8:Jangala (14.03.2019)
10.00pm	41.0	36.0	39.0	36.0	35.0	34.8	40.0	39.0
11.00pm	40.6	32.0	36.0	35.0	33.0	32.2	39.0	36.0
12.00 midnight	40.0	31.0	35,0	33.0	32.0	31.0	37.0	30.0
01,00am	39.6	38.0	32.0	30.0	31.0	30.8	35.0	29.9
02.00am	38.8	41.0	36.0	29.0	32.0	30.2	36.0	26.2
03.00am	40.0	43.0	40.2	28.0	33.0	31.0	36.8	28.0
04.00am	35.5	44.0	42.0	34.0	35.0	32.0	38:0	29.1
05.00am	51.8	45.0	48.0	40.0	40.0	40.0	38.8	29.0
Average	40.91	38.75	38.53	33.13	33.88	32:75	37.58	30.90
Standard as per	70							

For Visioniek Con ervices Pvt. Ltd.